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Abstract 

A general method to compute precise approximations to invariant tori of Hamil- 

tonian systems is presented. For illustration, a strongly nonlinear example from ac- 

celerator theory is treated, in 24 degrees of freedom. Accuracy, computation time, - 
and effectiveness near resonances are found to be highly favorable in comparison to 

previous methods. 
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TIE Kolmogorov-Arnol’d-Moser Theorem’ ensures the existence of toroidal sur- 

.- faces in phase space that are invariant under the time evolution of a nearly integrable 

Hamiltonian system. The computation of approximations to these invariant tori is 

an important topic in several fields of research, including plasma physics,2 semiclas- 

sical quantum theory,3 celestial mechanics,4 and accelerator theory.5 The problem 

-- has been treated by various forms of perturbation theory for over a hundred years.’ 

Modern formulations of the perturbative method, realized on computers, allow one 

- to carry the perturbation series to rather high orders. 7j8 Nonperturbative numerical 

methods have also received attention, notably direct solution of the Hamilton-Jacobi 

equation ‘*r” by a projection-’ iteration-method, and methods that depend on fitting of 

- surfaces to orbits.2y3y4 

- This paper describes a method that allows an unprecedented degree of accuracy 

in’relatively little computation time, in examples studied to date. It proceeds by fit- 

ting tori to orbit points, using a new and very simple technique to accomplish the fit. 

It is able_ to handle large perturbations of integrable systems and find tori very close 

to resonances, and is therefore more robust than perturbative and nonperturbative 

schemes that are sensitive to small divisors. It is applicable in principle to any Hamil- 

-~ tonian system. Being based solely on computation of orbits, the method provides a 

new view of the canonical formalism that proves to have considerable heuristic value. 

It gives a clearer picture of the effects of resonances, and a better quantification of 

those effects. On the other hand, all quantities of interest in the traditional formalism 

can be obtained as well in this scheme; for example, solutions of the Hamilton-Jacobi 

equation and the corresponding invariant acti0ns.r’ 

A reason for studying nearly invariant tori is that a family of such defines a 

canonical transformation to new action-angle variables such that the action is nearly 

constant. By studying the residual time variation of the new action one can set 

bounds on the motion for finite but very long times, as is done in Nekhoroshev’s 

Theorem.11~12 To obtain stability times of useful magnitude for the study and design 

of real systems such as particle accelerators, the transformation must be constructed 
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-. 
from very precise approximations to invariant tori, often under conditions of strong 

_-- nonlinearity. This is a principal motivation for the present work, but our technique 

also seems promising for cases in which the inclusion of several degrees of freedom is 

_ a more urgent matter thanhigh precision. 

It is convenient to describe the tori in terms of the action-angle variables (I, a) 

of an underlying integrable system. The Hamiltonian will have the form 

H(I, a’, 0) = &(I) + V(I, +, 0) , (1) 

where Ho describes an integrable system, and the perturbation V is 27r-periodic in @ 

and 8. The time-like independent variable of Hamilton’s equations is 19. In the case 

_ of a cyclic accelerator, it represents azimuthal position along a closed reference orbit. 

- Bold faced quantities are vectors of dimension d, the number of mechanical degrees 
.- _~ of -freedom. 

Invariant surfaces arise through a canonical transformation to new action-angle 

coordinates (J, *I>, induced by a generating function S(J, 9,0) = J . @ + G(J, a, 0) 

that is 27r-periodic in + and 8. The relations between old and new coordinates are 

I = J + G+(J,9,6) , !@ = 9 + GJ(J,@,~) , (2) 

where subscripts denote partial derivatives. If the transformation is ideal, so that J 

is invariant, the first equation of (2) d e fi nes an invariant torus I(@, 0) of dimension 

d+ 1. A section of this surface at fixed 19, a torus of dimension d, will be the object of 

interest. If the system is autonomous, both V and G are independent of 19, the torus 

has dimension d, and one studies the (d - 1)-d’ rmensional section obtained by fixing 

one component of Qi. Our discussion is easily modified to handle that case. 

It is sufficient to study only the points in phase space where orbits intersect a 

Poincare surface of section, say the surface defined by 8 = 0 (mod 2~). Our entire 

discussion is based on the return map M : (I, @)1+2rn H (I, @)/o=2x(n+l) ; this 

coYresponds to one turn around an accelerator. Symplectic numerical integration of 

Hamilton’s equations provides a way to evaluate M for any system of a wide class.r3 
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AT-dimensional torus, nearly invariant under M, will be represented as a trun- 

_- cated Fourier series, 

where the components of m are denoted by mj. Here J = I, is the constant term 

.- of the Fourier series, the average of I over a; it approximates the invariant action. 

We seek to determine the Fourier coefficients I, so that the torus passes exactly 

.- through a finite set of points (I(B), a(8)) on a single orbit of M. If the set of points 

is sufficiently large, we can hope that all additional points on the orbit will be very 

close to the torus. ,-C 

To fit the surface (3) to orbit points, one cannot simply take a discrete Fourier 

- transform of I(*) t o obtain the coefficients Im, because the values of @ on the orbit 
.- 

of M are scattered unpredictably. One might try instead to solve directly a system 

of linear equations for the coefficients, but the matrix of this system is dense, of 

order 1, and too large to be tractable in the cases of greatest interest. To avoid these 

difficulties we replace the equations for the coefficients by equations for the values of 

I(@) on the points of a regular mesh in a. 

The scheme will be stated for d = 1, since it is essentially the same in any 

dimension. The discrete Fourier transform of a function 1(Q) is 

which provides an approximation to the Fourier coefficient for \rnl 5 A4 when K = 

2M + 1. Substitute this expression for I, in (3), then evaluate the sum over m as a 

geometric series, summing to jrnj = A4 with I< = 2M + 1. This leads to equations 

for the I(2rk/K) : 

K-l 

I(@j) = c Djk I(F) , 
sin(r(zj - k)) 

k=o 
Djk = K sin(r(zj - k)/K) ’ 

where j = 0, 1, e . . , I( - 1 and @j = 2rxj/IC. The (1(@j), @i) are points on a single 

orbit of M. 
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mice that the matrix Djk of the system (5) tends to 6jk when xcj approaches 

~_ jforallj. Thenifxjxj for all j, the matrix will be close to the unit matrix and 

the system can be solved by iteration, a process that is feasible for large systems if 

the number of iterations required is much less than the dimension of the matrix. If 

the orbit truly lies on an invariant torus, one will find at least one xj close to every j 

if the orbit is followed for a sufficiently long time. We obtain a system amenable to 

iteration by electing to fit the surface just to a subset of points on the orbit, a subset 

- having one and only one xj close to each j. Convergence of an iterative solution of 

Eq. (5) is controlled by a parameter 1‘ such that Ixi - jl 5 I‘. In examples treated 

to date, r = 0.5 has always ensured convergence. That is, it is sufficient to have one 

_ orbit point in each cell of the @ mesh, anywhere within the cell. 

- In the case of a low order resonance the method fails, as it should, since it is 
.- 

not possible to find an xj close to every j; the values of @ on a resonant orbit do 

not approach every value. This is illustrated in Figure 1 for the example treated 

below, acase with d = 2. Values of Qi = (@I, @ ) 2 are plotted for a resonant orbit 

corresponding to winding numbers (vr,u2) such that 7~1 + 29 is an integer. Figure 2 

is a similar plot for an apparent nonresonant orbit. The points fill the plane more and 

more densely as the orbit is extended. (Of course, in a numerical calculation it is not 

possible to distinguish a resonance of extremely high order from an invariant torus.) 

_ The method succeeds for nonresonant orbits very close to resonant orbits, although 

it may take more map evaluations than usual to find suitable orbit points. 

To illustrate we treat a basic problem of accelerator theory, two-dimensional oscil- 

lations transverse to the beam direction (“betatron oscillations”) in a cyclic machine.5 

The coordinates xi(; = 1,2) are transverse displacements from a closed reference or- 

bit, and the conjugate (dimensionless) momenta are p; = dx;/d(RB), where 27rR is 

the circumference of the reference orbit. The motion is perturbed harmonic motion, 

with the nonlinear perturbation coming from sextupole magnets that are used to com- 

pcnsate the momentum dependence of the focusing. The field of a sextupole gives a 

term proportional to xf - 3x1s; in the perturbation V. After a transformation to 
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_ ..-- 
actionxngle variables (I, 0)) analogous to the familiar transformation for harmonic 

oscillators but slightly more involved, 5 .- the Hamiltonian with n sextupoles takes the 

.._ form 

HP, 9,s) = u ’ I+ 2 Fj(o) [(/Aj11)3'2COS3(Q1 + Slj) 
j=l (6) 

-3(Plj11)1'2COS(@1 + tl j)*P2jlzCOS2(@2 + t2j)] * 

The tunes (winding numbers) u; are the unperturbed frequencies normalized to the 

- revolution frequency of the beam. The function F’(8) is nonzero only over the extent 

of the j-th sextupole, where it has a constant value. The constants ,8;j and <;j 

are determined entirely by linear aspects of the magnets that guide and focus the 

- beam. The action 1i is measured in units of length; it is the usual action divided by 

the momentum of the beam. The contribution of one sextupole to the time evolution - 
-- map resembles a two-dimensional quadratic map, since the functions F;(B) are sharply 

localized and simulate delta functions. Between sextupoles there is linear propagation 

at constant I. 

The reader may notice a certain resemblance of Eq.(6) to the Henon-Heiles 

Hamiltonian,14 but the two examples differ essentially regarding subtle effects of long- 

term behavior, since the o-dependence of our perturbation effectively adds one dimen- 

sion to phase space. Invariant tori permanently confine orbits in the 4-dimensional 

phase space of H&on-Heiles, but not in our 5-dimensional space. Our interest is in 

phenomena like Arnol’d Diffusion that can occur in the larger space.” Our method 

could also be used to study break-up of tori in the H&non-Heiles model, along the 

lines of Ref.9 . 

We treat a case with four sextupoles, derived from one cell of the magnet config- 

uration for the Berkeley Advanced Light Source. The parameters of Eq. (6) are given 

in Ref. 10 . The map M  is evaluated through numerical integration of Hamilton’s 

equations by Ruth’s fourth order symplectic integrator.r3 

--- The amount of nonlinearity on an orbit increases with the initial action I(0 = 

0). We give results for various I(O), each for Q(0) = 0, in a region of substantial 
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nonlinirity. Figure 3 shows typical orbit data. One action, 11, is plotted versus the 

-- two angles. For linear motion the points would lie in a plane, 11 =constant. As a 

. . measure of the degree of nonlinearity we use the “fluctuation”, f; = max+ I1i(@) - 

J;I/J;. We consider fluctuations up to 30%, which are large by the standards of 

accelerator operation. 

We fit surfaces with various maximum mode numbers M = Mr = M2, finding as 

expected that more modes (hence more orbit points) are required for good accuracy 
.- 

when I(0) is large. Eqs. (5) were solved by Gauss-Seidel iteration. The parameter 

7‘ was taken to be 0.3, which gave sufficient convergence of the iteration in 10 to 15 

steps. When a resonance is encountered, the computer code automatically tries a new 

initial condition. 

.- _~ _ _ To test invariance of a torus we compute 100 different orbits (f(e), k(0)) starting 

at randomly chosen points on the torus, and follow each for 1000 turns. We then 

examine the deviation of each orbit from the torus I(@) at the last turn; namely, dI = 

f(0) - q&(B)) at 6 = lOOO(27r). Table 1 h s ows the maximum, over the ensemble of 

100 orbits, of the relative deviation Idl;I/J;. Th e ensemble average (dl;) / J; (algebraic 

average including sign) is also shown. 

For 1000 turns the tori are invariant to high accuracy - better than 2 parts in 10’ 

at 10% fluctuation, and 2 parts in lo5 at 30% fluctuation, with M = 30. Moreover, 

the ensemble average of deviations is much less than the maximum deviation, which 

suggests that the orbits oscillate rather symmetrically about the surfaces. 

To evaluate this approach in a context of traditional methods, a comparison to 

high-order perturbation theory is useful. Results for this example by the method of 

Ref. 8 , kindly provided by Dr. Forest, are comparable in accuracy to ours for M = 10 

when the normal-form series is carried to lo-th order. The accuracy that we obtain 

with M 2 20 is difficult to achieve in reasonable time by the perturbation expansion. 

A-ZOlth order expansion took about one hour on the Cray 2, and gave poorer accuracy 

than our IM = 20 runs by factors of 3 to 40, depending on I(0). For the smallest 
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(1argesZ) I(O), the b es accuracy occurred at the 18-th (14-th) order, showing the t 

_-- asymptotic character of the expansion. On the slower IBM 3090 our calculations for 

one torus with M = 10,20,30 took only 3,28,126 seconds, respectively, requiring 

_ 3086,8711,45398 map evaluations to find the required orbit points. These times are 

not directly comparable to times for the method of Ref. 8 , since the latter produces 

a full canonical transformation, not just a single torus. It has been shown that a few 

tori, interpolated in J, can produce equivalent information.” 

It appears from these results on a nontrivial and fairly typical example that the 

method promises real progress in the long standing effort to compute invariant tori. 

I wish to thank R.Ruth, 6. Forest, J. Irwin, and J. S. Berg for their generous 

interest in this work and valuable suggestions. 
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Table Caption 

TABLE 1. 

Relative deviations of orbits from tori after 1000 turns, for an ensemble of 

$00 orbits. The tori were obtained by fitting orbits with initial action I(0) 

and initial angle a(O) = 0 to Fourier series with maximum mode number 

A4 = Ml = M2. The fi are fluctuations of Ii on the tori. 
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M max Id-h I/J1 max IdI2 I/J2 (dh)/ Jl (d&)/J2 
I(0) = (100,50) . 10m8 m (fl, f2) = (0.10,0.11) 

30 1.3 - 10-10 1.7 * 10-g 1.0 * 10-12 1.7 * 10-12 

20 1.8 * 10-g 3.8 * 10-g 1.5 * 10-11 -9.6 . lo-l1 

10 2.6 - 1O-5 3.2 . 1O-5 -7.7 - 10-8 1.3 . 10-6 

I(0) = (315,150) . 10m8 m (fl, .f2> = (0.19,0.20) 

30 3.2 - 1O-8 1.9 -* 10-7 5.9 * 10-10 1.5 * 10-g 

20 1.3 * 10-7 4.2 - 1O-7 4.5 * 10-g 1.8 . lo-’ 

- 10 1.9 * 10-4 5.6 - 1O-4 -9.6 - 1O-7 7.3 10-6 * 
.- .~ 

I(0) = (630,305) - 10m8 m vi7 f2> = (0.27,0.31) 

30 5.9 * 10-6 1.9.10-5 -4.6 . 1O-8 1.7 * 10-7 

20 - 1.6 - 1O-4 4.3 * 10-4 -4.5 * 1o-6 -7.0 * 10-6 

10 9.1 * 10-3 2.0 * 10-2 8.2 - 10-5 7.9 * 10-5 



_ -- 
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Figure Captions 

. . 
Figure 1. A gl n e coordinates ((a,, @a,) at 4 = 0 for a low-order resonant orbit. 

Figure 2. Angle coordinates (@I, @2) at 8 = 0 for an apparent nonresonant orbit. 

- Figure 3. Orbit data at 19 = 0 for an orbit with initial conditions I(0) = (315,150) . 

lob8 m, Q(0) = 0. 
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