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ABSTRACT 

We use the Skyrme model to estimate the contribution of the QCD Q-angle to 

the neutron’s electric dipole moment IV,, and find ‘0, = 2 x lo-l68 e cm. The same 

method may also be used to estimate the contributions to DD, of higher-dimension 

CP-violating operators. 
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1. INTRODUCTION 

The current experimental bound on the electric dipole moment of the neutron 

IZ&l < 1.2 x 1O-25 e cm, (1) 

provides one of the most sensitive constraints on CP-violating extensions of the 

standard model. However, the strong interactions are an obstacle to improving 

the constraints from Z&. The essential problem is to calculate the neutron dipole 

moment induced by a given CP-violating operator, where the operator is generated 

by short-distance physics and is expressed in terms of quark and gluon fields. In 

some cases, it is possible to make a current algebra calculation of contributions 

that diverge in the chiral limit [2] so that they are formally dominant, but for most 

operators one has to resort to a non-relativistic approximation [3] or simply to a 

“naive dimensional analysis” [4]. Lattice calculations are still far from practicality 

We propose to calculate the electric dipole moment of the neutron within the 

Skyrme model. It was first demonstrated in refs. [6,7] that the static properties of 

baryons calculated within the SU(2) Sky rme model are in reasonable agreement 

with experiment. Later, the model was extended to the three-flavor case [S]. Re- 

cently, there has been much progress in this direction [9, lo], particularly in the 

treatment of the SU(3) y s mmetry breaking. Though the model has its shortcom- 

ings (as does the more general NC + 00 approach [ll]), it provides a consistent 

framework for such calculations, and the numerical results can probably be trusted 

to within a factor of two or so, much better than most methods mentioned above. 

In this paper we calculate the contribution to DD, from the QCD O-angle! This 

is the simplest and most straightforward application of our program: A nonzero 

B-angle is equivalent via a chiral rotation to a phase in the quark mass matrix 

[13]. In the low-energy chiral Lagrangian the effect of 0, to first order in the quark 

t A previous attempt was made in this direction in ref. [12]. 
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masses and in 8, is just an imaginary contribution to the meson mass matrix. The 

classical Skyrme solution shifts slightly due to the new mass term, thus acquiring 

a CP-violating admixture that leads to an electric dipole moment. 

In the concluding section, we will briefly discuss the prospects for generalizing 

the above procedure to other CP-violating quark and gluon operators. 

2. THE U(3) SKYRMEMODEL 

In the Skyrme model, baryons of QCD are solitons in a GL x GR chiral effective 

theory of pseudoscalar mesons. To satisfactorily discuss the neutron electric dipole 

moment induced by 8 we need to take into account contributions from the entire 

pseudoscalar meson nonet; thus we take GL and GR to be U( 3). (In the SU( 2) 

case (pions only) the would-be CP-violating term vanishes identically. The SU(3) 

case turns out to be adequate numerically; however, including the r]’ as well allows 

one to study the formal effects of turning off the U(~)A anomaly.) The Lagrangian 

of the U(3) Skyrme model is 

with 

J% =& tr{ [&d-W+, (MJ)u+]2}, 
F2 

LM = +tr(MU + hftUt - h! - #), 

LA E-$ 
c 

[tr(ln U - In U+)12. 

(3) 

The U(3) matrix U transforms like U -P LUR+ under U(3),5 x U(~)R; its expansion 

in terms of the meson fields 40, & (a = 1, . . . , 8) is 

(4) 

The mass term L&f explicitly breaks the axial symmetry U(3)A and some of the 
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vector symmetry SU(3)v! The anomaly term LA breaks only U(~),J [15]. We 

will not need the explicit form of the Wess-Zumino term Lwz here; however, its 

contribution to the electromagnetic current is important and will be given later. 

The matrix M can be diagonalized by an SU(3),5 x sum transformation. 

In order to use the usual spherically symmetric ansatz for the Skyrmion, we need 

M to preserve SU(2)v. Thus, we use: 

M = diag(Mr + iA@, Ml + iA@, M3 + icdg). (5) 

The imaginary part ImM signals breaking of P and CP due to 6. In the absence 

of the SU(3) singlet field $0, choosing ImM oc 1 (i.e. (Y = 1) prevents the octet of 

approximate Goldstone bosons I& from acquiring vacuum expectation values [l3]. 

Here, because of the 404s mixing term in LM, in order to keep (4s) = 0 we need 

to choose instead 

M3+a 
a = Ml+a’ V-9 

(In the limit a + co, we get Q ---) 1, as expected.) With this choice of Q, only 40 

needs be shifted: 

40 + 40 - 6, 
fi XeFr where S = - 
4 a+Ml’ (7) 

The mass terms for the meson fields are: 

(The index i runs from 1 to 3; e from 4 to 7.) Using the experimental values of 

$ A more complete treatment of W(3) symmetry breaking would include also higher- 
derivative terms such as tr(Ma,UUtPU), w K is responsible for FK # F, [14, lo]. h’ h 
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m,, mK and rnqt we get: 

Ml = 0.019 GeV2, M3 = 0.47 GeV2, a = 0.67 GeV2, (10) 

and obtain, in reasonable agreement with experiment: 

ml = 0.49 GeV; Oqq’ = -2OO. (11) 

The CP-violating parameter X0 is related to 0 by [13,2] 

8 = arg det M = X0 

+ Xe = 9 x 10m3 8 GeV2. 
(12) 

The fact that Xe vanishes in the chiral limit Ml + 0 is expected, since 8 can be 

rotated away completely in the QCD Lagrangian if any quark mass vanishes. Since 

a, M3 >> Ml, we have X0 M irn2 0. If one takes into account SU(2) breaking effects 7r 

in deriving (12), one obtains a numerically similar value, X0 x 2rn; c~~;~dld)‘B = 

8.7 x 10m30 GeV2 (for md/m, = 1.76 [IS]). Th’ is shift in X0 turns out to be the 

only SU(2) b rea m e ec in the calculation that is proportional to the devia- k’ g ff t 

tion of md/m, from 1; all other effects are accompanied by the additional chiral 

suppression factors MI/MS, Ml /( eF,)2 and will be neglected here. 

We now turn to the effects of the CP-violating term in LM on the Skyrmion. 

We generalize the usual ansatz Uo for the static soliton to 

Ti E Xi (i = 1,2,3). 
(13) 

The new ansatz is still spherically symmetric under combined isospin and spatial 

SU(2) rotations. The CP-violating part of LM becomes a source term for the 
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SU(2)-singlet fields ~$8 and ~$0, 

G&p = - 
2&a+Ml 

- (1 - a33 FM8 + l&o), (14) 

which produces an order 6 expectation value for them in the soliton. The function 

F(r) remains the same as in the SU(2) Sky rme model with a massive pion [7,9], 

up to order e2. 

The factor A in eq. (14) h s ows that the effects of 8 vanish in the formal 

limit a -+ 0. The result is expected because in this limit U(~)A becomes a good 

symmetry and can be used to rotate away 8. In practice, however, k M 1, so we 

drop the factor henceforth. If we also neglect corrections of order mi/rni - S%, 

then the terms quadratic in the mass eigenfields q,~’ are independent of F, and 

we have 

Xe 
m = z 

(Cos 8,,! - J2sin 8,,‘) 

J 
d?‘G,(r”, ?‘)[l - cos F(f’)] , 

e mv 
0 

(A/? cos Oqq~ + sin 8,,‘) O” 
(15) 

m9’ J 
dr”‘G,@, ?‘)[l - cos F(?‘)] . 

0 

Here 

+FZ” sinh( me), r” < r”‘, 

mm’ sinh( mf’), r” > P, 

is the Green’s function for the radial Klein-Gordon equation, written in terms of 

the dimensionless quantities 

mv mE- 
eF, ’ 

r” E eF,r , (17) 

and similarly for Q’ with m’ E mql/eF,. 
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Finally, the physical neutron state In) is represented by a wave function in the 

collective coordinates A E SU(3); the 77’ is treated as heavy and therefore has no 

collective coordinate associated with it. One inserts 

U(r’,t) = A(t) UC(;) A-‘(t), 44 E SU(3), (18) 

into the Lagrangian (2) and quantizes the resulting L(A, A). To first order in 6, 

there are no corrections to the A-dependent terms in fZ, so the usual quantization 

procedure is unaltered. We use the results of ref. [9] here, in which the SU(3) 

symmetry breaking terms were treated exactly in the quantization, and the SU(3) 

baryon spectrum was fit by e = 3.87, Fr = 89.0 MeV (their fit number (1)). (Note 

that experimentally, F, = 186 MeV.) 

3. 2>, IN THE SKYRME MODEL 

The electric dipole moment of the neutron is defined by: 

6, = (nl d3r 5 Jo 
J 

EM In) = vD, (nl a’ln) . (19) 

The electromagnetic current has contributions from three of the terms in eq. (2): 

JEM = Jwz 
P p +J,K+J’. IA 

With the definitions V, E (8pU)Ut, W, 3 Ut(8pU), we have: 

Jwz = 0 - scijh tr[Q(KQV, + W;wiwk)l, 

JF = - 
iFi 
--g--tl-[Q(% - wo)l, 

(20) 

(21) 

J’ = - &tr{ II&, K][vO, K] - [Qy W~][Wo, Will, 

where the electromagnetic charge operator Q is 

Q = diag(2/3, -l/3, -l/3) = ;(A3 -t b/&)- (22) 

To calculate DD, to order 8 we need the CP-violating part of the electromagnetic 
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current in the Skyrmion ansatz (13), (18), 

SJwz = 
NCe3F2 

0 
- T tr(A-‘QATi) gi$f [(t+ds) + Jz(&do)], 6&G 

SJf = % tr{ (A-l&A) [[iA-lA, ~81, q] } ?i(sin F)&, 

SJ: = 2 tr{ (A-l&A) [[iA-lA, X8], q] } 

X ii 2(l - cos F)(&F)(&$s) + (sin F) 
1 [ 

(~FF)~ + 2sF22 F ~$8 
I 1 

. 

(23) 
The Wess-Zumino term SJrz gives the leading ~/NC contribution to DD,. 

Partitioning the electric dipole moment into D, = ID? + Do+‘, and using 

eqs. (15), (19) and (23), we get: 

$WZ = - Ncxe n 27n(eF,)2 
(n] tr(A-lQA7) In) 

X 
[ 
(co~36~~1 - &sinBnV’)2$ + (JOCOSE,,’ + sin&” 2JYC , ) 1 rn7)’ 

$K+S _ TF,2xe n - 3&( eFr)5 (nl tr{ (A-‘QA) [[ii-lA, X8], ?] } In) 

[ 

H?ll X cos k&f (cos 13,,t - Jz sin 8,,‘) - 
mv 

+ sin0VV’(&cos89V’ + sin8,,‘)& 
w 1 (24 

where the radial integral moments of the Skyrmion Im, Hm are defined as follows: 

00 co 

Im E 
J 

dr” r” sin2 F( T”) 
J 

d?’ dGmj;’ “$1 - cos F(Z’)], 

0 0 
cm 00 

Hm E 
J { 

dE3 2[1 - cos F(r”)](&F) 
J 

d?’ dGmj.;’ “) [l - cos F(f’)] 

0 0 

1 + (tt?~F(?))~ + 2 
sin2 F(f) 

Cm 

+2 IJ dr”‘Gm(r”, r”‘)[l - cos F(+‘)] . 

0 

(25) 
The two collective-coordinate matrix elements appearing in eq. (24) have been 

calculated in ref. [lo] as a function of the SU(3) symmetry breaking parameter o2 
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that enters the wave functions. Fit number (1) in ref. [9] has w2 = 5.3, which gives 

WI 

(nl tr(A-‘QA73) In) = 0.24, (nl tr{ (A-‘QA) [[Lk’A, X8], ~~1) In) = 0.091/p2, 

(26) 
where the moment of inertia ,B2 = 3.55 GeV-1 is also taken from ref. [9]. Evalu- 

ating the integrals in eq. (25) numerically, we find 

I, = -1.00, I,, = -0.57, H,,, = +12.0, Hml = +7.3, (27) 

so that 

DWZ n = + 0.57 x lo--l6 0 e cm, 

DFss = + 1.3 x lo-l6 6 e cm. 
(28) 

Our final result is then: 

Dn = +2 X lo-l6 0 e cm. (29) 

4. DISCUSSION AND CONCLUSIONS 

Formally, the leading contribution in ~/NC to Dn comes from the Wess-Zumino 

term: D~z/D~+s cc NC. One might worry about the fact that Df+’ is nu- 

merically larger than Drz while being supp ressed by 1 /NC. However, the same 

situation is encountered in the calculation of the electric charges of the proton and 

neutron, as pointed out in ref. [17]: 

Qwz(p) = Qwz(n) = l/5; QK+S(p) = 4/5, Q”+S(n) = -l/5. 

Since the final electric charges are correct without further ~/NC corrections, it is 

reasonable to assume that the most important contributions to DD, are included in 

our calculation. Still, one must acknowledge that at present it is unknown how to 

systematically calculate ~/NC corrections in the Skyrme model. 
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Let us compare our result (29) with the most singular contribution to V,, in 

the chiral m, + 0 limit, identified in ref. [2], 

v 
n 

= SrNNSixNN 
hr2it!f~ 

ln(MN/mr) = +3.6 x lo-l6 6 e cm. (30) 

Here MN is the nucleon mass, and g%NN (&NN) is the pseudoscalar coupling 

(CP-violating scalar coupling) of the pion to the nucleon. Numerically the two 

results are in broad agreement (including the sign). On the other hand, their 

formal properties are somewhat different. The chiral estimate of &NN in ref. [2] 

shows its dependence on mx and NC to be &NN N m, 2 Nii2, and we also have 

SsrNN - NC , ‘I2 MN N NC, eF, N 1 (see ref. [18]); thus the chiral estimate (30) 

yields DD, - (m~lnm~)Nc. However, if we consider eq. (24), and note that both 

I, and H, are finite as m, + 0, we see that our estimate has DD, - rni NC.* 

There is a similar discrepancy between the form of the chiral and Skyrme 

estimates of the isovector electric mean square radius of the nucleon [7]. We 

suggest that the explanation for the disagreement given in ref. [7], namely the 

non-commutativity of the chiral rnr + 0 limit with the large-NC limit, applies 

here as well. That is, suppose that the true answer for Dn were of the form 

(m~lnm~)Nc . ( “2, + Wc)l(m$l nrni + ~/NC). Th en, performing the m, -+ 0 

limit first, at fixed NC, we would get (rni In rnz) NC as in ref. [2], while performing 

the NC + co limit first, with fixed m,, we would find a behavior of the form 

rni NC. 

The different formal properties in the two limits reflect different mechanisms 

for production of Dn. The dominant term in the chiral limit is obtained when 

the neutron dissociates into a proton and a pion; whereas the leading Skyrme 

* Actually, both estimates have hidden in them an extra - ~/NC suppression factor related 
to the ~/NC behavior of the U(1) A anomaly. In our calculation this ~/NC was hidden in 
the ratio * in eq. (14) - note that a should be written as (3/Nc)u, so that NC + co 
corresponds to a -+ 0. Including the extra factor, the neutron dipole moment approaches a 
constant in the large-NC limit, even though CP-violation in the meson sector is vanishing 
like ~/NC; this is possible because the neutron is made up of - NC mesons. 
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contributions have no quantized pion fluctuations in them at all. In ref. [12] the 

Skyrme model was used to estimate ij*~~, which was then inserted into the chiral 

formula (30) to obtain VD,. However, our calculation of VD, was performed entirely 

within the Skyrme model, and in that context all virtual pion contributions are 

subleading in ~/NC. (Al so, the fact that the static classical solution Uo deforms in 

the presence of 0 is not taken into account in the calculation of &NN in ref. [12].) 

The procedure for calculating DD, demonstrated in this paper can be generalized 

to other operators. One has to (a) identify the equivalent operator in the effective 

Skyrme Lagrangian, and (b) calculate the effects of this term on the Skyrmion. It is 

step (a) which poses the greater theoretical challenge. For the four-quark operators, 

step (a) may be performed in the vacuum-insertion approximation, which is valid 

in the large-NC limit and which allows the four-quark operators to be represented 

by meson bilinears with known coefficients in the Skyrme Lagrangian. (However, 

the reliability of the approximation has been questioned in the context of K decays 

[ll].) We are presently studying the applicability of the general procedure to other 

classes of CP-violating operators as well. 

ACKNOWLEDGEMENTS 

We gratefully acknowledge useful conversations with M. Karliner, M. Peskin, 

S. Sharpe and especially H. Quinn. 

11 



REFERENCES 

1. K.F. Smith et. al., Phys. Lett. B234 (1990) 191; 

I.S. Altarev et. al., JETP Lett. 44 (1986) 460. 

2. R.J. Crewther et. al., Phys. Lett. 88B (1979) 123. 

3. See e.g. J.F. Gunion and D. Wyler, preprint UCD-90-13 (1990). 

4. A. Manohar and H. Georgi, Nucl. Phys. B234 (1984) 189; 

H. Georgi and L. Randall, Nucl. Phys. B276 (1986) 241; 

S. Weinberg, Phys. Rev. Lett. 63 (1989) 2333. 

5. S. Aoki et. al., Phys. Rev. Lett. 65 (1990) 1092. 

6. G.S. Adkins, C.R. Nappi and E. Witten, Nucl. Phys. B228 (1983) 552. 

7. G.S. Adkins and C.R. Nappi, Nucl. Phys. B233 (1984) 109. 

8. E. Guadagnini, Nucl. Phys. B236 (1984) 35. 

9. H. Yabu and K. Ando, Nucl. Phys. B301 (1988) 601. 

10. N.W. Park, J. Schechter and H. Weigel, preprint SU-4228-441 (1990). 

11. R.S. Chivukula, J.M. Flynn and H. Georgi, Phys. Lett. B171 (1986) 453. 

12. H.J. Schnitzer, Phys. Lett. 139B (1984) 217. 

13. V. Baluni, Phys. Rev. D19 (1979) 2227. 

14. M. Chemtob, Nuovo Cim. 89A (1985) 381; 

S.J. Brodsky, J. El1 is and M. Karliner, Phys. Lett. 206B (1988) 309. 

15. See E. Witten, Ann. Phys. 128 (1980) 363, and references therein. 

16. J. Gasser and H. Leutwyler, Phys. Rep. 87 (1982) 77. 

17. J. Bijnens, H. Sonoda and M. Wise, Can. J. Phys. 67 (1989) 543. 

18. H. Miither, C.A. Engelbrecht and G.E. Brown, Nucl. Phys. A462 (1987) 701. 

12 


