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In a large proton storage ring the particles circulate on narrowly defined orbits for many 
~ hours, and undergo about 1012 interactions with nonlinear magnetic fields. The nonlinear fields 

-- include significant high multipoles from inevitable errors in the fabrication of superconducting 
magnets. In a first approximation one neglects collective and dissipative effects, and assumes 
that magnetic fields are constant. The motion is then Hamiltonian, being perturbed harmonic 
motion in three degrees of freedom. Since the nonlinear perturbation depends periodically on 

--f’ 

the independent variable (azimuthal location in the ring), the phase space effectively has seven 
_ dimensions. Thus, we deal with a generic difficulty of nonlinear mechanics in a phase space of 

_ -- dimension greater than four: the complement of the set of invariant surfaces is a connected and 
[1,21 dense set, associated with nonlinear resonances. A b’t r I rarily close to any initial condition 

there is an orbit that can visit remote regions of phase space by moving along resonances. The 
task of a-stability study is to show that this “diffusion” along resonances proceeds so slowly 
that the orbit stays within certain limits during a finite but sufficiently long time. 

Diffusion has been observed directly in experiments with beam scrapers at the CERN 
SPS.‘31 When a scraper is pushed into the beam, it produces an immediate drop in beam 
current, and then a decay of current with l/e decay time 71. After the scraper is pulled 
outward to a new location still within the beam, the beam current stays constant for a while, 

- and then decays with a longer decay time 72. The period of constant current is interpreted 
as the time it takes for the beam to diffuse outward to reach the new scraper location. When 
the scraper is returned to its first position, the original behavior at that position is seen again, 
with a decay time close to ~1. 

Generally speaking, mechanisms that increase the density of nonlinear resonances tend 
to increase the rate of diffusion. For instance, the introduction of synchrotron oscillations 
or magnet power supply ripple adds closely spaced sidebands to the principal resonances 
of betatron motion. The rate of diffusion drops when the r.f. is turned off to produce a 
coasting beam. When power supply ripple is deliberately increased at the SPS, by adding 
ripple comparable in magnitude to that normally present, beam lifetime suffers drastically. 
Continuing efforts to make power supplies smoother have led to improved performance of the 
SPS. Simulations by Furman and Schmidt’41 confirm the importance of ripple in long-term 
behavior, particularly when the ripple frequency is low. 
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The chief theoretical tool for study of these questions is “tracking”, which is numerical 
integration of Hamilton’s equations by an algorithm that guarantees the symplectic character 
of the resulting time evolution map! Tracking is quite informative, but it has its limitations. 

Because of computational expense, rather few orbits can be followed for a time comparable to 
the desired storage time of the beam. Furthermore, a machine like the SSC must be treated as 
a- statistical object, since small-bore superconducting magnets have an unpredictable scatter 
in strengths of multipoles. It is therefore desirable to study a statistical sample of different 
machines, and many different initial conditions for the orbits in each machine. 

For the status of tracking at the SSC, th e reader may consult reports by Yan and 
Schachinger w and by Garavaglia, Kaufmann, Stiening, and Ritson.[71 These authors make 

“survival plots”, which give the number of turns that an orbit survives versus the initial trans- 
_ verse amplitude of the orbit. As the initial amplitude is increased, particle loss appears to 

be negligible for lo6 turns or more until a rather clear “dynamic aperture” is reached. For 
instance, in Yan’s studies at the 2 TeV injection energy with a 4 cm magnet bore, this aper- 

-- ture occurs at about x0 = (,&/&)1/2y0 = 5.3 mm (with ?:, = jl, = 0). At x0 w 6 mm, many 
particles are lost in less than lo5 turns. The number of turns required for injection is 107. 

To accomplish faster tracking there is some interest in using special computers that could 
exploit p%-titular features of the problem!’ Another idea is to summarize information from a - 
tracking code in an explicit formula for the time evolution map, say a map representing a full 
turn. One iteration of a full-turn map should take much less time than element-by-element 
tracking through a full turn. The map can be represented as a power series in Cartesian phase 
space coordinatesigl or as a Fourier series in angle coordinates with action-dependent coeffi- 
cients!l” S UC h maps are only approximately symplectic. To enforce the symplectic condition, 
one can replace the power series map by a sequence of momentum kicks and phase space rota- 
tions, in such a way that the resulting symplectic map agrees with the power series to a certain 

[“I approximation. To create a symplectic map in angle-action coordinates one can construct a 
generating function of the canonical transformation corresponding to time evolution!101 This 
generator can be obtained as a Fourier series from data provided by a tracking code. The 
symplectic map induced by the generator can be iterated almost as fast as the corresponding 

[12’ explicit Fourier map. At present, the method of maps looks promising, but it needs more 
development to become thoroughly convenient and reliable. 

Even if speed could be greatly increased, the method of tracking as practiced is deficient 
in that it gives no insight about underlying mechanisms of instability. It merely answers the 
question of whether a particular orbit is stable or not. Actually, information from tracking, 
employed more ambitiously, ought to tell us a great deal more about the system. 

One way to seek insight is to compute Liapunov characteristics from tracking data!’ These 
serve to detect exponential divergence of nearby trajectories, a sign of chaotic behavior. One 
hopes that fast divergence from nearby orbits will give an “early warning” of instability of an 
orbit. It appears that this method can clearly identify regions of stable and unstable behavior, 
but for the crucial problem of locating the transition from one to the other the results may 
be expensive in computation time and somewhat [13’ ambiguous. Further work is needed to 
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develop the Liapunov technique, particularly in the form based on the tangent map to the 
_- time evolution map!14’151 

In a longer view of the problem, one would like to have a way of making definitive state- 
- ments about stability for any orbit starting in a large region of phase space. A method which 

can, in principle, lead to such statements is being studied by R. Ruth and the author!16’ We 
. determine a canonical transformation to new action-angle variables (J, a) such that the action -- ; 

-J is nearly constant. By examining the residual temporal variation of J, which is a sensitive 

.- indicator of unstable behavior, one can set bounds on the motion for a finite but very long 
time interval. This bound holds for any initial condition in an open region. The idea behind 
the bound is elementary: if the maximum change in J during N, turns is SJ, then the change 

. during qN, turns cannot be larger than q&J. If SJ is so small that qSJ is an acceptable excur- -.-f 
_ sion in phase space for large q, we have the means to get a bound for a large number of turns 

qN, in terms of information from a much smaller number N,. For instance, in one example - 
- we derived bounds for 10’ turns from tracking data on lo4 turns, the latter being required for .- 

many initial conditions. 

Determination of the canonical transformation is equivalent to finding a family of nearly 
invariant tori. In order that the bounds hold for a time comparable to the desired beam 
storage Gme, it is necessary that the tori be invariant to high accuracy, say to one part in 
lo6 or better. A new method allows one ,to find such tori by fitting Fourier series to tracking 
data on nonresonant orbitsfl” This nonperturbative method is quite robust and relatively 

-. inexpensive. To find the change of J in time we find the change in the original variables by 
tracking, then use the canonical transform to find the induced change of J. 

- 

In a first test the method has been applied to two-dimensional betatron motion in a model 
lattice containing strong sextupoles. In a region of strong nonlinearity (around 20% smear) it 
was possible to claim stability for times comparable to storage times in proton rings. For real 
proton rings, it will be necessary to include the third degree of freedom for synchrotron oscilla- 
tions. The formalism easily accomodates that extension, but the computational problems are 
more severe and have yet to be investigated. In any case, the program offers a prospect that 
was previously lacking in applications of nonlinear mechanics, the possibility of setting prac- 
tically useful bounds that are rigorous in principle, and “almost rigorous” (i.e, very reliable) 
in numerical realizations. Previously, long-term bounds were obtained mathematically in the 
Nekhoroshev Theorem~181 but not for a range of parameters of practical interest; the nonlinear 
perturbation strength had to be absurdly small to prove stability for suitable time intervals. 
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