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Abstract 

~ We study the single particle and collective dynamics of a storage ring where the 

momentum compaction is made small to make it nearly isochronous, to reduce the 

bunch length and increase the peak current. We find that a quasi-isochronous ring 

makes it possible to obtain a bunch length in the millimeter range and to increase 

the beam longitudinal brilliance by more than one order of magnitude. 

-. 
1. Introduction 

The beam energy spread, oe, for an electron beam in a storage ring is determined 

by the emission of synchrotron radiation or by the microwave instability. The bunch 

length a~ is proportional to the relative energy spread, average beam energy, E,, 

and to the ring momentum compaction factor, CY, and inversely proportional to the 

synchrotron tune, vs 

CYR 
aL = -a, 

vs 
(1) 
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where R is the average ring radius. The synchrotron tune, v,, is proportional to the 

square root of the momentum compaction, o’, so the bunch length can be reduced by 

reducing the moment urn compaction 

OLocJ;;; . (2) 

In this paper, we study the possibility of designing storage rings with CY reduced 

by two or more orders of magnitude with respect to existing rings, thus making the 

bunch length shorter by a factor of ten or more. We will with an appropriate design, 

show that this bunch length reduction can be achieved while simultaneously increasing 

the beam peak current. With this approach one can increase the six-dimensional beam 

phase density, extending the range of applications of storage rings. 

For an electron-positron collider, reducing the bunch length allows us to decrease 

the beta function at the interaction point, p*. The luminosity would then be increased 

by a factor of 10. For a damping ring of a linear collider, the bunch length can be 

matched to the phase acceptance of the linac, thus avoiding the need of longitudinal 

bunch compression. A quasi-isochronous ring can be a good driver of a FEL, providing 

a large beam longitudinal brilliance, and a large FEL gain. 

There have been other studies which have looked at storage rings or synchrotrons 

with cy = 0, i.e., operating at transition energy. For the most part, these studies 

have dealt with proton rings. ‘y2p3 In the past, there have also been proposals to use 

isochronous electron storage rings. Kenneth Robinson4 proposed this as a system to 

measure the speed of light to high accuracy. David Deacon proposed the use of an 

isochronous ring as a driver of a FEL.5 At the BNL workshop on small emittance rings 

some analysis was done on the dynamics of an isochronous ring.6 However, none of 

these papers presents the analysis of the single particle and collective beam dynamics 

needed to establish the possibility of operating a storage ring at or near transition 

energy. This is what we propose to do in this paper. 

We will first discuss the basic concept and some of the main properties of a 

quasi-isochronous storage ring. Next, the single particle dynamics will be discussed. 

We will establish lower limits to the value of the momentum compaction needed to 
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provide a large enough stable phase-space area to have a good quantum fluctuations 

.- beam lifetime. Next, the effect of coherent beam instabilities will be discussed where 

we show that one can increase the peak current, IP, by lowering Q. Finally, some of 

the possible applications of such a ring will be shortly discussed. 

2. Isochronous Storage Rings 

.- 

_ This discussion of isochronous storage rings will be preceded by a short summary 

of the general equations of motion for the longitudinal degree of freedom of a storage 

ring. Then, the differences between conventional rings and isochronous rings will be 

more clearly illustrated. The main difference between a conventional and isochronous 

storage ring lies in the longitudinal beam dynamics; the transverse beam dynamics 

-. are not influenced, except for the synchro-betatron coupling effects, and this will not 

be discussed here. In particular, the synchrotron oscillation frequency is assumed 

to be zero or very small. Defining what we mean by “very small” is one of the key 

questions to be discussed here. 

One issue is that when we make CY, the momentum compaction, small, nonlinear 
- terms which are usually neglected can become important. To allow for this possibility, 

we will assume in the equation of motion that Q is a function of the particle energy, 

a = a(S), where S = (E - E,)/E, is the relative energy deviation. Using as variables 

S and the angular distance 1c, = 4 - $S, from a reference particle of energy E, and 

angle 4S, we can write the equations of motion as7 

$ ’ = cY(S)S (3) 

&‘= 
eVo UO 

G sin(lC, + dS) - ~(1 + JJ) + fluctuations 
s 3 

where Uo is the energy radiated per turn from the reference particle, JE is the radiation 

damping partition number and with fluctuations we indicate the term arising from 

quantum fluctuations in the emission of synchrotron radiation. The superscript ’ 

implies a derivative with respect to wet, where t is time and ws is the revolution 
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frequency around the ring of the reference particle. For a storage ring with an energy 

.- dispersion function, 7, and a bending radius, p, we have7 

(5) 

where n is the bending magnet field index, and with <> we indicate an average over 

the ring. 

The quantity Vo is the peak voltage of the RF cavity. We also define the syn- 

chrotron phase, dS, so that eVo sin $S = Uo. In our study, we linearize the effect of 

the RF cavity. We have found that doing this will have a negligible effect on the 

dynamics of our beam particles for ring parameters which we have been using. The 
. 

physical meaning of this approximation will become apparent later on. The equations 

of motion then become 

t+b ’ = a!y(qs 

UO 6’=-Kli,-2rrE - J,S + fluctuations 
s 

- 
where K = (eVo/2rE,) cos qSs. 

(6) 

(7) 

The momentum compaction term, a(6), is dependent upon two quantities; the 

difference in velocity between the test particle and the ideal particle, and the difference 

in path length between the test particle and the ideal particle as they travel around 

the ring. The faster the test particle moves, the farther it moves, tending to decrease 

$; however, the longer the path length, the longer it will take to move around the 

ring tending to increase +. The information concerning these effects is embodied in 

the momentum compaction term Q which is defined as 

( > 
alC, 
2lr 

cY= (8) 
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where A$ is the change in 1c, per turn for given AE. In the simplest linear approxi- 

_- mation 

rl 1 
CYYM - 

0 
--= 

p Y2 
01 

where y is the ratio of the particles total energy to that of its rest energy.7 

For highly relativistic particles, the first term is dominant; it is usually positive 

but it can be made nearly zero or negative by having in the ring regions of inverted 

bending, p < 0, or of negative dispersion, q < 0. The full expression for Q that we 

should use in (S), is 

(1+32+(;c’)2+(z’)2-1 -- . 1 1 

PS Y2 
(10) 

To simplify this initial discussion of a “quasi-isochronous ring,” we will expand cy to 
_. -. first order in delta and neglect the contributions from the the betatron oscillations, 

a = a1 + cqs (11) 

with-or given by equation (9). The ~2 term is given by 

‘1 

f 

ds(8 ‘j2 
q=- - 

L 2 * (12) 
- 

The value of or can be adjusted to be zero or negative but, as one can see from (la), 

cr2 is always positive. Therefore one can never completely eliminate the effect of ~32. 

If sextupoles are included in the lattice, there is a second-order dispersion term, r/z8 

x = q1s + 4 . (13) 

-. The second-order term in the momentum compaction is then modified and instead of 

(12) we have 

q=;jds [y+rj2] . (14) 

Making ~2 negative can provide a possibility to decrease ap, but we have not consid- 

ered this possibility in this paper. As a first step in understanding the behavior of an 

isochronous ring, we will study the system of equation (6) and (7) with CY given by (11). 
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-The simplest case is that when (~1 = 0, and in addition we neglect damping. We 

.- are now reduced to the equation: 

6 ” + lm262 = 0 . (15) 

This equation leads to unstable solutions, described in phase space by the curve, 

(S ‘)2 + (Z/3) KCY~S~ = constant, and shown in Figure 1 for a particular case.’ 

To make the longitudinal motion stable, we must have or # 0; this introduces 

an elastic-like focusing force, and thus provides a stable oscillation region near the 

origin (6 = 1c, = 0). Th e area of the stable region depends on the relative magnitude 

of or and cr2, and also on /c, and usually can be made large enough for a convenient 

accelerator operation. The stable phase-space region can also be made larger, when 

crl is made small, by increasing the rate at which the electrons lose energy through 

the emission of synchrotron light; in other words, increase the damping of the system. 

If ~1 = 0 there can be no absolute stability in the system no matter how large the 

damping is. However, damping will slow down the rate of the instability growth. 

Indirectly, damping does provide stability. Without damping, one would require a 

larger value of or for stability than with damping. With more damping, the smaller 

CY~ can be. A more detailed discussion on the limits of stability will now follow. 

3. Limits of Stability 

This discussion of stability limits for cr will involve the second-order equations 

of motion including damping with (u given by (11). We will continue now to neglect 

the fluctuation term. The question which we try to answer is: given a specific value 

for 02, what is the smallest value of or necessary to make the equations of motion 

stable? The answer is that this value of or is dependent upon both the initial value 

of $J and S and also on the amount of damping. 

Initially we chose the following values for $0, SO and KTO: $0 = 0.0001, SO = 0.001 

and KTO = -0.01, where To is the period of oscillation. The choice of $0 corresponds 

to an initial displacement of about 1 cm for a ring with a circumference of 760 m, 
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whzse parameters are given in Table 1. The choice of ~7’0 is consistent with possible 

.- parameters for an isochronous ring. 

In the case of zero damping we find that for each value of ~2, there exists a 

certain value of q which just makes the motion stable. In Figure 2, we plot three 

curves of 6 verses q.4 for a specific choice of or and 02. The middle curve is a separatrix 

which defines the limiting value of S and 1c, which will result in stable motion. The 

middle curve is typical of all limiting cases. All choices of $0 and 60 lying inside 

the curve will result in closed trajectories. All choices of $0 and 60 lying outside the - 
curve will result in open trajectories. A choice of cq greater than the limiting value 

will also give rise to a closed curve. This curve will lie inside this separatrix and will 

be smoother than that for the limiting case. But for smaller values of (~1, the curve 

will be open and the trajectory will be unstable, similar to the outermost curve in 

Figure 2. 

- 

-. 

It is interesting to see what happens when 1c, and 6 are plotted against time using 

the_ case of zero damping for illustrative purposes. In Figure 3, there are four plots. 

The first is a plot made for a choice of cq which lies far within the stability region. 

It appears regular and sinusoidal for both 1c, and S. This is a direct result of the fact 

that the first-order term, or, completely dominates the second-order term, cq, and 

the motion is therefore almost that of a simple harmonic oscillator. The second plot 

is for a smaller choice of cq which is also within the stability limits but is closer to 

the limiting value. The period of oscillation for 1c, and S is increasing but the shape 

still basically resembles that of sine waves. The third plot is for a choice of cq which 

is very close to the stability limit. In this plot the motion is oscillatory; however, the 

period has increased dramatically and the curve is strongly distorted from a sinusoid. 

During portions of the oscillation, T,L remains close to zero and 6 is nearly constant. If 

cyr was chosen to lie right on the limit of stability, the period of motion would increase 

to infinity. Finally, there is a plot for a value of q which lies just outside the limit of 

stability. The motion appears to be stable for a while but at some time both $J and 

S diverge. The farther outside the limit of stability, the shorter time it will take for 

1c, and S to diverge. 
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-Now the case with damping is considered. Again we find that for every value of 

~2 there exists a specific choice of or such that all larger values are stable and all 

smaller values are unstable. Plotting S versus 1c, as we did before for this limiting 

case, we do not find a closed separatrix, but instead, a spiral which is sharp at the 

bottom and slowly converges to the point (0,O) as seen in Figure 4. In the case in 

which crl is smaller than this critical value, the motion is unbounded as in the case 

with zero damping. As the value of ~1 increases, moving the system farther into the 

stability region, the curve becomes smoother and rotates quicker. And in a plot of $ 

and S versus time, one finds that the motion is that of a damped oscillator which is 

converging on the reference particle’s coordinates. 

Let us now take a further look at the limits of stability. We have found that on 

the boundary between stability and instability there exists one value of ol for each 

value of oz. For three different cases of damping we plot these values of CY~ against 

err as seen in Figure 5. One finds that LYE increases steadily with og. Also one finds 

that as the damping increases the values of ~1 decrease, and the curve is lowered. So 

for-stable operation of a storage ring, ~1 must be chosen to lie above the curves. 

Finally, to get an indication of how these requirements of (~1 depend upon the 

initial values of II, and S, we choose the values $0 = 0.0003 and So = 0.003. Again, 

making a plot of crl versus (~2, we find similar curves to that of the first choice of $0 

and 60 as can be seen in Figure 6. But the corresponding values of or are almost 

a factor of three bigger. So the “tighter” the initial conditions for the bunch, the 

smaller one can make crl. 

We can now comment on the approximation introduced by linearizing the sine 

term in (4). If we assume ~2 = 0, but keep the sine term, we have a stable phase space 

region (the RF bucket), defined by the RF voltage, $s, and E,. The linearization does 

not change our results if the RF bucket is larger than the stable region that we obtain 

when or is small and o2 is nonzero, the “drop” of Figure 2. This condition is satisfied 

in all our calculations. 
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4. Coherent Instabilities 

.- 

A concern involving a ring having a small momentum compaction is the threshold 

peak current which can be stably circulated in the ring. This current is determined 

by collective effects such as the longitudinal microwave and fast head-tail instabilities. 

Some studies have been made 2j3 for proton or heavy ion rings regarding these effects 

when crossing the transition energy. These cases are somewhat different from the 

electron-positron collider case due to the fact that there is no damping in these 

machines, and that the beam energy is changing. 

In determining the effects of collective instabilities, we have first considered the 

effect due to the longitudinal microwave instability. As is known9 the threshold 

peak current determined by the onset of the longitudinal microwave instability is 

proportional to the momentum compaction, crl, when a2 = 0: 

Ip = 
27wC&3~e)2 

211 
F 

I 1 

(16) 

-ii 

where IZll/nl is th e ring longitudinal coupling impedance divided by the mode num- 

ber, n, n = w/wg, ws = c/R. .F is a form factor coming from a dispersion relation 

which will be given later. On the surface, equation (16) seems to indicate that smaller 

o machines would be unable to circulate as large a peak current as larger Q machines, 

However, the value of I.2711 / 1 n is e en en u d p d t p on the length of the bunch. The 

wavelengths of modes which are important in contributing to the longitudinal mi- 

crowave instability are the size of the bunch length or smaller. The impedance of the 

ring should therefore be evaluated using only these modes. In general, the impedance 

will decrease at smaller wavelengths (SPEAR scaling), and this can compensate the 

decrease of 0.’ 

In addition to this, there is another effect which is important in determining the 

threshold peak current. One can tolerate an instability growth so long as it is smaller 

then the damping rate. In other words, we redefine the threshold peak current as 

the peak current which corresponds to an instability growth equal to the damping 
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.- 

rat; As we will see from the following analysis, the growth rate of the instability is 

a function of ~1 and tends to zero as cur tends to zero. Hence, for rings with small 

or and large damping we can circulate larger currents. 

Using this definition we calculate the threshold peak current as a function of the 

.- damping rate including the effect of the cy2 term in the equation of motion. This is 

done using the coasting beam approximation and following the usual Vlasov equation 

appr0ach.l’ The distribution of the particles is a function of the angle ($J), the energy 

deviation (6) and time (t). Due to the periodic nature of the collider one can make a 

separation of variables and write the distribution as 

f($~,iTt) = E g fn(S,t)e-in(++Wot) . (17) 
-CO 

.- 
-. Furthermore, an assumption is made that the distribution function of energy and 

time, fn, is separable and can be written: 

fn(S, t) = ~n(@ivnt . (18) 

Using this expression for the distribution it is clear that the variable vn contains 

information concerning the stability of the distribution. In general, v, can be written 
- 

in terms of its real and imaginary parts. 

v, = V,R + iv,1 . (19) 

-. 

If v,~ is positive the distribution is a stable function of time. If v,~ is negative the 

distribution is an unstable function of time. Writing down the Vlasov equation an 

expression can be found for fn(S, t). I n our calculation, this was done keeping terms 

up to first order in the impedance: 

fnW> = 
w0e2pc df0 1 

2rE -&(w>L(t)N- 
3 dS i(v,+nwoalS+nwoa2S2) 

PO> 

where ws is the design orbital frequency of particles in the machine, fo is the normal- 

ized zeroth-order distribution and N is the number of particles in the ring. x,(t) is 

given by the expression: 
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Integrating (21) over 6, one removes the energy dependence and ends up with a 

dispersion relation 

dfo 
ieIp dn 

I=- 
211 mdA - 

4mlE,a,2 n J a+ib+A-/-dA2 
--oo 

(22) 

(23) 

_. . d= a2 
JZcreQl 

(25) 

s A=- 
ae - (26) 

This differs from the usual expression of the dispersion relation only for the S2 term 

in the denominator of the integral. 
- 

-. 

Assuming given rings characteristics, a specific energy for the particles and a 

gaussian distribution in energy, one has three unknown parameters, V~R, V,I, and 

I,. The dispersion relation, being complex, yields two equations. To solve for any 

two of these unknown variables, one must assume a certain value for the third. In 

the limiting case of the threshold peak current without damping, one sets V,I = 0 

and then determines IP and V,R. This is the conventional threshold peak current. 

In our calculation V,I was set to several different positive values corresponding to 

machines with different damping times. For each of these values of V,I, Ip and U,R 

were determined. The result can be seen in Figure 7 where we have used for the 

impedance the “broad-band” resonator modelg~10 

--- 
(27) 
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where, R, is the shunt impedance of the ring, we assume a Q = 1 resonator, and 

the critical frequency w, corresponds to the vacuum pipe cutoff, w, = c/b, b being 

the pipe radius. We also evaluate this impedance at a mode number or frequency, 

corresponding to the bunch length, nwo = C/&OL, assuming that go < b. Notice 

that with this assumption, and for short bunch length, the impedance scales as CL/b, 

and Z/n as aL 2. This scaling will change when the impedance becomes of the order 

of the vacuum impedance,” Z/n - 300b/R. In our calculation we assume to be in 

the region of frequencies larger than the pipe cutoff and smaller than that where the 

vacuum impedance becomes the dominant term. 

The results in Figure 7 show that in the absence of damping, the threshold peak 

current is independent of (;Y as is expected. But as the amount of damping increases, 

the threshold peak current for the small momentum compaction becomes greater then 

-. that of the large momentum compaction ring. In the case of extreme damping 

1 
IpcC- . 

a1 

There is no strong dependence on cup. 

(28) 

This result can be understood rather easily. In the limit of no damping, using 

- the impedance (27) and evaluating it at the frequency w = c/,/K with a~ = 

(orRa,/vS), one can see from (16) that IP is independent of or. This makes the 

two curves in Figure 7 almost equal when l/r0 becomes small. In the limit of large 

damping rates since the instability growth time is proportional to the momentum 

compaction, the peak current is inversely proportional to the damping time and thus 

is inversely proportional to the momentum compaction. This calculation has been 

done using the coasting beam and broad-band impedance model. In order to make a 

better determination of the effects of the microwave instability, a calculation of the 

bunched beam longitudinal microwave instability needs to be done, and the effect of 

different impedances needs to be analyzed. 

We can use the same impedance model to look at the scaling of the fast head-tail 

instability. The expression for the threshold peak currentI is 
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where 21 is the transverse impedance of the ring, VP is the betatron tune of the ring 

and vs is the synchrotron tune of the ring. In the high-frequency region, above 

the pipe cutoff, the transverse impedance can be assumed to be proportional to 

._ the longitudinal impedance, 21 = 2(R/b) 2(211/n). The synchrotron tune, u,, is 

proportional to JZ Using our SPEAR scaling argument again we find that the 

transverse impedance, 21, is proportional to cy. The threshold peak current as a 

function of cy is then 

IP cx (30) 

The small momentum compaction ring seems to be advantageous over a conventional 

ring for circulating large currents. For damping times on the order of milliseconds 
. 

(the magnitude of damping which would be desirable for a B or @ factory) one can 

have a much larger peak current in a small a! ring then in a conventional ring. 

5. Possible Applications of a Quasi-Isochronous Ring 

5.1. COLLIDER 

- As was mentioned earlier, one of the possible uses of a quasi-isochronous ring 

would be as a high-luminosity collider. This is of interest for Z-Factories, B-Factories 

and Q-Factories. The collider luminosity, L, can be written as 

. N is the number of particles in each bunch assumed to be the same for each beam, f 

is the frequency of collisions, ai and a; are the transverse dimensions of the beam at 

the interaction point, & and ,$ are the beta functions at the interaction point and 

c2: and Q are the z and y emittances of the beam in the ring. The vertical emittance 

is determined by the coupling and is proportional to Ed. There is an effective limit to 

how small one can make the ,8*s so as to increase L. 
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MaEng p* < a~ would not result in an increased luminosity. In addition the beam- 

beam tune shift puts a limit on the ratio N/e,. If one wants to increase L without 

increasing fN, i.e., the beam power, one would have to or decrease a~ and /3*. 

Assuming one can achieve such a small bunch length, it then is necessary to 

have a focusing system which can provide a /3* about equal to a~ in the millimeter 
.- range. In a recent paper by Robert Palmer13 concerning the prospects for high-energy 

electron-positron linear colliders, he discusses different methods of producing small 

beta functions at the interaction point. He provides a formula for determining p* 

using conventional focusing techniques. 

we s & 2 p*=trcgl -u 
$ P’ e 

where T and S are constants whose values each are about 10 and B’ is the maximum 
.- . quadrupole pole tip field in Tesla. Using this formula and assuming a large value of 

the emittance, 10d6m-rad, a B* of lT, a beam energy, E,, of 5GeV and a relative 

energy deviation, ce, of 10e3 we find that we can produce a ,0* of 0.1 mm. Thus it 

seems possible to provide millimeter p*, 

Assuming we can provide such a small beta function, a tentative list of param- 

eters for a B factory using a quasi-isochronous ring is given in Table 1. Conven- 

tional B factory designsI require several Amperes of current to reach a luminosity 

of 1O34 cmM2 s-l while a quasi-isochronous collider needs only a few hundred mil- 

liamperes. This is because conventional colliders have an ~1 of about 10m3 while our 

value for crl is 3.5 x 10m5 which allows for a reduced bunch length of about 7.5. The 

smaller current of a quasi-isochronous ring, reduces the RF power, the synchrotron 

radiation power density on the vacuum chamber and associated vacuum problems, 

the problem of controlling the multibunch instability, thus making the collider tech- 

nology much easier. Alternatively for the same beam current one can increase the 

luminosity by another factor of ten. 

Our choice of Cal was made by choosing an appropriate value from Figure 5 

which was consistent with our other quasi-isochronous collider parameters. As a 

result of this smaller bunch length, the beta function of the quasi-isochronous ring is 
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smZiler, which in turn provides a bunch width considerably smaller than that of the 

.- conventional ring. The total current can then be reduced for the same luminosity. 

Our justification of this difference lies in the fact that the ratio of the two values 

of the momentum compaction is about 650. By the relationship given in the previous 

section, the bunch length could be reduced by a factor on the order of 25. Thus a 
.- reduction in a~ of 7.5 would be very reasonable. 

5.2. DAMPING RINGS, LIGHT SOURCES AND FREE ELECTRON LASERS 

Another possible use of a quasi-isochronous ring would be for a damping ring or a 

synchrotron light source. The main advantage of a ring of this type would be the short 

bunches which it would naturally produce. For a damping ring, the beam would not 

have to be “artificially” bunched after it exits the ring before it goes through another 
.- . accelerating section. Short bunches, of a few picoseconds, would also be useful for 

light sources where there are some experiments where time-of-flight measurements 

are important. 

One could also use a quasi-isochronous storage ring as a driver for a Free Electron 

Laser. The advantage which a quasi-isochronous ring would have is that it could 

produce beams with a large longitudinal brilliance, more than what has been achieved 
- 

in conventional rings. The longitudinal Brilliance, DL, is a measure of the quality of 

the beam and is defined as15T16 

Net IP 
AL=-=- 

&GEL yae 
(34) 

where EL is the normalized longitudinal emittance. The power in an FEL is a function 

of the energy spread and peak current, and it scales like the square root of the 

longitudinal brilliance. l6 Thus a quasi-isochronous ring can produce a larger gain and 

extend the operation region of an FEL to shorter wavelengths. 
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6. Conclusions 

We have shown that one can have stable motion in a ring with values of QQ 

which are many orders of magnitude smaller than cr2 and much smaller than used in 

existing rings. Since the size of the bunch is related to the momentum compaction, 

one can decrease the bunch length by decreasing the momentum compaction factor. 

In fact, in the case where cq = 0, a~ is proportional to 6. In the case where 

a2 f 0, one can still use this relationship to obtain an estimate of the bunch length, 

the reason being that for stable motion, the ~1 term (or&) is larger than the cq term 

(~~26~). A simulation was done including the effect of fluctuations in the photon 

emission spectrum and the results confirm this statement. For a “normal” ring oq is 

10-2 N 10m4 giving a~ - 1 cm. In our case, we can have ~1 - 10m5 which means a 

bunch length, a~ - 1 mm. Also, our first look at the effects of other many particle 

-. instabilities seems to indicate threshold current limits for the small momentum rings 

are no worse and can even be better then that of conventional rings. 

_ A small a~ allows us to use a small p’, increasing the luminosity of a collider for 

a given beam average current. It might therefore be possible to build high-luminosity 

colliders using smaller beam currents. But before we can make definitive statements, 

- more work has to be done. A more general form of o will have to be used, including 

the effect of betatron oscillations and higher-order terms in S. We also need to look 

at the effect that higher-order lattice elements, sextupoles and octupoles, have on 

the expression of the momentum compaction. Finally, a “real” machine needs to be 

designed to see if these parameters for al and c22 are possible. We expect to report 

in the near future the results of this additional work. 
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Table 1 

Quasi-Isochronous B Factory Parameters 

Circumference [m] 760 

Energy, E [GeV] 5 

Luminosity, L [cme2 s-l] 1034 

Disruption, 2> 0.48 

Tune Shift, t 0.05 

Bunch Length, a~ [mm] 1 

Current, I [mA] 194 

Number of Bunches 120 

Current /Bunch [mA] 1.6 

Electrons/Bunch 2.56 x lOlo 

Energy Loss/Revolution, Ua [MeV] 3.5 

Damping Period, TD [ms] 3.6 

Synchrotron Radiation Power [MW] 0.68 

Transverse Emit t ante, ET [m-rad] 2 x 10-s 

P* [mm1 1.3 

Bunch Width, u* [m] 1.1 x 10-5 

Momentum Compaction (first order), al 3 x 10-s 
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Figure Captions 

.- 
1. An example of unstable motion for the case of al = 0 and zero damping. 

2. An example of three curves in energy angle phase space for a specific value of 

cq and a2 in the absence of damping. Outermost curve lies outside the region 

of stability, the innermost curve lies within the stability region, and the middle 

curve lies on the limit of stability, which lies on the stability limit for the case 

of zero damping. 

3. &/SO and $/$o versus number of revolutions around the ring: Three examples 

within the stability region and one outside for the case of zero damping. 

4. An example which lies on the limit of stability for the case of finite damping. 

5. Three curves which define the stability limits for cq shown for three different 
. 

values of damping with So = 0.001 and $0 = 0.0001. 

6. Three curves which define the stability limits for cq shown for three different 

- -values of damping with 60 = 0.003 and ~$0 = 0.0003. 

7. Microwave instability threshold peak current as a function of inverse damping 

time. The peak current is in arbitrary units. 
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