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INTRODUCTION 

The techniques described here can be used for beam line design in quite general 
circumstances. We are introducing them for a final focus system design in linear col- 

_ . liders because this is where we have applied them, and to provide a specific context for 
our discussion. Other optical systems may require modifications or extensions to the 
methods we introduce here. We have kept the formalism and mathematics to a bare 
minimum, hoping to simplify the presentation and clarify its connection with other 
methods. The territory we sketch is the tip of the iceberg of Lie algebraic methods. 
In the last section, we describe briefly a broader context, though the interested reader 
will need to consult the extensive literature on this subject.r As far as we know, the 
particulars we present here are original; however, the essence of the method comes 
from Alex Dragt and collaborators. 

1. HAMILTONIANS, KICKS, AND POISSON BRACKETS 

Hamiltonian Reminders 

The elegant and powerful formulation of classical mechanics given by Hamilton 
is summed up in pairs of first-order differential equations. 

dx dH do, 8H 
z=dp, ’ dt=-yg (1.1) 
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^ Th%-state of motion of a particle is described by giving a position and a momentum, 
which can be identified with a point in a 2n dimensional space of these variables, for 
n degrees of freedom. The velocity of this point in this space is prescribed by one 
function defined in this space, the Hamiltonian, as indicated above. Thus one function 
determines completely the ensuing motion once initial conditions are specified. 

The Hamiltonian function for the motion of particles in magnetic optical elements 
_ can be derived, after introduction of the appropriate coordinates and approximations, 

from the Hamiltonian for motion in a general electromagnetic field. This procedure 
has been described in many places. 2 The principal elements in our beam line consist 
of static transverse magnetic fields. If one chooses the distance s measured along the 
design orbit as the timelike variable, then within uniform elements with no dipole 
field the Hamiltonian can be transformed to 

H = [p” -pi -P$‘~ - EA,(x, y) P-2) 
- 

.- - . where p, and pY are the transverse components of the momentum, p is the total 
momentum of the particle, e is the electronic charge, c is the speed of light and A, is 
the magnetic vector potential in the s direction. 

For p much greater than px or p, the square root can be expanded in powers of 
(p% + pi)/p2 as follows: 

H=p{ I+; (“p:i’“) -$ (p’;p2)2+...} -;A, . (1.3) 

For particles of constant p the first term can be dropped and the transverse 
momentum variables changed from p, and p, to pz/p G x’( x dx/ds) and p,/p G y’. 
The latter is a scale transformation for which Hamilton’s equations remain intact if 
H is scaled by p. The new H is 

H = f (x’~ + y”) - f (x” + y’2)2 + . . . _ $A, . (1.4) 

The scale transformation we performed here is not appropriate if the total energy 
-is-needed as a dynamical variable for the third degree of freedom. However, since 

there is no time dependence present, we can legitimately perform this transformation 
and pursue the track followed by standard optical system methods. 
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--_ 
It is usual to write p = (1 + S)po where po is the design momentum. We prefer to 

introduce a variable 8 defined by 8 = S/(1 + 6) arriving finally at 

H = f (x’2 + y’2) - f (x’2 + y’2)2 + . . . - (1 - 8) ;As (x, y) 
. 

(1.5) 

In our application the transverse emittance is very small, and the higher-order 
terms in x’ and y’ become miniscule. In our case l/8 (x’~ + Y’~)~ is 100 times smaller 
than other typical aberrations in the beam line of the same order. Henceforth we will 
drop this and higher-order terms in IC’ and y’. Under these conditions, the Hamiltonian 
for a quadrupole magnet is given to high accuracy by6 

H(x, x’, y, y’) = ;(xt2 + Y’~) + +cQ(l - 8)(x2 -Y2) - (1.6) 

Furthermore, in our situation, the Hamiltonians for a sextupole, a skew quadrupole, 
and a skew sextupole are given to high accuracy by .- - . 

H(x,x’, y, y’) = ;(x’~ + Y’~) + +s(l - 8)(x3 - 32~~) 

H(x, x’, y, y’) = ;(x” + y’2) - +J(l - 6)(2xy) (1.7) 

H(x, x’, y, y’) = ;(x’~ + Y’~) - &(I - S)(3xy2 - y3) . 

The Hamiltonian functions completely determine the dynamical situation. Accord- 
ingly for a normal or skew quad [KQ[ = IKb 1 = (BT/a) [l/(po/g)] where BT is 
the pole tip field and a is the radius of the aperture. For a normal or skew sex- 
tupole IKJ = IIciI = (2&/a2> [~/(Po/Q)]. 1 n g eneral, if 2n is the number of poles, 
IKJ = IICJ = (n - 1) ! (Bz-/andl> [~/(Po/Q)]. 

2. POISSON BRACKETS (PBS) 

Hamilton’s equations of motion describe the change of the position and momen- 
tum of a particle, but we often would like to know the change of other functions 
defined on the particle state space. For example, consider the function9 

lJ (x, x’) = “2Ha4’ X’) . (2.1) 
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We may wish to know dU/ds as the particle moves along its trajectory in state 
space determined by Hamilton’s equations. This derivative is given by the Poisson 
bracket (PB), as follows: 

d7J XJdx XJ dx’ -= 
ds zds+3xz- 

dUdH XJdH =----- 
ax dx’ dx’ dx 

G [U, H] = [-H,U] . 

(2.2) 

Physicists often use the symbol x and the function x(x,x’) = x interchangeably. 
With this as a given, Hamilton’s equations of motion can be written as: 

$ = [-H,x] $ = [-H,x’] 
. 

(2.3) 
~dY ds = [-H, y] $ = [-KY'] . 

The Linear Design Hamiltonian. 

To proceed with this problem-which can become quite complex in the presence 
of many elements and many small effects such as errors in placement and strength- 
it is advantageous to separate out a problem we can handle analytically: the linear 
problem. The linear problem includes the quadrupole magnets, the free space between 
elements, and the dipoles used to change the course of direction of the beam line. 
These elements for a particle of design energy (6 = 0) are what we refer to as the design 
beam line, and the Hamiltonians associated with this motion we call the linear design 
Hamiltonian. Everything else is the “rest.” This includes nonlinear elements such as 
sextupoles, the terms in the Hamiltonian that depend on particle energy, deviations 
of element parameters from design values (such as quad position or strength) and 
fringing fields. The “rest” includes all and any departures of the real system as it 
exists, or might exist, from the linear design Hamiltonian. 

This is a useful, conceptual distinction as well as a valuable mathematical distinc- 
tion, and this paper is about how to handle the various and sundry departures from 

--ideal linear motion. In quantum mechanics what we do here is known as using an 
“interaction representation.” It is nothing other than the standard device of begin- 
ning with a known and soluble Hamiltonian and then obtaining the departure from 
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th% motion when a small perturbative Hamiltonian is present. Perturbations cause 
an increase in the spot size at the focal point of the system and create the aberrations 
we seek to minimize. 

Kicks 

We now consider a small slice of the beam line of width As at s = sr, and look 
- at the Hamiltonian in this slice: 

Except for fringing fields or higher-order kinematic terms as discussed in Section 1, 
H rest has no x’ or y’ dependence. In this case H rest gives the particle a slight change in 
slope while traversing the slice, but no change in position. (The change in position is 
in Hlin in the form of the x’~ + y12 term.) Let us denote Hrest (at s = sr) = &(x1, yl). 

- The change in the momentum is given by an “impulse.” Starting with Hamilton’s 
.- _ . equation: 

Ax’(at s = sr) = [-%(x1, yl),x:] As 

= w%Yl)As - 
a-c 

(2.5) 

= “Force (at s = sr)“As = “Impulse” . 

We note the particle position at the final focus point s = sf by x* or y*. Its change 
due to the impulse Ax’ is 

dX* 
Ax* = Ax’(at s = sl) - 

8X; 

= ~WXl,Yl) dxtAs - .- 
8x1 8X; 

= [-v&l, YI), x*1 As . 

(2.6) 

~--Note that dx*/dxi, the change in x* due to a change in xi, is just the (1,2) element 
of the linear transfer matrix between point s = sr and s = sf. It is also the linear 
Green’s function. 
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-‘-If H rest had contained some I’ or y’ dependence, say, from a kinematic term or a 
fringe field, Equation (2.6) is still valid with Hrest replacing V: 

Ax* = [-Hrest(x1,& YI,Y:),x*] As . (2.7) 

This follows from 

[-Kest, 
(2.8) 

8X* 
= Ax+ 

8X* 
+ Axl- = Ax+ . - dxl 

1 8x1 

Hence there is no need to limit .our discussion to kicks. However, we will so limit 
ourselves in the interest of conceptual simplicity because all our examples are indeed 
kicks. 

- . Global Variables 

It follows that, to first-order in Hrest, the change in the particle position at sf 
is given by a sum of Equation (2.7) over all slices in the beam line where H,,,t is 
unequal to zero, namely, 

AX* = C [-Hrest(xi, xi, yi, y:)?x*] Asi * 
i 

P*9> 

From this expression we see that it makes sense to define a first-order (in kick strength) 
Hamiltonian for the beam line by 

HkL = C Hrest(xi, xi, Yi, Y:)ASi * (2.10) 
i 

Within thick elements, this sum, in the limit of small As, becomes an integral. 
We can carry out these integrals, since within each element we know the equations 
of motion and can express x and x’ in terms of x, and XL, the coordinates at the 
center of the element. We will carry out these integrals for quads and sextupoles in 
the section “Thick Element Sums.” After carrying out these integrals, what remains 
is a discrete sum of terms in which the x; and xi are the coordinates at the centers 
of beam line elements. To carry out these sums we must express the coordinates xi 
and xi in some global way, say, in terms of the particle coordinates at some fixed s. 

---For this purpose we express all coordinates in terms of the particle coordinates at 
the final focus plane, s = sf. xi and xi are linear functions of these coordinates, of 
course. 
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Tt is important to note that the sum we are calculating is predominantly the sum 
of polynomials of order 3. The chromatic aberration term in the quad is 6(x2 - y2), 
the sextupole is a third-order polynomial, and a strength error of a quad would be 
a AKQ(x~ - y2), again third-order in “deviation” variables. Thus the sum of such 
terms is a third-order polynomial in several variables. Fourth-order terms could occur 
in this sum if there were octupoles present in the beam line. 

To first-order in kick strengthens the quantities 

WV, Ax* = [-Hj,~~,x*] = F 

(2.11) 

=GL 
ay* = [-HhLiY*] = dyt' . 

Thus an optimal design would arrange the coefficients of all monomials in HiL which 
contain either x*’ or y*’ to be zero or negligibly small. Note that all of these terms 
are independent. There is no redundancy or interdependence. Each coefficient of a 

-. monomial with a distinct dependence on the variables x*, y*, x*‘, y*‘, and 8 represents 
an independent aberration. This feature is an important advantage of this formula- 
tion. The number of all such third-order terms is, of course, quite small, and only a 
handful are finally important in our application. 

Equation (2.11) establishes that a term in HhL of nth order will become a term of 
order n - 1 in the expression for Ax*. or Ay*, so in discussing the order of a term we 
will specify H-order for the order in HNL and optical order for order in the expression 
for the coordinates, the latter corresponding to the usual use of order in optics. 

3. KICKS ON KICKS 

Kicks on Kicks 

A kick at the beginning of the beam line will affect the particle coordinates 
throughout the remainder of the line, and thus alter the magnitude of subsequent 
kicks. The change in a kick can be determined by writing down the first terms of a 
Taylor series expansion of the kick about the linear value of the particle position there. 
Using the first kick (t ransferred to the position of the second kick) to determine the 
deviation of the coordinates from their linear value, one finds the following intuitively 
satisfying result for two kicks to second-order in the kick strengths: 

Ax* = [-%(x1, yl), x*1 ASI + [4&2,~2), xc*] Asa 

(3.1) 

+ [-V&WY& [-~(~2,~2),x*llAslAs, . 
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^ In%her words, just as [-VI, xc*] give the change in x* due to VI, so [-K, [-h, x*]] 
gives the change in [-Vz, xc+] due to VI. 

The Total Beam Line Hamiltonian 

Consider all V; in the beam line which are of third H-order (second optical order). 
The additional PB, representing effects of the kicks on one another, give terms of 

- third optical order. Hence all second optical-order kicks occur only to first-order in 
the kick strength. The PB of such terms with Z* or y* must be zero, or quite small, 
so that these terms do not enlarge the beamsize. In other words, 

- 

[ 

- c r/;As;, x* = 0 . 
K 3rd order 1 

- 
Under these conditions 

C [vjAsj, [T/;:As;, IL’*]] = l/2 c [QAsj, Wsil ,x* . 

j<i j<i 1 
This can be proven by writing out the expression 

(3.2) 
---Jc 

P-3) 

which is zero by virtue of Equation (3.2). We also use the fact that for kicks 
[E, [K, xc*]] = 0, which follows from the fact that [Q, x*] is a function of x;, (8x*/8x: 
is a number). 

This technical fact is of great use because it enables us to find a beam line Hamil- 
tonian containing all first- and second-order terms in kick strengths. It is just 

H&L = H$L - l/2 C [VjAsj, V$Asi] (3-5) 
j<i 

where the sum is assumed to be over Vi of third-order. HAL can contain higher 
than third-order terms. The ability to find a beam line Hamiltonian is actually valid 
in general, and does not depend on the restricted assumptions we have used here. 

-- -This fact is perhaps the heart of the usefulness of the Lie Algebra approach, and is 
formalized in what is known as the Cambell-Baker-Hausdorff theorem. See Section 10 
below. 
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-Again, we have the satisfactory result that each coefficient represents a unique 
identifiable aberration. The sources of terms are readily identified, and correction 
strategies suggest themselves quite naturally. The problem of beam line design is thus 
transformed to a problem in calculating a low-order polynomial, and arranging that 
the x*‘- and y*‘-dependent monomials have small coeficients. There is no need to 
calculate kicks, and follow the details of their interplay. All the relevant information 
is contained in the potentials, V;. Their Poisson brackets with one another contain 
the relevant information on their interplay. 

4. THICK ELEMENT SUMS 
- 
Chromatic Aberration from Quads 

Within quadrupole elements 

- 
.- __ Ifk’Q>Othen 

sin( ks) 
x(s) = x, cos(ks) + x;~ 

(4.1) 

(4.2) 
, sinh( ks) 

Y(S) = yccosh(ks) + yc k 

where 

k = ll(QI 
d-- 

and s is measured from the quad center. For KQ < 0, interchange cos with cash and 
sin with sinh. 

For an element of length L, the sum over thin slices of the quad becomes the 
integral 

L/2 

J 
H,e,t(x(s>, y(s))ds = 

-L/2 

9 



whzre 

qS=kL . 

For all but the final quads in our example, it is an excellent approximation to set 
1/2[1+ sin(4)/4] = l/2-[l + sinh(d)/#] = 1 and th e remaining bracketed expressions 
equal to 0, obtaining 

H,,&x(s), y(s))ds = -y x -c z -Y,“, * 
-L/2 

(4.4 

Table 1 shows the bracketed expressions for the last quads in the SLAC Final Focus 
Test Beam (FFTB) line. ,.-- 

We could now evaluate the double integral for the second-order term in the thick 
quadrupoles, but since it is a negligible term we omit its calculation here. - 

Thick Sextupoles 

For sextupoles 

H rest = 5 (x” - 3xy2) (4.5) 

and 
x = xc + sxc’, 

(4.6) 
Y = Yc +sy:: - 

The first-order thin slice sums become the integrals 

L/2 

I x3ds = L 
1 

x; + gxcx;2L2 1 
-L/2 

L/2 

I xy2ds = L xcy,2 + 1 . 
-L/2 

.-- 

The terms with L2 are smaller than the leading term by a factor of lo6 for our 
FFTB. 
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-The double sum in Equation (3.5) within the sextupole becomes the integral 

L/2 L/2 

I I 
ds ds’ [H,,&s), Hrest(s’)] = g (x:+Y:)2 * 

-L/2 3 

(4.8) 

We have now carried out all the necessary thick element sums. The complications 
introduced by thick elements are thus fully represented by expressions which involve 
only the linear coordinates of the particle at the center of the element. 

5. DIPOLE EFFECTS 

Dipole Insertions 

Suppose an additional small dipole element is placed in the beam line. (BY 
small we mean that the effect of such an element is well represented by a kick at its 
center. This definition includes all dipoles in our example, the FFTB line.) A dipole 
kick in the horizontal plane changes x’ by a constant amount, independent of the 
particle coordinate, and leaves x, y, and y’ unchanged. Furthermore, suppose that in 
the calculation of HhL we have expressed all coordinates in the sum by the linear 
coordinates at the end of the beam line, which we will refer to as the IP. We may 
properly account for the effect of the dipole insertion on the nonlinear Hamiltonian by 
(a) dividing the sum into two parts, those elements occurring before the kick and those 
elements occurring after the kick, (b) finding the change in the IP coordinates that 
are caused by the dipole kick, and (c) using these new coordinates when evaluating 
the sum over elements occurring after the dipole insertion. The new coordinates 
differ by a constant from the original coordinates. If the kick is large enough that the 
delta-dependent aspect of the kick is important, the “constant” may contain delta 
(momentum) dependence. In either case, the transverse coordinate in the sum is 
displaced. When th e resulting binomial expressions are expanded [e.g., (x + Ax)“], 
terms of lower order in the transverse variables occur, an effect often referred to as 
feeddown. For example, a chromatic aberration term (8~~‘~) feeds down a dispersion 
term (2Ax*‘sx*‘). 

Quadrupole Displacement 

The discussion of the previous paragraph applies directly to the problem of 
quadrupole displacement, since a displaced quadrupole can be thought of as a dipole 
field superimposed on an (undisplaced) quadrupole field. It is usually an excellent 

--approximation to replace the dipole field by a kick at the center of the quad. The 
chromatic effects of the quad are then represented by a term at the same location, 
the interplay between dipole and quadrupole usually being negligible. 
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DEpersion 

.-. Often in a beam line there are intentional bends to redirect the design orbit of 
the beam line. For such elements the design momentum dipole field is in Hin, but 
there is an additional part to the Hamiltonian: 

H rest = -iwDX . (5.1) 

We will not put this in HhL, since it is not of third-order, but instead consider 
simply that the particle has received a kick proportional to 8 in traversing this element. 
This could be handled as we have sketched above, but there is another more common 
and convenient alternative. For each element in the beam line, every preceding bend 
causes a shift proportional to 8 in the tranverse coordinate at that element. The sum 
of all such shifts is referred to as the “dispersion” at that element. The shift in x is 
often denoted by ~~8. 77, is referred to as the horizontal dispersion function. In other 

---Jc 

words, at every point in the beam line there is a dispersion function, qz(s), such that 
if we replace each occurrence of x(s) and x’(s) by x(s) + qz(.s)8 and x’(s) + qk(s)s, - 
respectively, we obtain the correct expression for HiL. Within a quad or free space, 

-. the 77 function obeys the same equation of motion as the linear coordinates. Hence 
in the “Thick Element Sums” we may replace x, and XL by xc + rlzC8 and XL + vL.8, 
respectively. In this way we completely account for the dispersive effects of the dipole 
bends. 

6. APPLICATION TO THE FFTB EXAMPLE 

FFTB Lattice Description 

In Figure 1 we show a block diagram of a typical final focus system where one 
degree of freedom is more strongly focused than the other, as is likely for the next 
generation of linear colliders. The system consists of five sections: (i) beta prepa- 
ration, (ii) x chromatic correction, (iii) beta exchange, (iv) y chromatic correction, 
and (v) final transformer. 3 The final transformer in this example ends with a very 
strong doublet of quadrupoles, referred to as the final doublet. The beam is broad 
with approximately parallel particle trajectories in the final doublet, then rotates 90’ 
in phase space traveling to the IP, where the beam is narrow and divergent. The final 
doublet is the principal focusing element, and one could say that the whole system is a 
preparation for this doublet, including precompensation for the aberrations produced 
there. 

Figure 2 shows the optical functions: the x and y beam envelopes and the hor- 
izontal dispersion function. The solution to the linear equations of motion can be 
written in the form: 



where & and C& depend on s and are related through the equation 

(6.2) 

J, and 19~ are the two constants needed to specify the solution of a second-order 
linear differential equation, and are chosen so that they correspond to the standard 
choice of action-angle coordinates. 8, is the phase angle in the plane s = SO, and & 
is called the phase advance through the lattice. 

The choice of normalization in the equation for C& implies that at points where 
dP/ds = 0, (x’)T,s = (x)T7Tk?/~* 

Figure 2 also designates the five sections of the system we referred to above. 
Things to note are: 

(a) The phase advance across the chromatic correction sections and beta exchange 
.- - . section is r, and across the final transformer is very close to 3~/2. 

(b) For each chromatic correction section all optical functions at the beginning are 
equal to their values at the ends of the section. In fact, the transfer matrix of 

- the chromatic correction sections is -I (minus the identity matrix.) 

(c) & > pZ in the y-correction section and pZ > BY in the x-correction section. 

(d) All bend d’p 1 1 o es are approximately r phase shift from one another and the IP. 

Since we wish to express our coordinates in the HhL sums in terms of the IP 
coordinates we will choose so = sf. This will imply that &(s) is always negative. 
Hence often we refer to & G -&. 

Figure 3 shows a plot of the phase functions through the lattice. The functions 
are very close to step functions. This follows from Equation (6.2) relating the beta 
function to the phase function: where the ,B function is small, the phase advances very 
rapidly; where it is large, the phase advances slowly. The step function behavior of 
the phase functions reflects the “mountain and valley” behavior of the beta functions. 
This mountainous behavior is, of course, intentional. If the trajectories are very 
parallel in the final doublet, then after 7r/2 phase rotation the beam will be very 
narrow. Thus the beta functions should be large at the final quads. However, large ,Ll 
functions here imply large chromatic aberrations, which will be corrected by sextupole 
pairs in the chromatic correction sections. To have these sextupoles be effective, it is 
advantageous to have large ,O functions at their position. 

As we shall now see, the step function behavior of the phase functions greatly 
simplifies the analysis of this optical system. 
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7. THIRD H-ORDER ABERRATIONS 

Third H-Order Chromaticity 

We have found the chromatic term for the final quads: 

Both the x and y contributions to the HhL p 01 y nomial need to be compensated. 
Expressed in terms of IP coordinates, and using the fact that &, = &, = r/2, 

xc = Jmsin(B,) = -Jmx*’ . (7.2) 

It is clear that we would be better .off using it = xc+/ fl and pZ = ax*’ as common 
coordinates, removing ,L?d from such expressions. The transformation from * to bar 
coordinates is symplectic. The transformation matrix, which is 

V-3) 

has determinant unity. In terms of those coordinates 

xc = - dF ZPZ yc=-I&, ) (7.4) 

and HLL contain the monomials -1/21<~&$$ and +1/2.K~&$$. 

The &, term, if left uncompensated, would blow up the beam 20 times larger than 
the design spot size. It is compensated so that the contribution of the chromatic term 
would give a spot that is one-fifth the design spot; in other words, the net result is 
smaller by a factor of 100 than the quad contribution. This is an important number, 
which we call the chromatic correction ratio (CCR). 

Sextupoles 

To compensate the final quad chromaticity, the polynomial HhL must get contri- 
butions elsewhere which are of the same form but opposite in sign. This comes from 
the sextupoles. Suppose at a sextupole we have nonzero dispersion. Then HhL will 
get a contribution, from the sextupole Hamiltonian, equal to 

$2 [(XC + %Q3 - 3(x, + %J)Y,2] - (7.5) 

If we place this sextupole 7r/2+nn from the IP, then Equation (7.4) multiplied by 
(-1)” is valid and the last term contributes the desired monomial. Of course there is 
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anqnwanted new term, xCy& that we get in the bargain. This can be compensated 
if there is another sextupole with opposite sign x, but same sign qZ. This can be 
achieved by placing it a phase difference of r from the first. Thus we see the need for 
sextupole pairs.3 

The first term above, which has only x dependence, when expanded, contains 
xcp, sxz, s2xc, and s3. The last term has no dependence on transverse coordinates 
and can’t contribute to the spot size. The first and third term are odd in x, and so 
they cancel out for a sextupole pair, if qZ is the same at the two sextupoles, leaving 
the second term which is the desired term. 

Figure 4 is a graph showing the magnitude of all contributions to these two 
chromatic terms. For tracking purposes the sextupoles are divided into four pieces. 
Their contribution is shown as four separate terms. The sum for all quads, and the 
sum of quad plus sextupoles is also shown. The net sum for the &, term is +50, 
smaller than the final quad contribution by a factor of 100 as required. 

In Figure 5 we keep track of the &-dependent monomials in HhL and HiL we 
will be discussing. We show the main chromatic term 6$ and its main sources, 
the final quads and the sextupole pairs. The wiggly line is meant to indicate that 
this aberration is traveling through the system toward the IP and can give rise to 
higher-order terms. The termination of the line indicates that the aberration has 
been-corrected and is no longer present in the system. Thus the geometric effect pZ$ 
travels between sextupole pairs. The other lines show higher-order aberrations which 
are generated by these aberrations. 

8. FOURTH H-ORDER ABERRATIONS 

Fourth H-Order Chromaticity 

A third-order chromatic error slightly alters subsequent chromatic errors, and 
we have argued that this alteration is given by the Poisson bracket -1/2[Vl(xr,yl), 
5/2(x2, yz)] where V’ and V2 are third H-order chromatic corrections. Writing out this 
expression in terms of partial derivatives it is seen to be equivalent to the expression 

-1/2[~(~1,Y1),v2(X2,Y2)] = -1/2{~3xl,x2]+~3yr;Y2]} . tw 

As mentioned earlier, [xl, x23 = dx2/dxi is the (1,2) element of the transfer matrix 
between elements 1 and 2. Lets look at two quads in the final transformer with 

i, E 7r/2, and concentrate on the y degree of freedom. For such quads 

dV 
- = -I(Q& = Ii-Q fi 8py 
dY 

(8.2) 
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and-if the quads are separated by a drift then 

[Yl,YZl = -52 - 31 ) (8.3) 
hence the y-dependent part of the above PB for two consecutive quads equals 

This is a fourth H-order aberration or a third-order optical aberration. The 
transverse coordinate dependence of pi tells us that it is a quadlike aberration, like 
a change in focal length. The s2 indicates it is second-order in the energy deviation 
variable. Hence this is a higher-order chromatic aberration. The large values of ,& at 
these quads suggest that this term, though smaller than the third-order term, may 
not be negligible, and this is indeed the case. 

Suppose we take one quad in the final transformer and one quad in the y-correction 

.- section. Here, a more convenient expression for [yr, y2] is the standard expression for 
-. the RI2 element of the transfer matrix: 

[YM21 = diZ7GZ sin(&, - &,) 

where since dYz - &I is close to 7r we have chosen 

4y2 - &/I = = + Cl2 

The value of the PB is 

to represent 

(8.6) 

ZI~Q~I~Q~~~Q~P~IQYE~~~~~~ . (8.7) 

Here, it is clear that the magnitude and sign of the term depends on the magnitude 
and sign of ~12. This suggests that if we slide the phase of the y-correction section a 
bit, we may be able to correct this higher-order chromatic aberration.4 Indeed this is 
possible, and the design of the lattice reflects this fact. 

Thick Sextupoles 

In “Thick Element Sums” above, we calculated the PB integral for thick sex- 
-- tupoles. This fourth H-order term is the strongest uncorrected aberration in the 

present FFTB lattice design. It could be corrected by octupoles if desired, though 
one needs to worry whether additional aberrations might be introduced, especially if 
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thecorrection requires strong octupoles beating against each other, like the sextupole 
pairs we have already introduced. However, this is not the case, as we show now. 
Expanding the expression in Equation (4.8) we get a term proportional to 

x; + 2x42/,2 + Y,” * tw 

To evaluate this at the y-correction quads x, + q,,s must be inserted for the local 
xc. Doing this, and adding the two sextupole terms together, the terms which are 
odd in xc or yc will drop out, and we are left with the following y-dependent terms: 

- 
4x;y,2 +4Tj&S2y,2 +2y,4 . (8.9) 

At the position of the sextupoles yc and x, are 3x/2 out of phase from the IP, thus 
the middle term here has the same variable dependence as the fourth-order chromatic 
correction we calculated in the previous section. Therefore the middle term can be 

. compensated by the method described in the preceding section. The remaining terms 
have no 6 dependence and can be corrected with octupoles located in a dispersion-free 
region. 

OctZpoles 

An octupole placed in the beam line after the bend dipoles in the final transformer 
where there is no dispersion, will have the form 

I(0 vo = 41 (x4 - 6x2y2 + y4) . (8.10) 

Concentrating on the y-dependent terms, we see they are exactly the ones we need 
to correct for the geometric aberrations of the thick sextupoles [see Equation (4.8.)]. 
To do this we must use two octupoles, one where ,& M &, to correct the x2y2 term, 
and one where ,BY >> ,& to correct the y4 without altering the x2y2-correction. The 
octupole strengths are small, and so the x4 does not appreciably increase the beam 
width which is, for our case, much larger than the beam height. 

Chromogeometric Aberrations 

The cancellation of the geometric terms created by introduction of the sextupole 
-- pairs requires that the optical matrix between them be -I in both the x and y degree 

of freedom. This can be achieved for the design momentum particle, but for particles 
with 8 unequal to zero, the transformation will not be exactly -1. If we calculate 
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thGsum of the chromatic terms between the sextupole pairs, and express the result 
in terms of the coordinates at the center of the -I section, the result will look like 

S { ax; + bx12 + q/,2 + dyL2 > . 
The possible xx’ and yy’ terms vanish because of the forward-backward symmetry of 
this section. 

Here, we are interested in how these chromatic terms alter the second sextupole’s 
geometric term, so that it does not exactly cancel the first sextupole. The alteration 
for the y degree of freedom is given by the PB: 

(8.12) 
s.. 

This is clearly a fourth H-order term. It is quite small since & at the center of the 
-1 section is very small. However, it gives rise to a very interesting effect to which 

_ _ we now turn. 

9. FIFTH H-ORDER ABERRATIONS 

Fifth H-Order Chromogeometric 

The fourth H-order chromogeometric aberration we have just calculated occurs 
before the final quads, hence we must ask if this alters the chromatic correction of 
the final quad which we know to be quite strong. The fact that this aberration has 
a g dependence means that it will have a nonzero PB with the final quad term. The 
dependence of this term is given by 

[6&&y, 8$] = as2p,p; . (9-l) 

Interestingly, in our case this term is larger than the fourth-order chromogeometric 
term that induces it. It is comparable to the thick sextupole aberration which we have 
corrected by the octupole insertions. 5 Also interesting is the fact that this aberration 
now has no g dependence, only pZ and &,. Since most of the lattice has the phase of 
these variables, a compensation using decapoles is possible. 

Decapoles 

The Hamiltonian for a decapole is 

rO Ho = $ . ( x5 - 1ox3y2 + 5xy4) . (9.2) 
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.-. 

-* 
A pair of opposite sign decapoles in the y chromatic corrector located alongside 

the sextupoles would yield the following y-dependent terms after substitution of x+$ 
for x: 

'0 2~s -1ox3y2 - 3o#xy2 + 5xy4 
.I 

The middle term is the correction term we seek. The first and last terms may 
- be cancelled by decapoles placed near the final quad, similar to our placement of 

octupoles to cancel the unwanted octupole terms of the thick sextupoles. 

10. EXPONENTIAL LIE OPERATORS 

The Exponential Operator as Taylor Series 

We now wish to show how our methods relate to the usual Lie method presen- 
tations. The heart of the method is the definition and use of the Lie exponential 
operator. It is the object which in the full, nonlinear treatment of beam lines replaces 

- _ the transfer matrix so familiar in linear systems. What we seek is an object that gives 
the output coordinates of a beam line element in terms of the input coordinates. The 
familiar Taylor series gives the output coordinates in terms of the input coordinates 
and all the derivatives at the input plane: 

x2 = x(4 = x(s1 + L) = c g 2 

d’12 = [-H, [-H,. 
dsn 

. . , [-H, x]] . . .] EE: -H :n x . 

(b) We use the suggestive notation 

At this point we do two things: 

(a) We need all the derivatives at the input points. However, since we know the 
Hamiltonian for the element, all of the derivatives can be expressed in terms of 
the initial position and slope by using PBS. 

Ix Ln d” 
-- = exp 
n! dsn 

_ or 

c L” 
- : -H :n= exp(L : -H 
n! 
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-- We have the result that 

x(532) = exp(L$)x(s) 
SZSl 

(10.5) 

= exp(L : -H :)a: 
z=q ,2=x; 

and 

X’(Q) = exp(L$)x’(s)i 
s= 51 

(10.6) -.-- 
= exp (L : -H :) x’ 

2=21 ,z’=z’ 1 
.- - _ 

Concatenation for Beam Lines 

Next we must find the expression for two successive beam line elements. In the 
linear theory this is given by the matrix multiplication. In the nonlinear theory we 
have the result 

x3 = exp (L, : -HI :) exp (L2 : -Hz :) x (10.7) 
z=Lz1 ,A,; 

This may be seen by noting 

x3 = exp (L2 : -Hz :) ~1~=2~,2~2!2 = f(~,x!~) 

= f (exp (L1 : -HI :) x, exp (L1 : -H :) x’) 
z=z,d=z? 1 (10.8) 

= exp (L1 : -HI :) f (x,x’) . 
z’q,z’=.z’ 

1 

The last step is the crucial one, and follows from the fact that for f(s) = f(g(s), h(s)) 

f(s+L)=f(g(s+L),h(s+L)) * (10.9) 
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- SiZilarity Transformation 

.-. There is a very intuitive similarity transformation rule for these operators 

exp(: A :) exp(: B :) exp(- : A :) = exp(: c :) (10.10) 

with 

C = exp(: A :) B . (10.11) 

In other words, to find the transformed operator, transform the generator. 

Interaction Representation 

The beam line is written down as a product of the exponential operator elements. 
Some of these elements will be purely linear, such as the drifts between magnets. 
Some will be purely nonlinear, such as very thin sextupoles. Most elements are a 
combination. For these we consider the element as sliced into many thin elements 
and the operator for each slice written as a product of the nonlinear term times the 

.- linear term. - _ 
Next, we move all the linear elements to one end of the beam line, by using 

the appropriate similarity transformation. In the process we must transform the 
coordinates in the remaining nonlinear terms. What we get for the beam line is then 
one linear term times a nonlinear term which is the product of operators of the form 

exp (AS; i -HTest (Xi, 3:) :) . (10.12) 

where z; is the local linear coordinate. 

The CBH Theorem 

It remains to find the beam line Hamiltonian for this product. To do that we 
need the Cambell-Baker-Hausdorf theorem. 

exp(: A :)exp(: B :) = exp(: c :) (10.13) 

where 

C = A + B + f [A, B] + $ [A - B, [A, B]] + . . . . (10.14) 

If we apply this theorem many times in succession so as to combine all the factors 
in the beam line, we get one grand exponent 

C = c A; + ; c [Aj, A;] + . . . . 
i 3<a 

(10.15) 
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-*This should now begin to look familiar. Compare Equation (3.5) which can be 
written in the form 

-Hj$L = c -v;As; -I- ; c [-vjAsj, -L$As;] . (10.16) 
i J<Z 

Computational Methods 

To carry out the above program for actual beam lines, with all their important 
complications, involves manipulating low-order polynomials in several variables. Re- 
cently, M. Berz has created a tool which does this. Polynomials can be defined and 
most standard operations can be performed on them, including taking PBS. G. Roy 
and M. Berz are presently providing a MAD’ lattice input for COSY 1nfir~ity.~ G. Roy 
and the author are implementing the procedures described in this article. Imple- 
mentations with slightly different objectives, for circular machines, were performed 
previously.8 

,-f 
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Table 1: Quadrupole chromatic correction coefficients. 

Coeff. of 

QCl 

QXl 

QC2 

QC3 

QC4 

QC5 

QNl 

QM3 

I2 ‘2 

x: G Y,2 & 

1.1158 0.1158 0.8988 0.1012 

1.0063 0.0063 0.9938 0.0062 

0.9233 0.0767 1.0845 0.0845 

1.0042 0.0042 0.9959 0.0041 

0.9989 0.0011 1.0011 0.0011 

1.0068 0.0068 0.9933 0.0067 

0.9919 0.0081 1.0082 0.0082 

1.0043 0.0043 0.9957 0.0043 

- - 
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- 
FIGURE CAPTIONS 

1. A block diagram of a typical final focus system. 

2. Optical functions for the final focus test beam (FFTB) facility under construc- 
tion at the Stanford Linear Accelerator Center (SLAC). 

3. The phase functions for the FFTB. 

4. Coefficients of the chromaticity terms in the FFTB line Hamiltonian. 

5. Important y-dependent aberration terms in the FFTB line Hamiltonian. 

- - 
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THE FFTB PHASE FUNCTIONS 
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IMPORTANT Y-DEPENDENT ABERRATIONS 
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