SEARCH FOR DOUBLY CABIBBO-SUPPRESSED D+ DECAYS[†]

RAFE H. SCHINDLER The Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 USA

> REPRESENTING THE MARKIII COLLABORATION

ABSTRACT

Preliminary results of a search for the doubly Cabibbo-suppressed D^+ decays $D^+ \rightarrow K^+\pi^-\pi^+$ and $D^+ \rightarrow K^+\pi^0$, in the MarkIII detector at SPEAR are presented. Theoretical arguments suggest that these decays may be enhanced relative to Cabibbo-allowed D^+ decays. Use of hadronically tagged D^+D^- events produced in the decay of the $\psi(3770)$, reduce backgrounds significantly, allowing the isolation of three candidate events in the $K^+\pi^+\pi^-$ final state and a limit on the relative decay rate of the $K^+\pi^0$ channel.

INTRODUCTION

Double Cabibbo-suppressed decays (DCSD) of the D^0 and D^+ present a rich test of our understanding of weak hadronic decays.^[3] The rate for DCSD relative to Cabibbo-allowed decays (CAD) goes naively like $\frac{|V_{ce}V_{ue}^*|}{|V_{ce}V_{ue}^*|} \sim \tan^4\theta_c$. For D^0 decay, a mild deviation from this estimate is expected within the factorization hypothesis, arising from SU(3) and SU(6) breaking, and from form-factors.^[2] Evidence for 3 $D^{\theta}D^{\theta}$ events at the $\psi(3770)$, was previously reported^[3] when 0.4 ± 0.2 background events were expected. For small values of the mixing parameter $(r_D \leq 4 \times 10^{-3})$, the events can be interpreted as evidence for DCSD with $|\bar{\rho}_{K-\pi^+\pi^0}|^2 \geq 1.9$ at 90% C.L.

Unlike the D^0 , the D^+ DCSD are expected in many cases to have large enhancements over CAD resulting from the lack of interference amongst their amplitudes. Interference is believed responsible for $\Gamma(D^+) \ll \Gamma(D^0)$. Equivalently, the possibility of both I=1/2 and I=3/2 final states in D^+ DCSD would lead to an enhanced width. Estimates using factorization but not considering final state interactions (FSI)^{PI} for four candidate DCSD are :

$$|\bar{\rho}_{K^*\pi^0}|^2 = \frac{\Gamma(D^+ \to K^+\pi^0)}{\Gamma(D^+ \to \bar{K}^0\pi^+)} \cdot \frac{1}{\tan^4\theta_c} \approx 3$$
$$|\bar{\rho}_{K^*\pi^+}|^2 = \frac{\Gamma(D^+ \to K^{*0}\pi^+)}{\Gamma(D^+ \to \bar{K}^{*0}\pi^+)} \cdot \frac{1}{\tan^4\theta_c} \approx 5 - 11$$

$$|\bar{\rho}_{K^{*+}\pi^{0}}|^{2} = \frac{\Gamma(D^{+} \to K^{*+}\pi^{0})}{\Gamma(D^{+} \to \bar{K}^{*0}\pi^{+})} \cdot \frac{1}{\tan^{4}\theta_{c}} \approx 12 - 25$$
$$|\bar{\rho}_{K^{+}\rho^{0}}|^{2} = \frac{\Gamma(D^{+} \to K^{+}\rho^{0})}{\Gamma(D^{+} \to \bar{K}^{0}\sigma^{+})} \cdot \frac{1}{\tan^{4}\theta_{c}} \approx 0.4$$

No prediction for non-resonant $D^+ \to K^+ \pi^- \pi^+$ exists. A search for all except the $K^{*+}\pi^0$ final state is reported here.

THE $K^+\pi^-\pi^+$ Final State

In the analysis, a sample of 2538 D^{\pm} hadronic tags is selected. Events are required to contain three additional charged tracks satisfying total charge zero. The recoiling charged tracks are loosely assigned particle-ID by time-of-flight (TOF) and dE/dX. Combinations opposite a D^{\mp} tag and consistent with a $K^{\pm}\pi^{\mp}\pi^{\pm}$ assignment are plotted in invariant versus beam constrained (BC) mass. The invariant mass is sensitive to particle miss-ID, reflecting ± 120 MeV for a single $\pi = K$ interchange. Double miss-ID however, reflects back to the same invariant mass. The BC-mass follows the candidate's momentum, which is monochromatic for pair-produced D^{\pm} and remains unchanged by particle miss-ID. Figure 1(a) shows the data. The signal region is defined by $\sim 2.5\sigma$ vertical and horizontal bands (1.862-1.876) and 1.819-1.919 GeV/c^2 , respectively). There are 19 events in the signal region, as well as higher and lower mass reflections of Cabibbo-suppressed decays with single miss-ID. Two background events from $K_s^0 K^{\pm}$,

[†] This work was supported by the U. S. Department of Energy, under contracts DE-AC03-76SF00515, DE-AC02-76ER01195, DE-AC03-81ER40050, DE-AC02-87ER40318, and the National Science Foundation.

Presented at the XXVth International Conference on High Energy Physics, Singapore, August 2-8, 1990

with $\pi^+\pi^-$ pairs having the K^0 mass are rejected. The 17 remaining events are reduced to six, (Figure 1(b)) by tightening particle-ID requirements. This reduces the single miss-ID reflections, and eliminates most double miss-ID in the signal region. Residual background comes from D^+D^- and \bar{D}^0D^0 , where the tag has a K_S^0 , and particle interchange across the event has occurred. In those events, easily swapped π 's determine the charge and hence the charm. An example is $\bar{K}^0\pi^+\pi^-\pi^+\pi^-$ tos $K^+\pi^-\pi^+\pi^-$ identified as $\bar{K}^0\pi^+\pi^-\pi^-$ vs $K^+\pi^-\pi^+$. By testing all such combinations, these events are entirely eliminated. Fake events also occur from lost π^0 accompanied by single $\pi \rightleftharpoons K$ miss-ID. Vetoing events with extra photons eliminates this background.

Figure 1(c) shows five surviving events, three belonging to the signal region. Residual background from double miss-ID is estimated to be $0.8 \pm 0.3 \pm 0.3$ events. The detection efficiency for $K\pi\pi$ final states is ~ 0.35. Using the number of tags, the detection efficiency and the CAD branching ratios, 0.2-0.5 $K^{\pm}\rho^{0}$ and 0.1 $K^{*0}\pi^{+}$ events are expected under the factorization hypothesis, while instead, two events consistent with $K^{\pm}\rho^{0}$, and one event consistent with $K^{*0}\pi^{+}$ are observed.

Non-resonant decays cannot be distinguished from resonant ones. If $|\bar{\rho}|^2 = 1$ for non-resonant decays, 0.2 events would be detected. After background subtraction a value $|\bar{\rho}_{K\pi\pi}|^2 \approx 11$ is extracted, assuming all events are non-resonant.

The $K^+\pi^0$ Final State

For this analysis the tag sample is reduced to 2255 by removing those tags containing a π^0 . This improves the missing energy resolution subsequently used in the analysis. To improve efficiency, π^0 reconstruction is explicitly avoided. The search proceeds by identifying tags with one and only one correctcharge track (assigned the kaon mass) in the recoil. and \geq one photon within $|\cos \theta| \geq 0.84$ of the P_{MISS} (π^0) direction. Figure 2(a) shows the data plotted in the variable $U = \Sigma (P_{EVENT} - P_{TAG})^{\nu} \cdot (P_K)_{\nu}$. A real $K^+\pi^0$ signal will be 97% contained for 1.8 \leq $U \leq 1.92 \; (\text{GeV}/c^2)^2$. Thirty candidate signal events are observed. The backgrounds from $D^+ \rightarrow \pi^+ \pi^0$ and $\bar{K}^0 K^+$ where either $\pi^+ \rightleftharpoons K^+$ or $\bar{K}^0 \to (K^0_S \to K^0_S)$ $\pi^0 \pi^0$) or $\rightarrow K_L^0$, are shifted to higher and lower U values, and rejected.

The principle CAD background $D^+ \rightarrow \bar{K}^0 \pi^+$ manifests itself by $\pi^+ \rightleftharpoons K^+$ and $K^0 \rightarrow \pi^0 \pi^0$ or K_L^0 , where the π^0 's are asymmetric, or the K_L interacts faking a photon. Misidentified $\bar{K}^0 \pi^+$ peak at the same U value where a $K^+ \pi^0$ signal would peak. A $K^+ \pi^0$ signal has at least one photon of energy

 $\geq 0.4 \text{ GeV/c}^2$ within a tighter cone $|\cos\beta| \geq 0.98$ around the expected π^0 direction There are no additional photons of energy $\geq 0.3 \text{ GeV/c}^2$ outside the cone. Figure 2(b) results from these energy and veto cuts. Five events remain. The sum of photon directions $(\Sigma_{cone} P_{\gamma})$ within the initial cone, relative to P_{MISS} is peaked sharply for the signal, but has a large dispersion when originating from K_L^0 interac-tions or multi- π^0 's from $K_S^0 \to \pi^o \pi^0$. Figure 2(c) shows the result after a tight direction cut; one signal event and one event on the cut boundary remains, with an expectation of 2.8 events from Monte Carlo. Requiring positive kaon-ID eliminates four events including the one signal candidate (Figure 2(d)). Less than 0.2 background events in the signal region, less than one $\bar{K}^0 K^+$ event below and less than 0.5 $\pi^+ \pi^0$ events above the signal region are expected. A visual scan of these remaining events confirms their origin.

Taking the factorization estimate, the detection efficiency of 0.37 and the Br($\bar{K}^0\pi^+$) one predicts that 0.2 events would be seen. No events are observed (with an expected background ≤ 0.2), leading to a preliminary limit of $|\bar{\rho}_{K^+\pi^0}|^2 \leq 30$ at 90% CL.

CONCLUSIONS

In a preliminary analysis of D^+ DCSD, three events are observed in the $K^{\pm}\pi^{+}\pi^{-}$ final state, with $0.8 \pm 0.3 \pm 0.3$ expected background events. The excess events are consistent with a value of $|\bar{\rho}|^2 \gg 1$, divided between the different final states, as anticipated for D^+ DCSD and similar to that observed for the D^0 DCSD. No events are seen for $D^+ \rightarrow K^+\pi^0$ and a weak limit on $|\bar{\rho}|^2$ is derived, consistent with factorization. FSI have not been considered in the predictions, and may play an important role in the presence of potentially large channels like $K^{*+}\pi^{0[4]}$

References

- I.Bigi, Proc. of the 16th SLAC Summer Institute, (1988) 30.
 R. C. Verma and A.N. Kamal, Preprint Alberta-Thy-14-90.
 L. L. Chau and H. Y. Cheng, Phys. Rev. D42, 1837 (1990).
- I.Bigi and A. Sanda, Phys. Lett. 171, 320 (1986).
- 3. G.Gladding, Proceedings of the Symposium on the Production and Decay of Heavy Flavors, Stanford CA (1988), 178.
- 4. I. Bigi, private communication.

2) (a) U for events before cuts, (b) U after photon ton energy and veto cuts, (c) U after photon direction cuts, (d) U after demanding K identification.