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I. I+&oduction/Summary 

The purpose of this letter is to make three observations concerning string physics in 

generalized plane wave graviton backgrounds. The first illustrates how these gravitons 

along with certain dilaton condensates may conspire to bound the motion of some of the 

string’s transverse coordinates. The second points out that for most space-times with ; 

plane wave curvature singularities, the total mass and number of excitations for strings 

after graviton scattering is the same as before the scattering. The one example of a singular 

plane wave metric for which this is not true turns out not to be geodesically complete. 

Finally, even for such a space-time, one can formally find a vacuum which is space-time 

supersymmetric. 

II. Generalities About Plane Wave Solutions 

-. 
Take space-time to be D-dimensional. Plane wave solutions of Einstein’s vacuum 

equations are given by the metric [I] 

ds2 = - 2dUdV + F(X,U)dU2 + (dX”)2 , 

u E +-(X0 -X-l) ) v G $x0 +x-l) . (2.1) 

The Xi are the transverse string coordinates and F is of the form .7= = -hij(U)XiXj 

with tr(h) = 0. For general F, the space-time with metric (2.1) is not maximally symmet- 

ric. However, in addition to the Killing vector expressing V independence, there will be 

Killing symmetries corresponding to each coordinate that .7= does not depend on. Other 

geometrical quantities which will be needed are: 

G uv = -1, G”“=-F(X,U), Gii = sij , 

r;, = qu = -:3iF(X, U) , 

Ruiuj = - :8i8jF(X, U) . 

(2.2) 
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The sstoffel symbols may be derived from eqn. (2.1) or more directly from the action 

_- for the point-particle: 

SPart = w-0 

Integration over V gives the constraint, !? = 0. With .F of the plane wave form, eqn. (2.1) 

describes a pure gravitational wave in that the Ricci tensor vanishes (vacuum solution). In 

the following more general forms for .F will be assumed. These will not have the property 

of vanishing Ricci tensor, but rather R,, will be a constant. Thus matter must be present. 

Their motivation will be made clear-later when solutions to string theory are considered. ,--ic 

Let F be independent of U: F = f(X). Solve the constraint on U by writing U = 

- Uo + pUr. (Uo does not play a role in the following and may be dropped.) Then the 
.- _~ 

Hamiltonian for the transverse coordinates contains a time-independent potential 

V(Xi,pU) = -;f(xi)(pu)2 . (2.4) - 
It is assumed that f(X) is b ounded from above so that V is bounded from below. If the 

initial conditions are such that p” = 0, then the particle is free. The key observation is 

that if V(X,p” # 0) 1 ocalizes the motion of the particle in certain directions, then those 

coordinates map onto a compact submanifold. Next, V need not depend on all of the Xi, 

but may only depend on some subset, labelled {Xl} c {Xi}, of them. It will be assumed 

that f depends on some number, n, (such that 2 < n 5 (D - 2)) of the Xi; i.e. f = f(XI) 

with I= l,...,n. 

Turning to the space-time field theory, the equation of motion for the massless scalar 

field 4(X, U, V) is given by A& = 0, \l where A, is the D- dimensional Laplace-Beltrami 

operator in the metric (2.1): 
.- - d2 AD = v$ - -T(x,u)m - P-5) 

\I Note that the scalar curvature of the metric (2.1) vanishes. Hence the generalized Klein- 

Gordon operator is given by AD. 
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A sol&n of this equation is found by writing 4(X, U, V) = &X, U)e’J’” ‘. Then one finds 

.-. that AD$ = 0 translates into the time-dependent Schrodinger equation 

[-JjV$ - i(p”)2F(X,U)]d = -i&d . (2.6) 

An illustrative example is given by letting F be the box potential. Then the solution of 

eqn. (2.6) explicitly gives the expansion of 4 found in the Scherk-Schwarz compactification 

- [2]. A more realistic example is given by ,7=(X, U) = -(Xr)2. Then eqn. (2.6) is readily 

interpreted as the Schrijdinger equation for the harmonic oscillator with angular frequency 

w = p”. 0’s dependence on XI is given by a wave packet whose center oscillates with this 

frequency. The solution in the shock wave metric, where F(X, U) = -hijX”Xjb(U), is 
- 

.- _~ discussed in ref. [3]. 

So much for the point-particle. For a given geometry to be a solution of classical 

string theory, the fields which define it must satisfy the conformal invariance conditions of 

the non-linear sigma model. It is useful to at least have the one loop p-functions at hand. 

They are [4] 
-. 

PG mn = R,, - + 2VmVnQ 7 

BH mn = ;VpHpmn - V’@Hprnn 7 (2.7) 

Pa _ (D - Dcrit ) - 
3 

+ a’[-R + AH2 + 4(V@)2 - 4V2@] . 

Plane wave solutions of Einstein’s vacuum equations have been shown [5] to be solutions of 

classical string theory to all orders in a’. i2 Conformal invariance (vanishing of the Ricci 

tensor), in the absence of a dilaton, a, or 2-form, H, requires that the function F(X, U) 

satisfies the equation 

qJ(X,U) = 0 . (24 

-\2 Th’ 1s is crucial as the standard perturbative treatments proceed by first performing a 
normal coordinate expansion. The validity of such an expansion requires that the space-time 

be geodesically complete. The latter is not necessarily true for plane wave metrics. 
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This-&-quickly seen by using eqn. (2.2) in eqn. (2.7). One important feature of this 

.- requirement is that only the dependence on the transverse coordinates are constrained. .F 

. is left to be an arbitrary function of the light-cone time coordinate, U. This property has 

been exploited by various authors [5-91 t o study string propagation in space-times with 

singularities. In fact, if F is taken to be of the form 

F(X”,U) = f(X”)r(U) , (2.9) .- 
then the curvature tensor is found to be proportional to r(U). Hence, for various choices 

for the function r, the space-time may be made to be fraught with curvature singularities. --- 

A particularly interesting choice is the shock wave metric [l]. Physically, it corresponds _ 

to a string propagating in a flat space-time for times U < 0. At time U = 0, it is hit by .- _ - _ 
a gravitational wave with polarization [,, = f(X). A novel feature of this metric is that 

non-perturbative calculations may be performed [5-91. The S-matrix has been explicitly 

written-down [8,9]. 
- 

String physics in the potential (2.4) will be discussed in the next section. Section IV 

-- contains observations about string propagation in space-times with curvature singularities. 

Supersymmetry in these space-times is discussed in section V. Section III is independent 

of sections IV and V. 

III. Freezing Left Over String Coordinates in Background Solutions 

By recalling the standard treatment [lo] of the bosonic string in the light-cone gauge 

ax$ from eqn. (2.1), ‘t 1 is seen that one can take U E UO + @‘r. Then the Polyakov action 

takes the form ((Y’ E &) 

SBS = -- i d2g[Ximi 
J - WC wP”)21 , (3.1) 
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with-*satisfying eqn. (2.8) (for conformal invariance). 

.- 

.-- 

Take r(U) in eqn. (2.9) to be the identity and do not couple to the dilaton or the 

2-form. Then a class of solutions to eqn. (2.8) may be written as 

-/#n-2) - hIJXIXJ , 

1 

n > 2 , 
f(X) = 

lnp - ~IJXIX~ , n=2, 1 (3.2) = ; 

f3~~sFy. 

-- An overall normalization is suppressed. Each term is separately a solution. Without loss 

of generality take hl~ to be symmetric. It must be traceless in order to solve eqn. (2.8). 

As it is a solution of Laplace’s equation, f will be unbounded from both above and below. -.e 

Hence the corresponding potential, V, given by eqn. (2.4), will be unphysical. 

.- If eqn. (2.8) were made inhomogeneous then it would be a simple matter to construct - . 

V so that it is bounded from below. In principle, this might be achieved through the 

introduction of a constant or time-dependent source. How this might be obtained is sug- 
- 

gested by a perusal of eqn. (2.7). Indeed, when the dilaton, a, is coupled to the theory, 

the conditions for conformal invariance allow for such a solution. This is seen as follows. 

-. 
With the metric (2.1) and a dilaton which depends on U, conformal invariance may 

be shown to be maintained to all orders in o’ if eqn. (2.8) is replaced by [6] 

Of course, eqn. (3.1) must be modified in the usual way [lo] to include the dilaton. Take 

F(X,U) to be dependent only on the XI, i.e. F = f(X’). As + can be an arbitrary 

function of U, take it to be quadratic in that coordinate with &a,@ G -c/2, where c is 

an arbitrary real constant for now. With these choices, eqn. (3.3) reduces to 

v&f = c ) (3.4) 

Then f(X’), as given in eqn. (3.2), is a. solution of eqn. (3.4) provided that hl~ is no 

longer traceless but satisfies the equation: tr(h) = -c/2. For simplicity take hIJ E 61 J 
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- the minimum of the potential is at X1=0. Including the homogeneous solution, the minima 

. condition is solved by the sphere P-r in R” with radius 

1 
n-2 I C-F 1 n>2, 

PO = 
1 
5 ’ 

n=2. 
I 

(3.5) ; 

with-& -2n. Then V is bounded from below and if the homogeneous solution is dropped, 

-- Of course, there is a mixed possibility wherein the homogenous and inhomogeneous so- 

lutions separately depend on different numbers of the internal coordinates. Whatsmore, 

there are additional solutions with reduced symmetry. 

Solving the equation of motion for the string coordinates is tractable if the homo- 
- 

.- geneous solution in eqn. (3.3) is dropped. Th en the solution for the X’ closed string _~ - . 

coordinates may be written as 

,-b 

- 

X’(v) = c &xi cos (wpn7) + g’, sin (Wpnr)]eiZna , (3.6) - 
n 

where wPn - dm. The hermitian conjugates are (xi)t = x5, and (%A)+ = %I_,. 
-. 

The total momentum of the closed string is PI = (2: - x,‘). The remaining Xi coordinates 

have the usual flat space-time solutions. 

Had F(X, U) b een taken to be of the form given in eqn. (2.9) with r(U) arbitrary, 

the dilaton would have a generalized U-dependence. Given eqns. (3.3) and (3.4) the 

latter is dictated by &a,@ = -gr(U). A similar result is obtained with coupling to the 

anti-symmetric tensor rather than the dilaton. As shown in ref. [6], the &a,@ term in 

eqn. (3.3) will then be replaced by the square of the anti-symmetric tensor, A;j. Take 

the latter to be a function only of U: Aii(U). Let AIJ z 0, then eqn. (3.4) is obtained 

along with r(U) = cA2(U). A 1 J is taken to be zero so that the X1 equation of motion 

remains the same as in the dilaton case. An important point is that one or both of these 

backgrounds must be included. The pure metric background does not lead to a potential 
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which% bounded from below. Time-dependent compactifications have been considered in 

_- ref. [ 1 l] and references therein. 

iv. String Propagation in Singular Backgrounds 

Let F be of the form given in eqn. (2.9) and 27 be given by U = p”7- in the light-cone 

gauge. Then the XI equation of motion, derived from (3.1), is 

WI = ;alf(X)r(u)(pu)’ . (4.1) 
- 

.- _~ - . The prototypical metric for the study of the propagation of strings in singular back- 

grounds is the shock wave metric. It is given by eqn. (2.1) with r(U) = S(U). In this 

metric, space-time is flat for U # 0. In these regions, one expands the closed string 

solutions to eqn. (4.1) as 

- Integrating eqn. (4.1) over Js” dueizma s,9-’ dT, leads to expressions for the cwfn,, oscillators 

in terms of the a;,< oscillators [8]. Th ese expressions may be summarized as (cv,’ = $p’, 

I 
am,> = s+cYI, <s ) (4.3) 

with 

S = exp [ikp” 
s 

oy dcf(X(O, a>>1 - (4.4) 

One verifies that StS = 1. The center-of-mass coordinates is unaffected by the interaction. 

An expression similar to eqn. (4.3) holds for the & oscillators. Note that the p” operator 

in S (or St) annihilates the vacuum. 
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I%%, well defined geodesics are not sufficient to ensure string propagation. One must 

_- check that observables such as the number and mass operators are well behaved. According 

.-. to ref. [7] the total mass diverges. From eqn. (4.3) t i is concluded that this is not the case. 

The “in” number operator is given by N< = C,“=, cui,,<cr&. From eqn. (4.3) it follows 

that the “out” number operator is N > = StN<S. Beyond this, the number operator at the 

nth mode obeys the relation (Nn,>) = (N,,<). H ence the total mass which is proportional 

.- to C,n(Nn), is conserved. Consequently, one has 

P>) = (N<) 7 
(4.5) 

---t 

Pa = P-2) * 

- So strings propagate through a shock wave singularity. 
.- _ - . 

There is an even simpler explanation for this result. This explanation also has the 

virtue of generalizing the discussion to arbitrary r(U). L orentz boost to the XD-velocity, 

tanhJ. Then the coordinates U and V boost to U + e-(U and V + e(V. The F indepen- 

dent part (Minkowski metric) of ds2 in’eqn. (2.1) is invariant under this transformation. 

-. The remaining part, call it dsg, transforms as 

(4.6) dsg t e- 2tf(X)r( emF U)dU2 . 

For the shock wave metric, this expression vanishes when one takes [ -+ OO.\~ 

As singular metrics are of current interest, generalize r(U) to r(U) = U’. Then by 

taking [ + &XI the metric ds2 becomes Minkowski except for the case I = -2. It will 

vanish in general unless r(U) contains a factor which is homogeneous with degree -2. 

The number operator is a Lorentz invariant quantity. Thus its computation in the 

boosted metric will give the same answer as in the metric (2.1). Hence, as the boosted 

metric is Minkowski, except for 1 = -2, the number operator is the same for all times U. 

\3 This analysi s builds on an observation made by E. Witten as referenced in ref. [ll]. 
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The-&operator drops out of the interacting Hamiltonian for the I = -2 case. An explicit 

_- calculation must be done in this case. Similarly, the mass operator in the metric (2.1) is 

.-. the same (except for I = -2) as that in Minkowski space-time. 

It can be shown that the metric (2.1) with r(U) = riUv2 is singular even in the sense 

of general relativity. First consider the geodesic motion of the particle. As in ref. [7] take = C 

the sandwich wave [l] for which r(U) d ff i ers from the identity only over a finite U interval. 

.- f(X”) is of the form f(x’) = - xiDm3) (Xi)’ + (D - 3)(XD-2)2. Let r(U) be given by 

g-2 ) IUI < T 7 
r(U) = 

0 , Iul 2 T . 
WI 

,-- 

- 
The geodesic equations of the first (D - 3) Xi- .- coordinates are then Xi + &Xi = 0 for 

-- - . 

IUI < T and Xi = 0 otherwise. In the three distinct regions, these Xi(r) are given by 

with U = p”r. i4 The c$‘s are, in principle, determined in terms of CC’< and p;. It is 

possible to show that a trajectory incident from r = --00 cannot smoothly traverse the 

r = 0 singular point. This is seen by attempting to match the solutions at this barrier. 

One finds that 

form with zero 

this case. 

this is not possible. Note that the equation of motion is in Schrodinger 

energy. Thus one can intuit that there can be no barrier penetration in 

In the string theory, X”(r,a) is given by a solution of the equation 

2: + (4n2 4 + ,,)Xi = 0 , (4.9) 

p If r(U) = -m(m + 1)UF2 for IV] < T then a solution for X”(T) in this region is 
Xi(T) = &m+l. 
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for th&losed string in the IUI < T region. This follows from eqn. (4.1) with X, defined 

:- by Xi(r,g) E C, XA(r)ei2na. Unlike the particle case, the energy in this Schrodinger like 

equation is non-zero for n # 0. However, the problem of the lack of a smooth trajectory 

- across the singular point persists as the equation for the zero-mode, Xi, is the same as 

that of the particle. For completeness, the solution of eqn. (4.9), with n # 0, is given ; 

in terms of Bessel functions of order q = 4 a - ri. Simplification is achieved when ri is 

- taken to be ri = i with q = 0. 

To summarize this section, the mass (number) operators for the string propagating in 

the metric (2.1) are the same as those of Minkowski space-time. The only exception to this 

rule is when F contains a term which is homogeneous in U with degree -2. The simplest 

_~ -- example for which this is the case, namely F = f(X)Um2, already leads to a space-time 

which is geodesically incomplete. 

-- V. Supersymmetry And Singular Space-times 

In compactifying superstrings one usually requires that low energy D=4, N=l super- 

symmetry survives so that the gauge hierarchy problem may be solved. Thus, one would 

like to know if the metric (2.1) d a mi t s a space-time supersymmetric vacuum. (It has been 

shown, in ref. [8], to be a classical solution of the NSR string theory.) From the discussion 

in the previous section, one might expect that it does. This is because one can boost the 

metric to Minkowski form. That is, except for the singular case mentioned above. 

Go to a vielbein basis wherein G,, = e,“e,‘~~~. The ti and fi indices denote 

tangent space directions. Then one derives from eqn. (2.1): 

ei3 = &3 i? ii 
> e, = e, = 1 , et,’ = -+(x7 u> 7 (54 
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as th-e-only non-zero components. The inverses of these objects are 

(5.2) 

Expressions for the spin-connections are determined by the torsion free constraint on the 

geometry. Having determined these, one finds the covariant derivatives to be 

v, = a, + +(x,u)M;, ) VII = &I , Vi = ai 3 

.- VG =a, ) vij = a, + ~F(X,U)& + +(x,u)M;, ) v; = q . 

(5.3) 

M is the Lorentz generator acting onthe tangent space indices. Adopt the solution wherein 

_ the S-form vanishes and the dilaton is a constant. The conditions for unbroken D=lO, N=l 

- supersymmetry have been reviewed in ref. [lo]. Th e are all identically satisfied except for 
.- _. 

the vanishing of the supersymmetry transformation of the gravitino which requires 

Vmc = 0 . (5.4) - 

-- 

The vacuum supersymmetry transformation of the dilatino automatically vanishes as all of 

the components of the field strength of the gauge field are zero in the vacuum. This follows 

from the Bianchi Identity: dH = tr(R A R) - tr(F A F). The left-hand-side of the latter 

equation vanishes (as H = 0). D ue to the form of the curvature given in eqn. (2.2), R A R 

- vanishes identically. Hence a solution of the Bianchi Identity is given by F = 0. Eqn. (5.4) 

is solved if the supersymmetry parameter, e, is a constant which satisfies the condition 

FOE = 0. This follows as in evaluating M;, on spinors, one finds that it is proportional 

to l-y& Using the inverse of the flat metric, this requirement may also be written as 

I’se = 0. This is solved by the eight dimensional spinors of SO(8). It so happens that this 

last equation is also the light-cone gauge condition in the Green-Schwarz superstring. 

The metric (2.1) d ‘t a ml s a supersymmetric vacuum. Since the U dependence of .F has 

not entered into this analysis, supersymmetry is present even in the singular case where .F 

is a homogeneous function of U of degree -2. 
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