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Introduction 

In the SLED’ method of RF pulse compression, 
two high & resonators store energy from an RF source 
for a relatively long time interval (typically 3 to 5 psec). 
IZtiggered by a reversal in RF phase, this stored energy is 
then released during a much shorter interval equal to the 

_ filling time of the accelerating structure. A peak power 
gain on the order of three and a compression efficiency 
on tlie order of 60% are typically attained. The shape of 
the output pulse is, however, a sharply decaying expe 
nential. In SLED-II the two cavities are replaced by two 
lengths of resonant line, forming a Resonant Line SLED 

_ (RELS) and resulting in a flat output pulse. Therefore, 
RELS stages can be cascaded to give a greater peak 

- power gain. Using two stages, a peak power gain greater 
-- t&n ten can be achieved with a reasonable compression 

efficiency. Unlike the BEC,2 the RELS compression fac- 
tor per stage is not limited to two, albeit at the expense 
of intrinsic efficiency. Like the BEC, it uses long lines 
rather than short cavities. 

Theory 

A resonant line is a transmission line terminated in 
a short circuit and connected to an input transmission 
line via a coupling network as illustrated in Fig. 1. The 
distance between the coupling network and the short 
must be an integral multiple of half guide wavelengths. 
For the RELS, the losses are characterized by the line 
attenuation 7 (rather than by QO) and the coupling is 
characterized by 8, the reflection coefficient when the 
line is infinitely long (rather than by Qe). 

The RELS theory has been discussed.3>4 Here we 
expand on the theory using a somewhat different ap- 
preach. Let s be the reflection coefficient of the cou- 
pling network when the line is terminated in a matched 
load, D/2 its time delay and r its attenuation in nepers. 
After turning on an incident field of amplitude Ei, the 
emitted field after nD time intervals is given by5 

E,(O) = 0 , 

E,(n) = Ei(l - s2)e-2r 
- x [l + se-2r + ge-4r + . . . + J+l) e-(n-1)2r] , 

n = 1, 2, 3, . . . . (1) 

E,(n) = Ej (ll~s;;~;:l [I - s”e-“27] , 

n = 0, 1, 2, 3, . . . . (2) 

Fig. 1. Resonant line fields. 
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Fig. 2. Discrete and continuous emitted field vs time. 
The steady state emitted field is 

If 7 = 0 then E,, = 1 + s. As the maximum 
possible value of s is 1, the maximum emitted field is 2, 
the same as for SLED. 

Let t, be the beginning of each D interval, 
t, = nD. Substituting n z t,/D and s I e”‘*, 

(4) 

= Eej [I-exp (-2 (2r-lns))] . 

Typical continuous and discrete emitted fields are plot- 
ted in Fig. 2. 

The continuous emitted field of a resonant cavity is 

E,(t) = a[l-exp[-y($+&)]] . (5) 

Comparing the above two expressions, we obtain the 
relationship between attenuation and unloaded Q, and 
between reflection coefficient and external Q: 

-In 8 
E,/=a, ;=$, - 

0 D 
= $- . (6) 

8 
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Fig. 3 RELS Single-stage output field and output 
power vs time in units of 2”. Dashed line shows 
input phase modulation. 

For any piecewise variable input function Ei, as 
- long as the changes in Ei occur at nD intervals, where 

n is an integer, the emitted field during each nD time 
. -- interval, by analogy with a resonant cavity, is 

E,(n) = Eef - [E,j - E&“e-“2’, 
n = 0,1,2,3... . (7) 

Here, E,i is the emitted field at the start of each interval. 
For the first interval Eei is zero, and for the subsequent 
intervals it is the same as the value at the end of the pre- 
vious interval. Using superposition, the reverse field is 

E,(n) = &(n) - Eis . 63) 
The normalized reverse power during each time interval 
is 

P,(n) = E:(n) . (9) 
The amplitude of the first step of E, is Eis. We can ob- 

- tain the steady state value of the emitted field by mea- 
suring E, the instant after turning off the RF, after it 
has been on long enough to reach steady state, and ob- 
tain 7 by solving Eq. (3). 

Single-Stage RELS 

We can separate the incident from the reflected 
field by placing two resonant lines at the two isolated 
outputs of a 3 dB coupler, or by making it a part of a res- 
onant ring. We then have a single stage RELS. Let the 
incident pulse width Tk = n,D. At time t = (no- l)D- 
as with SLED-we change the phase of the incident field 
by x, the incident field Ei = -1 from zero to (n, - l)D, 
and Ei = 1 from (n, - l)D to n, D. Ei changes sign 
in&ntaneously but-unlike with SLED-the emitted 
field remains constant for a duration D. The reverse 
field during this interval is 

&(no - 1) E Ep = E,(n, - 1) + Eis . (10) 
Here, E is constant for a duration D and is the output 
pulse. 6e choose D t o equal the accelerator section fill 
time, Tf. Here also, as with SLED, the maximum value 
of Ep is three. 

TABLE I 
One-Stage RELS Power Gain and Efficiency 

as a Function of Compression Factors 
and REL Attenuation. 

7 = 0.00 7 = 0.01 
no 6 pi3 9 pg 9 
3 0.549 2.66 89 2.57 86 
4 0.610 3.44 86 3.29 82 
5 0.651 4.02 80 3.81 76 
6 0.685 4.49 75 4.21 70 .-_ 

The power gain, compression factor, and compres- 
sion efficiency are 

Pg = E; , cf E TklD = n, , 77 = Pg/no . 
(11) 

The power gain and compression efficiency as a func- 
tion of compression factor, with optimized s, are listsd- 
in Table I. The values agree with those given in Table 1 
in Ref. 3. The output field and output power of a sin- 
gle stage RELS as a function of time in units of D for - 
n, = 5, are plotted in Figs. 3. 

Two-Stage RELS 

Unlike SLED where the exponential output pulse 
shape makes cascading of SLED stages impractical, the 
RELS output pulse is rectangular and therefore RELSs 
can be cascaded. 
Definitions of parameters for a two-stage RELS: - 

D Last stage RL round-trip delay 
no Last stage input pulse length in units of D 
Dl First stage RL round-trip delay 
m First stage input pulse length in units of D1 
Tk Length of RELS input pulse 
Cl Overall compression factor 

The input pulse to the last stage has to be the 
output pulse of the first stage. Hence, 

DI = n,D. (12) 
The length of the input pulse (to the first stage) and the 
compression factor are 

Tk = nlDl = nlnoD, 
(13) 

Cj = Tk/D = nlna . 
The modulation for a two-stage RELS can be obtained 
as follows. Divide the input pulse Tk into Cf intervals 
of duration D. Let Eil = -1 from zero to (Cf - n,)D 
and let Eil = 1 from (Cf - n,)D to CJD. Let Ei, = 1 
when n is not an integral multiple of n, and Ei, = -1 
when n is an integral multiple of n,. The incident field 
amplitude at each interval is 

J%(n) = &l(n) G,(n) . (14 
We calculate the power gain and compression efficiency 
as a function of Cf as follows. First we obtain the first 
stage output field-assuming single stage modulation- 
for a RELS with a line of length D1. We then divide 

2 
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Fig. 4. First stage RELS input and output fields, 
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Fig. 5. RELS Second-Stage output field and power. 

each constant amplitude interval D1 of the first stage 
output wave into n, intervals and modulate each inter- 
val D1. We apply Eqs. (7),(8) to each of the no intervals 
in succession and obtain the reverse field as a function 
of n. The first stage input and output field waveforms 
for nl = 5 and n, = 3 are plotted in Fig. 4. The sec- 
ond stage input field amplitude (first stage output), the 
output field, and the output power are plotted in Fig. 5. 

The power gain and compression efficiency are: 

Pg = E,2(Cf - 1) , 9 = ?!Jtc.f - 1) 
Cf 

. (15) 

The values of power gain end efficiency for several com- 
binations of nr and no are tabulated in Table II. 

The compression factor is the product nln,, and 
does not depend on the relative values of nl and nO. 
The power gain and compression efficiency also depend 
only on the product of nlnO. Therefore, if nl # n,, then 
nr should be chosen to be greater than n, if we wish 
to minimize line length, and less than no if we wish to 
minimize switching transitions. 

Practical RELS 

A two-stage RELS is shown in Fig. 6. Assume for 
the NLC a two-stage RELS with nl = 5 and n, = 3. 
The pulse length required by the NLC is 80 ns; thus 

TABLE II 
Two-Stage RELS Power Gain and Efficiency 

as a Function of Compression Factors 
and Line Attenuation. 

no so nl 81 Cf 7 PI3 7 

3 0.549 3 0.549 9 0.000 7.05 78 
3 0.549 3 0.549. 9 0.005 6.58 73 
5 0.651 3 0.549 15 0.005 9.60 64 
3 0.549 6 0.685 18 0.000 11.0 61 
3 0.549 6 0.685 18 0.005 10.4 58 

- 6 0.685 3 0.549 18 0.005 9.69 54 
5 0.651 5 0.651 25 0.005 14.0 56 
6 0.685 6 0.685 36 0.005 16.5 46 

T, =n,D,= n,noTf , C, =Tk /D=n,no 

t I I ..-t 

&gjyLi$* - 

D=Tf 

For Tf=80ns, vg/c=0.891, np3: 
D=BOns, Lo=10.7m, D,=240ns, L, =32.1 m, Tk=nl 240ns 

&SO 67OBA5 

Fig. 6. Two-stage RELS. - 
_. 

D = 80 ns. Use a WC281 guide operating at 11.4 GHz 
in the TEol mode with an attenuation of 0.1 nepers/ps. 
Because the short is not perfect, the attenuation must 
include the power absorbed by the short. The length of 
the first stage line is D1 = n,D = 30 = 240 ns. To 
obtain the length in meters multiply by the RL length 
by the group velocity which is, in this case, 0.267 m/ns. 
The RL lengths are 32.1 m for stage one, and 10.7 m 
for stage two. The klystron pulse length Tk = 5 240) = 

6 1.2 ps. We expect a gain of about nine (line t ree of 
Table 2). 
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