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ABSTRACT 

We calculate the threshold cross-section for e+e- -+ t’E to leading logarith- 

mic order in QCD, using a non-relativistic approximation suggested by Fadin and 

Khoze. We study the mass range 100 GeV 5 rnt 5 250 GeV, and show that the 

cross-section is an excellent measure of os for the lower portion of the mass range, 

while for a heavier top quark it is sensitive to the mass and couplings of the Higgs 

boson. We argue that a precise determination of mt and a measurement of Ft are 

possible. We also show that non-perturbative effects are small, confirming that the 

t? threshold is a detailed perturbative test of the Standard Model. 
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1. Introduction 

Recent results from Fermilab indicate that if the top quark decays as predicted 

by the minimal Standard Model, then it is heavier than 89 GeV.ll’ While we await 

its detection, it is useful to begin thinking about its detailed properties if in fact 

it is very heavy. For the known heavy quarks c and b, it has been exceptionally 

interesting to study e+e- annihilation near the quark-antiquark threshold, where 

the nonrelativistic dynamics of quarks in their binding potential produces a rich 

spectrum of bound states and resonances. The tt threshold region most probably 

lies beyond the reach of LEP II, and thus its exploration will be part of the program 

of a future e+e- linear collider. In addition, the t mass probably lies near or across 

a boundary at which a dramatic qualitative change occurs in the nature of the 

threshold region and the physics issues which it illuminates. In this paper, we will 

analyze the behavior of the t? threshold for top quark masses in this new regime. 

The most striking feature of the cz and b6 thresholds is the presence of nar- 

row resonances corresponding to the non-relativistic bound states of the quark- 

antiquark pair. The widths of these resonances are controlled by the annihilation 

of the quark and antiquark to gluons. However, as the mass of a quark increases 

beyond the mass of the W, the weak decay of a single quark comes to dominate 

the width of the bound state, and the familiar structure of the quark-antiquark 

threshold is 12’ destroyed. If the top quark is heavier than the W, it 

rectly to W+b, and its decay width is large and steeply increasing 

Asymptotically, for very large mt, 

GF m: I’t m--=lgOMeV.( mt 3 

Jz 8n -1 * 
mw 

may decay di- 

with its mass. 

(1-l) 

As mt is raised from 100 to 200 GeV, the bound state resonances lose their separate 

identity and smear together into a broad threshold enhancement. 

At first sight, this effect would seem to remove all of the interesting details of the 

threshold region. However, in a remarkable set of papers, Fadin and Khoze [31 have 
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argued that the large width of a heavy top quark brings in a new set of fundamental 

questions. They have pointed out that the top quark width acts as an infrared 

cutoff which justifies the use of perturbative QCD. As a result, the variation of 

the threshold cross-section with energy becomes a quantitative prediction of QCD, 

largely independent of non-perturbative phenomenological considerations, such as 

the choice of the quark-antiquark potential. Thus, the tf threshold region may be 
7 [41 identified as the long-sought ‘hydrogen atom of the strong interactions . 

In this paper, following the ideas of Fadin and Khoze, we study in detail the 

shape of the tt threshold, which is strongly dependent on the value of the t quark 

mass and which exhibits a complex, intricate structure. In carrying out our anal- 

ysis, we make two improvements in the physics of their calculation which have 

an important qualitative effect. Since the quark-antiquark potential is close to a 

Coulomb potential at the short distances relevant for t? binding, Fadin and Khoze 

in their analysis used the exact solution of the nonrelativistic Coulomb problem. 

This made it awkward for them to take proper account of the running of the QCD 

coupling. We will introduce a simple numerical technique which can straightfor- 

wardly treat an arbitrary quark-antiquark potential, and is thus well suited to 

including effects of asymptotic freedom. This technique also allows us to include 

the effect of Higgs boson exchange on the quark-antiquark potential. Inazawa and 

Morii15’ have studied the influence of the Higgs exchange potential for particle- 

antiparticle systems of heavy leptons and of long-lived heavy quarks, computing 

the effect of this potential on the spacing of the narrow resonances. We will show 

that the Higgs exchange potential is also important for heavy top quarks (mt > 150 

GeV), providing an essential correction to the pure QCD problem, and becoming 

the dominant effect on the tf cross-section for mt > 200 GeV. For mt 5 150 GeV, 

on the other hand, we confirm the result of Fadin and Khoze that the shape of this 

threshold provides a new and sensitive method of measuring CX~. 

We should warn the reader that our calculation of the tt threshold shape is 

accurate only to leading logarithmic order in &CD. As we explain below, we include 

in our analysis certain specific corrections of order cr,, but we do not try here 
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to systematically collect all one-loop QCD corrections. This approximation is 

adequate for our main purpose, which is to assess the sensitivity of the tT threshold 

shape to the parameters of the Standard Model. To extract precise values of (Ye 

and the properties of the top quark, one should compute the full set of order cys 

corrections. We believe that this is straightforward, and we hope to report the 

result in a future publication. 

We should also remark that-except where we indicate explicitly-our results 

apply only to the minimal Standard Model, which contains one physical Higgs 

boson and no exotic physics. The tS threshold is sensitive to nonstandard Higgs 

structures and to exotic decay modes of the top quark, through their effects on 

the the top quark-Higgs Yukawa coupling and the top quark decay width. We will 

display this sensitivity through some specific examples in Section 7. 

This paper is organized as follows: In Section 2, we justify our physical picture 

by giving a general discussion of the Coulomb problem in QCD and estimating 

the dependence of the tZ production cross-section on crs and the width of the top 

quark. Next we derive the formalism needed for our calculation: in Section 3 we 

discuss the appropriate nonrelativistic reduction of the Bethe-Salpeter equation to 

a simple Schrodinger problem, and in Section 4 we describe our technique for solv- 

ing this problem numerically. The following sections present the detailed physical 

assumptions underlying our calculation; in Section 5, we give a careful discussion 

of the static potential predicted by QCD, and in Section 6, we discuss the influence 

of the Higgs boson and explain our treatment of other electroweak effects at the 

t? threshold. Section 7 presents our numerical results, and Section 8 contains our 

conclusions. 

While preparing this paper, we received a preprint by Kwong [61 which also 

discusses the top quark threshold. He has used a method related to ours and 

our two papers give similar results. Our approaches are complementary; Kwong 

is most interested in spectroscopy of the 1S and 2S level spacings, which can 

only be studied if the top quark is lighter than 120 GeV, while we focus on the 
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shape of the cross-section for heavier top quarks, and its sensitivity to (Y, and the 

Higgs. We also received a preprint by Feigenbaum PI which studies the effect of 

the Higgs on toponium production as a function of the Higgs mass, using both an 

analytic approximation based on the work of Fadin and Khoze and a numerical 

calculation similar to though less complete than that of Kwong. The results differ 

quantitatively from ours, though the general conclusions of the two papers are in 

agreement. 

2. The Coulomb Problem and the Effects of the Top Quark Width 

In order to understand the basic physics of the t? threshold, and the rela- 

tive importance of the various effects which determine its shape, it is useful to 

quickly review the properties of Coulomb bound states. Consider, then, a particle- 

antiparticle system bound by a Coulomb potential. This system is characterized 

by the reduced mass p = m/2 and the coupling strength CY. 

In the ground state of a nonrelativistic Coulomb system 

P2 
G - IWo>l - PO2 9 

for the characteristic radius a0 = (pa)- ‘. The relative velocity of the particle and 

antiparticle is cr, so relativistic corrections will be of order cr. This implies that we 

are self-consistent in specializing to the non-relativistic limit, since our calculation 

is only intended to be accurate to leading order in CY,. 

Now let us use this estimate quantitatively for a QCD bound state. For the 

tS system, cy = $cr,, where 4/3 is the usual SU(3) group theory factor associated 

with the fundamental representation. The S-wave states have binding energies 

E- 3 n -- 
n2 ’ (2.2) 

where the Rydberg Ry = $$rnt. The radius of the nth state is r, N nao, a0 = 

($w-b)-‘, and the characteristic velocity is V~ N $a,/fi. The ratio of twice the 
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diameter to the velocity is roughly the period of oscillation for S-states: (4rn/vn) N 

n3i2/( $c$mt). This is a reasonable estimate of the time needed after the t and t are 

created for the formation of the bound state. For the ground state, this formation 

time (evaluated using os(ao)) is of order 

100 GeV 
Qotm - 1 GeV-’ ( mt ) . (2.3) 

In the minimal Standard Model, the heavy top quark decays almost exclusively 

to W+b, with other decay modes suppressed by Cabbibo-Kobayashi-Maskawa mix- 

ing angles. As the mass of the t increases, the decay rate becomes proportional to 

the square of the the t quark-Higgs Yukawa coupling and so increases steeply with 

mt. The width of the t is is 93 MeV at mt = 100 GeV and goes asymptotically 

to eq. (1.1) f or ar 1 g e mt. (The complete formula PI appears at the end of Section 

6.) Models with a nonminimal Higgs sector or other exotic physics may have a 

substantially different top quark width; we will discuss this point in Section 7. 

The lifetimes of previously studied quarkonia were set by annihilation of the 

quark and antiquark into gluons or photons, since the time-scales associated with 

annihilation were considerably smaller than the lifetimes of the quarks themselves. 

By contrast, the heavy top quark decays so rapidly that the toponium system de- 

cays predominantly to W+W-b$, via two independent single quark decays. Decay 

channels which involve quark-antiquark annihilation (e.g., tt + W+W-, bf;, Hy, 

2 gluons, etc.) are suppressed at least by the factor j+(0)/2/mj N (aomt)3 - cri, 

where $(r) is the bound state wavefunction. Therefore, as there are no other im- 

portant decay modes, the width of the toponium resonances will be approximately 

twice that of the top quark. Furthermore, the lifetime of toponium is so short that 

the bound states barely have time to form at a11.[2’31 In fig. 1 we compare the 

lifetime of toponium with the formation time for the ground state; these cross at 

mt about 140 GeV. Thus, we should expect the distinct toponium states to smear 

out into a broad threshold structure as mt increases, with the 1S resonance, the 

last to go, disappearing somewhere near rnt = 140 GeV. 
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There is another interesting effect due to the large width. For mt - 120 GeV 

or greater, the fact that It > AQCD implies that, in the continuum region above 

threshold, the t and twill generally decay before hadronization occurs. This permits 

the decays to be treated perturbatively, allowing a more accurate analysis than is 

possible for longer lived quarks. 

It is interesting to estimate the dependence of the tT production cross-section 

on as and Ft. If the top quark is relatively long-lived, so that the cross-section 

can still be described as a sum of sharp resonances, the peak cross-section at a 

resonance is given (in units of RIB1 ) by 

’ l~(“>12 R 
cpeak - 2 7 

mt rt 
(2.4) 

where $(r) is the wave function of the t? bound state. Noting that the wave 

function at the origin is largest for the ground state (n = l), and estimating 

Ih( = (a0Jm3 - ( mta,)3 in the limit l?t << IRyl, we find 

1 @-wd3 R 
*peak N 2 

mt rt 

=a;(:) R. 
P-5) 

This indicates a strong sensitivity to oS, and a swift decrease of the peak height 

with increasing mt, due to the rapid growth of I’t. The exact Coulomb calculation PI 

shows that for a large width (I’t >> IRy I), the peak disappears into the continuum, 

and 

a-a,2 (z)“2 R. w-9 

in the region just below threshold. Thus, for larger mt, the cross-section drops 

asmt , -’ as can be seen using (l.l), while the sensitivity of the cross-section to 

oS and I’t is less than for lighter top quarks. We will see that leading-logarithmic 

corrections to the Coulomb approximation do not substantially change this picture. 
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3. Formalism for the Non-Relativistic Approximation. 

We will now present the formalism we need to make this intuitive picture con- 

crete. Because a heavy top quark has no narrow resonances, we should concentrate 

our attention not on spectroscopy but on the behavior of the total cross-section for 

top quark pair production as a function of energy. To leading order in QED, this 

cross-section is given, via the optical theorem, by 

a(e+e- + tf) = 4naQED 
s [ - Im Wq2)] , (3-l) 

where IIt(q2) is the top quark contribution to the photon vacuum polarization. 

It is straightforward to improve the formula to include the 2’ and higher order 

electroweak corrections, and we will do this in section 6. The more difficult problem 

is to compute Im IIt(q2). In th’ is section we reduce this problem to the solution of 

a nonrelativistic Schrodinger equation. This is a straightforward exercise, which 

we include to make our assumptions clear. 

In perturbation theory, l&(q2) is given by the sum of diagrams shown in 

fig. 2(a). For most values of q 2, this set of diagrams can be evaluated by directly 

summing the perturbation expansion. Diagrams containing loops whose momenta 

are off-shell by an amount rnf are suppressed by factors of as(mp). However, it is 

well known that, near threshold, the Coulomb exchange of n + 1 bosons between 

the quark and antiquark is not suppressed relative to the exchange of n bosons, 

since the energy denominator from each loop integral contributes a factor of oyl. 

Thus, the leading-order expression for IIt(q2) near threshold is the sum of the lad- 

der diagrams shown in fig. 3(a). These diagrams may be summed by constructing 

the vector vertex function P(p, q) h’ h w K so ves the equation shown in fig. 3(b), 1 

and then contracting this vertex function as shown in fig. 3(c). This gives 

i(gP”q2 - qPqY)IIt(q2) = (iie)l/ -CL c2?rj4tr [sF(P + d2)r’(P, dsF(P - !#)Y”] 7 

P-2) 

where SF is the fermion propagator, and the trace is taken over Dirac and color 

indices. 
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To leading order in CY$, it suffices to analyze the equation for P‘ in the non- 

relativistic approximation. Set q = (2mt + E, 0), so that E represents the binding 

energy of the t? system, and treat all 3-momenta as being of order crs. Then the 

fermion propagators may be approximated by their nonrelativistic particle and 

antiparticle poles, 

- I  #^\ 

SF@ + q/z) + 
i2mt . (1 + 7’)/2 

2mt(E/2 + p” - lpj2/2mt + i&/2) ’ 
P-3) 

SF@ - q/2) + 
-i2mt . (1 - 7’)/2 

2mt(E/2 - p” - lp12/2mt + irt/2) ’ 

To be consistent with the nonrelativistic expansion, we must ignore in (3.3) the 

momentum-dependence of the imaginary part of the denominator in the quark 

propagator. We have therefore taken the top quark width to be constant, evaluating 

it on the mass shell, using the tree-level Standard Model result. This approximation 

was suggested by Fadin and [31 Khoze. 

In the non-relativistic limit, we need keep only the instantaneous Coulomb part 

of the gluon propagator. The Coulomb exchange is given to lowest order by 

(-i9S)2(~“ro>(~“ro) Ip _+i12 , (3.4) 

where T” is a color SU(3) representation matrix. We can isolate all terms in the 

expansion of this form; acting on a color-singlet t? state, they can be combined as 

zY(r’)(r’)v(p - k). To leading order, 

v(p - k) = -4 4Tas 
3 Ip - k/2 ’ (3.5) 

The leading logarithmic QCD corrections modify this (l/r) potential by logarithms; 

we will discuss this effect in Section 5. 
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In the nonrelativistic approximation, the equation for F‘(p,q) in fig. 3(b) 

becomes 

rvd = YP + 
J 

d4k (1+7’) 
- (27r)4 [ 2 ’ 2 

l?yk q)(l- YO)] 

’ (E/2 + k” - lkj2/2mt + Xt/2f(E/2 - ko - lkl2/2mt + Xt/2) ‘(’ - k, . 
(3.6) 

Since the right-hand side of this equation is independent of p”, we may self- 

consistently take l?(k, q) independent of Lo; then we can perform the dk” integral 

explicitly. A further simplification takes place in the Dirac structure. Inserting 

(3.3) into (3.2)’ we see that this integral depends only on (1 + y’)P(p, q)(l - 7’). 

The equation (3.6) im pl ies that this component of l?‘ takes the form 

(l +Y”)rp(p,q)(l -7’) = C1 +Y”)y/L(l -7’) . i; 
2 2 2 2 ’ (3.7) 

where l? is a scalar function of lpl and E. In all, the equation for l?‘ reduces the 

the scalar equation 

3 
b’ E) = ’ + J (;$,?p - k)(E + irt : lk12,mt)F(k’ E) * (3.8) 

Let 

e(k, E + St) = - 
1 

E + i& - lk12/mt 
F(k, E) . 

Then we can return (3.8) t o coordinate space and see that it is just the Schrodinger 

equation 

(H - (E + i&))G(r, E + irt) = 6c3)(r) , (3.10) 

with 

H = -$V2 + V(r) , (3.11) 

correctly reflecting the reduced mass of the t? system. We recognize G(r, E) as 

the standard Schrodinger Green’s function G(r, r’; E), evaluated at r’ = 0. As the 
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width of a state is twice the imaginary part of its eigenvalue, we find that the width 

of the toponium system is 2I’t, as argued in Section 2. 

The nonrelativistic representation of l?‘ that we have just derived can be in- 

serted into the nonrelativistic reduction of (3.2) to provide an expression for l&(E). 

As in (3.6)’ the dp” integral may be performed explicitly. Then we find 

2 

Ht(E) = g$ J d3P 
(27r)3 E + irt : Ip12/mtr 

(3.12) 

= -is G(r 

, 

= 0, r’ = 0, E + i&) . 
t 

Inserting this formula into (3.1)’ we find for the l-virtual-photon cross-section for 

tS production 

a(e+e- + tT) = 
87r2a2 

QED Im G(0, 0; E + St) . 
3m: 

(3.13) 

For It = 0, this equation is easily seen to be equivalent to the standard formula 

for e+e- production of nonrelativistic bound states. The derivation we have given, 

following the suggestion of Fadin and Khoze, clarifies that the effect of the top 

quark width is to cause the Schrodinger Green’s function to be evaluated off the 

real axis. We will see in the next section that this causes the Green’s function 

G(r, r’; E + iI’t) to decay exponentially for all values of E. Thus, if l?t is sufficiently 

large, the calculation of this Green’s function will involve only short distances where 

QCD perturbation theory is valid. 
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4. Method for Finding Im G(0, 0; E) 

To calculate the total cross-section using the formalism of the previous section, 

we must construct the Green’s function of the Schrodinger equation, G(r, r’; E), 

evaluated at r = r’ = 0. This can be done very simply by the technique we will 

present in this section. 

Our basic problem is to solve the second-order inhomogeneous differential equa- 

tion: 

{-kV” + V(r) - (E + irt)} G(r, r’; E + irt) = 6t3)(r - r’) . (4.1) 

Since we will evaluate G(r, r’) at the origin, the only relevant contributions will 

come from S-wave states. In this partial wave, (4.1) becomes 

1 d2 2d 
- {-z(dr2 •I- 7-z) + v(r) - (E + irt)} G(r, r’) = &S(r - r’) . (4.2) 

We can simplify the problem by defining 

g(r, r’) = rr’G(r, r’) . 

This leads to the one-dimensional Schrijdinger equation: 

d2 
{(p + mt(E + irt - V(r))} g(r,r’) = 2 S(r - r’) . 

The solution to this equation will be of the form 

g(d) = A s>(r>) s&c) , 

(4.3) 

(4.4 

(4.5) 

where r > = max( r, r’), r< = min( r, r’), and g> , g< are solutions of the homogenous 

equation regular as r --+ 00, r + 0, respectively. Notice that, if l?t > 0, the solution 
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g>(r) decreases exponentially as r --f 00. The constant A is chosen to give the 

correct coefficient of the delta function; the matching condition is 

r=r’+C - - r=f-‘-c = 
dr -A W(g>,g<;r’) = -2 , WV 

where Wh,h; 4 = <flfi - f32>lr is the Wronskian of two functions fr and 

f2. It is well known that, if fr , f 2 satisfy the Schrodinger equation, W(fr , f2) is 

independent of r. 

To go further, let us define two standard solutions to the one-dimensional 

SchrSdinger equation with specified boundary conditions at r = 0. Since G(r, r’) 

must be finite at r = 0, the regular solution for g(r) must vanish there. Let us 

define a regular and an irregular solution go(r), gr (r) satisfying 

go(r) = r + - -- as r + 0 , 

gi(r)=l+... asr+ 0. 
(4.7) 

This definition is not complete, because it allows gr to contain an arbitrary ad- 

mixture of go. If V( ) r were regular at the origin, we could impose (d/dr)gl = 0 at 

r = 0. However, in the case of a Coulomb potential gl(r) = 1 - ,f3r log(r/d) + . . ., 

where p and d are constants, so (d/dr)gl diverges as r + 0; the arbitrariness in 

the parameter d induces an arbitrary admixture of go into 91. (A similar ambi- 

guity appears for the case of the asymptotically free QCD potential discussed in 

Section 5.) Fortunately, it will suffice to impose on gr the constraint: 

~~[-$(~)I -+ 0 asf+O, (4.8) 

which can be maintained for any V(r) less singular than 1/r2. 

Any g1 satisfying (4.8) may be chosen, but once it is fixed, we may write the 

solutions g<(r) and g>(r) d fi d e ne in (4.5) as linear combinations of go and 91. 
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Since g<(r), like go, must vanish at the origin, we may identify them: 

49 = sob9 * (4.9) 

The other solution, 

h-(4 = Sl(d + &o(r) , (4.10) 

vanishes as r + 00, which implies 

B = rhrrnm ( - 91(r) 
-3 * 90 (4 

(4.11) 

Note that while the real part of B is dependent on the choice of gr, its imaginary 

part is fixed by (4.8). 

With these definitions, it is easy to compute the Wronskian at T = 0 and to 

show that W(g>,g<) = -1, and, from (4.6), A = -mJ47r. We now use (4.3) and 

(4.5) t 0 write 

G(o,o) = -z .!,lio +q 
, 

91 V) = -2 j_mo (7 + B) . 

Since gl(0) = 1, we find 

ImG(O,O)=-ZImB, 

(4.12) 

(4.13) 

which shows that the ambiguities in the definition of gr and B mentioned above 

do not appear in the final result. 

We have now reduced the computation of the tt production cross-section, in 

the l-virtual-photon approximation, to 

a(e+e- -+ t?) = - 
2+?ED Im B 

3rni , (4.14) 

where Im B can easily be computed numerically using (4.11) and the homogeneous 

version of (4.4). 
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As a simple application of this formalism, let us compute the production cross- 

section for a nonrelativistic heavy lepton pair. If the lepton mass is about 150 

GeV, the width of the lepton will be similar to that of the top quark, while the 

potential will be negligible. In this case, it is easy to see that (for r < 8) 

m sin Xr e iXr’ 
G(r, r’; E + ir) = ---- 

4n Xr r’ ’ 
(4.15) 

where X = [m(E + iI’)]‘/2. N o ice that this function falls off exponentially for all t’ 

values of E, with decay length at most ,/m. Inserting (4.15) into the cross- 

section formula (and removing from (3.13) the factor 3 . (2/3)2 from the top quark 

color and charge), we find 

++e- + L+L-) = 
7r2cY2 

QED Re X 
2mi 

x2,&D 

= 2m3, 

(E2 + r2)1/2 + E ‘I2 

2 1 , 
(4.16) 

whereE=&- 2mL is the energy measured from the L+ L- threshold. 

5. The QCD Potential 

To arrive at a fully self-consistent perturbative result, one needs to calculate all 

contributions to the tT cross-section to a given order in oS. There are a very large 

number of such contributions: corrections to the top quark width, box diagrams, 

vertex corrections, crossed gluons, etc. In this paper we will concentrate on the 

most important source of cY,-dependence-the static potential due to one-gluon 

exchange-and reserve the full accounting of order-as corrections for later work. 

However, there is one additional order-o8 correction that is conventionally 

included in calculations of quarkonium production, and so we will include it here as 
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well. The exchange of a hard gluon at the photon-quark-antiquark vertex corrects 

the cross-section by a factor 

(1 - scr,/3?42 , (54 

where a, must be evaluated at WY 2mt. This decreases the cross-section by about 

15%. 

Now we will discuss the non-relativistic potential, which for the t? system is 

dictated almost completely by perturbative QCD. To lowest order, 

V(r) = +. (5.2) 

More generally, the static qij potential V(T) obeys a renormalization group equa- 

tion. This equation is solved by replacing a, in (5.2) with a running coupling 

cr, (pr-), where p is a renormalization scale, such that 

28 

p d/L2 
-as z @(as) = -5 - f$ + . . . 

For QCD with nf flavors of light quarks, 

(54 

2 
bo = 11- inf ; bl = 102 - % 

3 f- (5.4) 

The solution to eq. (5.3) with constant coefficients, using the beta function calcu- 

lated to two loops, is 

477 
as = b. log(A2r2) + (bJbo) log(log[A2r2]) ’ (5.5) 

where A, which sets the strength of the potential, must be specified by relating it 

to other parameters of perturbative QCD. In a moment we will consider how to 

relate A to the commonly used parameter A=, where MS refers to the Modified 

Minimal Subtraction renormalization scheme. 
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First, however, we should remind the reader that A= is defined from oF at 

some scale Q through an equation with the same form as (5.5). Inverting (5.5), 

one finds 

Am M [ 4T ](b1/2bz) 
boq 

& exPc-&) (5.6) 

where a& G CUE. It is clear A= suffers from an ambiguity involving the 

number of quark flavors in the coefficients of the beta function. Physically it is 

reasonable that one should take nf equal to the number of quarks much lighter 

than the scale of the relevant physics, and so we choose nf = 5. Since the tx wave 

functions have characteristic radius (a,mt)-‘, which lies well between rnb’ and 

rnt’, the corrections to this choice are small. 

However, A= is much more sensitive to experimental uncertainties than crs 

itself, since it appears only in logarithms in any physical amplitude. For this reason, 

we find it is clearer to express our potential in terms of cys in some renormalization 

scheme at some scale. We choose crz E ay(rni) as our reference point. Since 

mb CC mz < mt, the conversion from CYZ to our potential involves only scales for 

which nf = 5 is appropriate. 

We now return to the task of relating A and Am. The energy of a quark- 
[ill antiquark pair as a function of q2 was calculated to two gluon loops by Fischler. 

In the m scheme, his result is 

Billoire[121 extended this to include fermion loops: 

V(q) = ~~~~~~~~~ + [i log($) + y]nf + --- 

(5.7) 

F-8) 

(Billoire was also the first to show that non-perturbative effects remain important 

in studying the threshold behavior of heavy quark systems until the quarks reach a 
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PO,131 mass of about 100 GeV.) Following Buchmiiller, Grunberg, and Tye, 

the Fourier transform of (5.7) and (5.8), using 

we take 

J d3 q log ( q2) eiq’* = 

(27d3 q2 -+-(l%(~2) + 2YE) P-9) 

where YE is Euler’s constant. The expansion of the result in terms of log&) can 

be matched, term by term, with the expansion of (5.5); this allows us to identify 

A = A= exp(i) x 2.43 A= (nf = 5) (5.10) 

where 

+ 27E . (5.11) 

Thus the potential is stronger than one might have suspected: 

(5.12) 

This potential is somewhat problematic. It is perturbative, and cannot be 

trusted at distances larger than about a few tenths of a fermi, where cys becomes 

large. Equation (5.5) even has a pole at 

Arcrit = {In[(A2r~rit]}b1/2bX NN 0.785 (nf = 5) , (5.13) 

which is fortunately outside the range of the t? wave functions. We will deal with 

these problems in a physically motivated but still somewhat ad hoc fashion, and 

will show in our results that wide deviations from our exact choices do not strongly 

affect our curves, particularly for the higher masses we consider. 

First, we perform a simple regulation, replacing 

Ar + f(Ar) = a tanh($) , (5.14) 

where a is an arbitrary number less than the the value of Arcsit given in (5.13); 

this eliminates the pole and ensures the potential is smooth. The corrections 
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induced by this replacement are small until Ar approaches the pole, particularly 

as the potential depends only on log(Ar). If a is taken too large, the potential 

develops an unphysical dip in the vicinity of the pole; if it is too small, substantial 

deviations from the perturbative potential appear in the perturbative region. We 

choose a = 0.3 as an intermediate value which minimizes these problems, though, 

as we will describe in Section 7, the effect of changing a on the observable cross- 

sections is small. 

Due to the insensitivity of these cross-sections to long-distance effects, we need 

not be extremely careful in our choice of potential beyond about a fermi. We em- 

ploy the commonly used prescription that at large distances the potential becomes 

linear. Buchmiiller and Tye have shown 1101 that all of the potentials which success- 

fully give the cz and b$ bound-state spectra have the same shape in the relevant 

region of .l to 1 fm: they are approximately logarithmic with slope 

dV 

d&x 4 
- .7 GeV (5.15) 

This tells us how to match our perturbative potential onto the non-perturbative 

region in order that it reproduce the known quarkonium spectra. We therefore 

choose 

4 4n 
‘(r) = -% ’ bo 1og(f(Ar)2) + (bl/bo)log(log[f(Ar)2]) + I” 

(5.16) 

with the coefficient K of the linear term adjusted so that 

d(f&(r = TO E 1.3 GeV-l) = .733 GeV . (5.17) 

The value .733 GeV is taken from Quigg and P41 Rosner, while we choose ro = 

1.3 GeV-’ = .26 fm as an arbitrary matching radius. Our results are insensitive 

to these particular choices, as we will show later. 
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Below is a summary of our method for defining the QCD potential. The first 

four steps are required by perturbative QCD; the last two are an ad hoc pre- 

scription, to which our results are generally insensitive, in which we match our 

potential onto succesful phenomenological potentials for the cz and b8 systems. 

(1) We choose a value for cyz E Cyy(mi); (2) using nf = 5, we compute A= from 

the formula (5.6); (3) we compute A from eq. (5.10); (4) we take crs as in (5.5); 

(5) we eliminate its pole using (5.14) with a = 0.3; and (6) we add to the resulting 

potential a linear term as in (5.16), h c oosing K so as to satisfy eq. (5.17). 

6. The Effect of the Higgs and Other Corrections 

In addition to the leading-logarithm QCD calculation, we will consider the 

interesting effect on the static potential of the Higgs boson. Since the Higgs effect 

is small, of the same order as certain QCD corrections we have ignored, this part 

of the calculation is not self-consistent; rather, it is intended to be indicative of 

the magnitude of the effect and of the precision, following a complete calculation, 

to which the Higgs mass or coupling could be determined from the t? threshold. 

It is well known that the effect of scalar exchange between a fermion and an 

anti-fermion is to induce an attractive interaction, which in the non-relativistic 

limit takes the form of a Yukawa potential. It has been pointed out by Inazawa 

and Morii 15’ that for extremely heavy quarks (mq N 500 GeV) the Higgs interaction 

would be stronger than that of QCD, and, if the quark were sufficiently stable to 

have well-defined bound states, we would see an enormous enhancement of the 

quarkonium resonances. However, even without toponium resonances, the Higgs 

can have a large effect on the top threshold region, and this effect is substantial 

long before the Higgs interaction dominates that of &CD. 

For non-relativistic quarks both gluon and Higgs exchange are approximately 

static, and we can simply add to the QCD potential of Section 5 the H&s-mediated 
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Yukawa potential 

R 
vHiggs (7’) = $-f i eBmHr = 

m3 l -- e -mHr 

4nv2 r , VW 

where rnH is the Higgs mass, gtta is the Yukawa coupling of the Higgs to the top 

quark, and v = 246 GeV is the Higgs field vacuum expectation value. Note that 

we have used the minimal Standard Model to evaluate gttH. If the Higgs boson 

has a tiny mass, so that the potential it induces is nearly Coulombic out to radii 

well beyond the Bohr radius of the top quarks, then to leading order the effect of 

the Higgs is simply to increase the strength of the interquark coupling: 

4 4 m9 -cY’s + -a, + - 
3 3 4762 * (6.2) 

In fig. 4, we show a comparison of the QCD and Higgs contributions to the 

tS potential, using qff = +&(a~) as an estimate of of the gluon coupling. If 

the cross-section in the threshold region is proportional to cr!j, we find a relative 

enhancement for a massless Higgs of 

AU 3n rni mt 
- - 16~ crsv2 u 

-- - 20% - n - ( 
200 GeV j2 - (6.3) 

The estimate (2.6) h s ows that n lies between 2 and 3 for the region of interest. (For 

very large quark masses in the 500 GeV range, one may use (2.6) to estimate that 

the cross-section, in units of R, grows as rni; in real terms it goes to a constant.) 

On the other hand, as the Higgs becomes more massive, the range and influence 

of its Yukawa potential are reduced. Thus, the size of the Higgs correction to the 

cross-section is a measure of the Higgs mass. 

One might ask whether 2’ or photon exchange might also produce a substantial 

effect. The answer is no: the photon correction is of order CYQED < c& and the 2’ 
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vector coupling to the t quark is smaller than CYQED by the factor 

(1 - s sin2 8,)2 

16 cos2 0, sin2 8, 
= 0.048 . (6.4) 

The 2’ axial coupling is also unimportant, because the axial-vector coupling is 

momentum and spin dependent and thus suppressed in the non-relativistic limit. 

Though electroweak corrections to the tx potential are very small, there are 

four other electroweak effects which are important in the determination of the total 

cross-section for e+e- + tt!‘51 The first of these is the effect of e+e- annihilation 

through a Z”, which we have neglected in our formulae from (3.1) onward, but 

which is easy to reintroduce. The 2’ current has both vector and axial-vector 

pieces. However, the axial-vector coupling to t?, which produces only P-wave states, 

can be neglected, since the amplitude for producing such states contains an extra 

power of the quark 3-momentum, suppressing their production by a factor CY~. The 

vector coupling on the electron side, which is proportional to the small quantity 

(a- sin2 ~9,), is also neglegible. Thus, the photon and 2’ exchange contributions 

do not interfere, and the 2’ may be included simply by replacing 

s 
16 sin2 &, cos2 8, s - rni ( 6.5) 

in (3.1) and subsequent formulae. 

The second important effect is the renormalization group running of CYQED. 

Since the t? production cross-section is proportional to o;ED, with this coupling 

constant evaluated at the scale s N (4mi), we should multiply our formula for the 

cross-section by [lf51 

( cYQED(4m:) 

crQED (0) 

137.0 2 

127.1 - 1.4151og(2mt/300 GeV) ’ (6.6) 

which involves a 15% increase. 
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The third important electroweak effect is that of inital state radiation, which 

can reduce the center-of-mass energy of the e+e- collision, and thereby move the 

virtual 2’ or 7 below the t? threshold. It is well-known, from theoretical studies of 

the 2’ line-shape, that initial state radiation decreases the peak cross-section of a 

resonance by a substantial amount; it is a 25% reduction for the Z”, but of order 

50% for the low mass toponium resonances, due in part to their smaller width. In 

the calculations reported here, we have used the formalism of Fadin and P71 Kuraev, 

which views the initial state photons as arising from an electron structure function. 

Working to first order in CYQED and to all orders in collinear radiation, we write 

the measured cross-section a(s) in terms of the uncorrected cross-section so(s) as 

follows: 

1 

J (6.7) 
dx [@xp-’ (1 + $3) - P( 1 - ;)I ao[s(l - 43 

0 

where 

zag-$ - 1) !z 0.11 . 
e 

Here me is the electron mass, and, since the radiated photons are at low energy 

in the electron frame, CYQED takes its low momentum value of about l/137. For 

a full explication of this formula, the reader should consult reviews of the 2’ line 

shape problem (e.g., refs. 18 and 19). 

Finally, the tf production cross-section depends sensitively on the value of the 

top quark width. Except where it is noted below, we have used the formula of the 

minimal Standard Model 12’ 

rt = $$Kb[2(g) [(l - $)‘+ (1 + s)% 431 , W) 

where k is the S-momentum of the decay products in the t rest frame. The asymp- 

totic form of this expression has been quoted in (1.1). We approximate I&,] = 1 
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in most of what follows. 

We have now presented all the details of our prescription for computing the 

cross-section for tS production in high-energy e+e- colliders. Let us summarize 

this procedure. We will express e+e- cross-sections in units of R PI throughout 

the following discussion. In these units the cross-section for tf production, without 

initial-state radiation, is given by (4.14), as modified by (5.1), (6.6), and (6.5): 

(6.10) 
3 (l- tsin2B,) s 2 

\ I 

32 cos2 8, sin2 8, s - rn$ )I ( - Im B) R, 

where B is computed from (4.4) and (4.11) using (5.16), (6.1), and (6.9). The final 

cross-section is then obtained by inserting (6.10) into (6.7) to account for initial 

state radiation. 

7. Results 

In this section we present our results on the t? production cross-section as we 

vary the parameters of our model. For most of this section, we will work within 

the minimal version of the Standard Model and consider the effect of varying mt, 

mH, and crs. At the end of the section, we will consider the effects of nonminimal 

Higgs couplings and of modifications of the top quark width. 

The numerical programs used for these calculations were carefully checked. 

Each of us wrote an independent program, and our final results agree to better 

than 1 percent, far less than uncertainties due to QCD corrections. For a pure 

Coulomb potential without initial state radiation, our programs agree with the 

exact analytic result to 1 part in 105. 

Before discussing the figures, we should mention that even with little additional 

knowledge about cr, or ma, and with only a few hundred events, a measurement 
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of mt to 3 GeV or better should be possible; this has been confirmed in recent 

1201 Monte Carlo studies by Komamiya. This measurement can be compared with 

other determinations of mt as a test of QCD radiative corrections. 

We begin by surveying the effect of variations in a~ z ay(m%) and ma, 

within the minimal Standard Model, for various values of mt. In figs. 5-12, we 

display this dependence for four values spanning the allowed range of mt: 120,150, 

180, and 210 GeV. For each of this values, we show the effect of varying a~ from 

0.10 to 0.13, ignoring the effect of the Higgs (equivalent to setting mH infinite), 

and also the effect, for cuz fixed at 0.12, of varying the Higgs mass, using rnH = 40, 

100, 200 GeV and infinity. In all cases, the energy on the horizontal scale is the 

center-of-mass energy E measured from (2mt), and the vertical scale gives the 

radiatively corrected cross-section, in units of R. 

As we argued in Section 2, the cross-section at the 1s peak is highly sensitive 

to as for mt < 150 GeV and becomes less so as the mass increases. This can 

be seen by inspection of figs. 5 to 8. Fig. 5 shows that for mt = 120 GeV, a 

10% variation in os makes a 20-25% difference in the peak cross-section, and a 

30-35% change in the binding energy E at the peak. For 150 GeV (fig. 6) a 10% 

increase in os changes apeak by only 15-20%, but the energy at the peak by 40- 

45%. As expected gped drops rapidly with mt, falling from 1.5 to 0.8 units of R 

for crz = .12 as mt goes from 120 to 150 GeV. By 180 GeV the peak has essentially 

disappeared, but still the sensitivity of the cross-section is large enough to allow a . 
good measurement of crs. Some supplementary information comes from the region 

well above the peak, but here the dependence on crs is weaker; a 10% increase in as 

increases the cross-section by 5-10% for all of the masses we consider. However, for 

the higher values of mt, the cross-section above threshold has a significant slope, 

so that oS cannot be determined just from this region unless mt is known to high 

precision from fitting the region below threshold. The area under the curve may 

prove to be the most useful quantity for determining cys at these higher masses. 

The effect of Higgs exchange on the cross-section can be seen in figs. 9 through 
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12. The cross-section for mt = 120 GeV depends weakly on TTLH, showing only 

a 10% variation in uped and unmeasurable variations off the peak for the Higgs 

masses chosen. Such an effect can be mimicked by a small increase in both crs 

and mt, and is therefore undetectable. The situation improves rapidly, however; 

already by mt = 150 GeV there is an overall 15% difference in the cross-section 

between the cases of a light and a heavy Higgs. This difference grows to about 

35% for mt = 210 GeV. It should be noted that Higgs effects come to dominate 

uncertainties in a, for mt 2 180 GeV, as can be seen from the figures. 

For the sake of amusement, we have included a graph of the effect of the Higgs 

on a top quark of 450 GeV, in fig. 13. At this mass the Yukawa coupling has grown 

larger than crs. Note that though the cross-section is larger in units of R than for 

mt = 210 GeV, it is smaller in real terms. Still, the effects of the Higgs mass are 

enormous. 

_ It is important to check that the results we have presented are not significantly 

affected by our treatment of the nonperturbative effects in the quark-antiquark 

potential. In fact, all of our results are quite insensitive to reasonable changes in 

the parameters I<, ro and a defined at the end of Section 5. Fig. 14 shows the 

effect of making a large change in the slope of the potential in the nonperturbative 

region (equivalent to changing either K or ro), for the case of a 100 GeV top 

quark. In this figure, we have plotted the 1s peak using our standard potential 

for cyz = 0.11, and the cross-sections for crz = 0.12 using three different values for 

the slope (5.17) in the nonperturbative region: dV/d(log r) = .333 GeV, .733 GeV, 

and 1.133 GeV. Since this quantity is known to about WI lo%, the above range 

of values far exceeds the experimental uncertainties. The line-shape is noticeably 

sensitive to I( in the region of the 2S and 3S states. This is because the excited 

states have a larger radius and sample the potential further from the origin than 

the ground state. The spacings between the states, as well as the peak heights, are 

very sensitive to the shape of the long-range potential; the analysis of Kwong PI 

takes advantage of this fact. However, the shape and position of the 1s peak varies 

by only 5% under these changes in K and remains a perturbative prediction. The 
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figure makes clear that, due to their weak dependence on the nonperturbative part 

of the potential, the height and position of the peak are precise measures of oS for 

mt 2 100 GeV. 

For larger mt, the peaks of the excited states broaden until they are no longer 

visible. What this means is that the increasing top quark width (more than its 

increasing mass) cuts off the wave functions before they have a chance to sample 

the non-perturbative region, and the entire threshold cross-section becomes per- 

turbative. The unphysically large variations of dV/d(log r) used in fig. 14 give 

deviations of only 3% in the peak height and the Rydberg for rnt = 120 GeV, and 

1% for mt = 150 GeV. 

The cross-section calculations show a similar variation when the regulator pa- 

rameter a, defined in (5.14), is varied in the range 0.2 to 0.5. For values of a as 

large as 0.5, the potential is badly distorted at large distances, but, as suggested 

before, our result for the cross-section is quite insensitive to this region. For values 

of a smaller than 0.3, the infrared cutoff begins to flatten the potential in the per- 

turbative region. This modification of the potential at short distances does affect 

our numerical results, but its effects, although no larger than perturbative QCD 

corrections, are not physical and carry us outside the realm of a systematic cal- 

culation. To be conservative, we use the variation in our calculated cross-sections 

from a = 0.3 to a = 0.2 as a measure of the uncertainty in these cross-sections due 

to nonperturbative physics. We thus estimate an uncertainty from this source of 

2% at mt = 120 GeV, 1% at mt = 150 GeV, and still less for larger values of ml. 

The variation of K within physically reasonable limits leads to an even smaller 

systematic uncertainty. Overall, these ambiguities should be much smaller than 

the uncertainties from perturbative QCD corrections, since even when the order-as 

contributions are known, order-o: corrections of a few percent will remain. 

A precision measurement of the shape of the tS threshold cross-section thus 

gives information on three fundamental parameters of the Standard Model-mt, 

mH, and czs. How the data will be used to constrain these parameters will depend 
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on what other experimental data are available at that time. In the next five 

years, experiments at the 2’ should yield a measurement of ay(m”,) with an 

accuracy of *0.0051211 As for the top quark, if it is sufficiently light it should be 

discovered at the Fermilab Tevatron collider and its mass measured to f15 GeV. 

High-energy experiments at an e + - e linear collider which reconstruct top quarks 

above threshold can probably improve this accuracy to f2 GeV. Meanwhile, the 

Higgs boson, if standard, will be discovered at LEP II, the SSC, and/or an e+e- 

linear collider, assuming its mass is low enough to be important to the tS threshold 

problem. Within this context, then, the measurement of the tf threshold cross- 

section will serve as a method of improving the precision determination of cys and 

mt while providing confirmation of the existence and standard behavior of the 

Higgs through its virtual effects. The question of how to extract cr,, mt, and/or 

mH from these curves is a subtle and difficult one, which is strongly dependent on 

mt. A first analysis is given by Komamiya in ref. 20. 

We may hope, however, that the minimal Standard Model will not completely 

describe the physics of the top-Higgs system. In this case, the measurement of the 

tS threshold can make two important contributions to the experimental unravelling 

of the top quark interactions. First, this experiment allows a direct measurement of 

the lifetime of the top quark. In modified versions of the Standard Model, the top 

quark width can either decrease or increase relative to its standard value. If there 

is a fourth generation of heavy quarks, Iv&l2 may be substantially less than 1; as 

given in eq. (6.9), th is would reduce Ft. On the other hand, if new particles appear 

with masses below mt, this will provide new decay channels which will increase the 

width of the top. If there exists a charged Higgs boson with mass comparable 

to the W boson, the ratio of the decay rates for t + W+b and t + H+b is of 

order 1, depending on the mixing angles of the nonminimal Higgs sector. If there 

exists a supersymmetric partner t” of the top quark, then, if the kinematics allow, 

supersymmetric decays such as t + @j may be important. In these and other 

scenarios, the top quark width can be substantially larger than the value (6.9). 

To show how this modification would affect the tS threshold cross-section, we 

28 



have presented in figs. 15 and 16, for mt = 150 and 210 GeV, a comparison of the 

threshold structure for various values of l?t. Both figures show that the important 

effects occur around and below the visible resonance, as it becomes narrow or 

broad; the cross-section near and above threshold, which is featureless and almost 

flat, is barely altered by changes in l?t. For 150 GeV, cutting the width in half 

adds more than 50% to the height of the peak; a 20% reduction in the width 

means a 15% enhancement of the peak cross-section, while a 25% increase in the 

width reduces cped by only 10%. For mt = 210 GeV, a width equal to one half 

the Standard Model prediction restores the peak; by contrast, doubling the width 

substantially increases the cross-section below the peak. However, at this mass, 

variations of order 25% in the width make changes in the cross-section which will be 

very difficult to detect; they are only a few percent in the region of the resonance, 

and slightly larger at lower energies where the measurements are more difficult 

due to the lower collision rate. We can conclude that sensitivity to changes in I’t 

is dependent on the prominence of toponium resonances, and is therefore greater 

for low mt. (It is worth noting that l?t is the only parameter which increases the 

cross-section in some regions while decreasing it in others, so that the effect of a 

change in l?t cannot be imitated by changing mt, mH, and cry, in combination.) 

It is also of great importance to measure the coupling gttH of the Higgs to the 

top quark. Any deviation of this coupling from its value in the minimal Standard 

Model 

&$H = mt 
246 GeV (7-l) 

is a sign of a more complicated Higgs sector. In fig. 17, using mt = 150 GeV, 

we fix CYZ = 0.12 and mH = 100 GeV and show the effect of taking gttH/&rH = 

0, 0.5, 1.0, and 1.5. In fig. 18 we do the same for mt = 210 GeV. The change 

in the cross-section due to the Higgs is approximately quadratic in the Higgs-top 

coupling, as was argued above (see eq. (6.3).) The effect is systematic, so that the 

area under the curve may be used in the measurement, decreasing the statistical 

errors substantially. We may therefore hope that the top quark threshold will 
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provide one of the few available tests of the coupling of the Higgs and fermion 

sectors of the Standard Model. 

8. Some Concluding Comments 

The measurement of the tS cross-section raises a number of experimental prob- 

lems, which we have not studied in detail. An initial analysis of this system has 

been done by PO1 Komamiya. We limit ourselves to some general comments. The 

greatest experimental problem for this measurement is obtaining both high lumi- 

nosity and small beam spread. Since the cross-sections are of order one unit of R, 

the rates will be lowfs’ so careful consideration will have to be given to the method 

of scanning the threshold region in order to best extract the relevant physical quan- 

tities. Fortunately, efficiencies for detecting tS events should be high due to the 

characteristic kinematics of the decay t + Wb. In addition, other physics studies, 

such as the measurement of the WW~ vertex and the searches for the Higgs and 

other new particles, can be done simultaneously with the scan of the tS threshold. 

We remind the reader that our results are only accurate to leading logarith- 

mic order in &CD. They contain several effects which, though higher order, are 

important corrections: Higgs exchange, initial state radiation of photons, the run- 

ning of C~QED, and the hard gluon correction to the yt? vertex. We use the full 

l-loop corrections to the QCD potential but treat the potential as static (energy 

independent) and take the top quarks to be non-relativistic. Clearly, there are 

many corrections to our results which must be considered, some of which may be 

substantial; we intend to perform the full order-as calculation in the future. 

Nevertheless, our results clearly show that the study of the ti! threshold will be 

a fruitful one. Exactly what will be learned from this study depends in detail on 

what will be known from other experiments, and one can best view it as providing 

increasingly strong constraints in a multi-dimensional parameter space. It will 

certainly be possible to make high precision correlated measurements of mt and 

cr, with relatively few events, assuming the Standard Model. One may hope to 
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eventually reduce the errors on mt to half a percent or better, while determining 

os unambiguously to a few percent. With a larger number of events, it will be 

possible to measure It to perhaps 20%. Determinations of the quantities ma and 

gttH, though imprecise, will still be of great importance as tests for non-minimal 

Higgs sectors. In summary, it is evident that the ability to correctly predict the 

entire t? threshold cross-section at the level of a few percent will be an important 

and detailed test of the Standard Model, or of any other model which is offered to 

replace it. 
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FIGURE CAPTIONS 

1) A comparison of the lifetime (2I’t-‘) and the formation time (estimated 

above eq. (2.3)) of the 1s toponium state. 

2) The diagrams which contribute to IIt. 

3) (a) The diagrams responsible for the leading contribution to IIt in the non- 

relativistic limit; these are the ladder digrams, involving the exchange of any 

number of uncrossed gluons. (b) The equation which is satisifed by the vertex 

function I?‘, in the ladder approximation. (c) The equation which gives IIt 

in terms of I?. 

4) Comparison, as a function of the top quark mass, of the effective strength 

of the &CD, QED, and Higgs interactions between the quark and antiquark 

at the 1s resonance. The curves are (4/3)a,(ao) for QCD, (2/3)2a~~~ for 

QED, and (mt/v)2/4r for the Higgs. The last curve is appropriate for a 

massless Higgs; the real Higgs effect is somewhat smaller. 

5) Total cross-section a( e+e- --) tq versus center-of-mass energy, taking mt = 

120 GeV and ??IH = infinity, for ay(rni) = .lO, .ll, .12, and .13 . The 

cross-section is measured in units of R, and the energy is measured from 

twice the top quark mass: E = 4 - 2mt. 

6) The total cross section for tS production, with mt = 150 GeV. The notation 

is as in figure 5. 

7) The total cross section for tt production, with mt = 180 GeV. The notation 

is as in figure 5. 

8) The total cross section for t? production, with mt = 210 GeV. The notation 

is as in figure 5. 

9) Total cross-section a(e+e- + t?) versus center-of-mass energy, taking mt 

= 120 GeV and cYy(rni) = .12, for mH = 40 GeV, 100 GeV, 200 GeV, 

and infinity. The cross-section is measured in units of R, and the energy is 

measured from twice the top quark mass: E = fi - 2ml. 
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10) The total cross section for t’E production, with mt = 150 GeV. The notation 

is as in figure 9. 

11) The total cross section for t? production, with mt = 180 GeV. The notation 

is as in figure 9. 

12) The total cross section for t? production, with mt = 210 GeV. The notation 

is as in figure 9. 

13) The total cross section for tT production, with mt = 450 GeV. The notation 

is as in figure 9. 

14) Total cross-section a( e+e- + tT) versus center-of-mass energy, taking mt = 

100 GeV and ?-fZH = infinity, showing the effect of varying the slope of the 

potential at large distances. The isolated peak has cry(m”,) = .ll; the clus- 

tered curves have ay (mg) = .12 with slope (see eq. (5.17)) dV/d(log TO) = 

0.333, 0.733, and 1.133. The cross-section is measured in units of R, and 

the energy is measured from twice the top quark mass: E = ,/Z - 2mt. 

15) Effect of the width of the top quark on the tf cross-section. Total cross- 

section a( e+e- -+ t?) versus center-of-mass energy, taking mt = 150 GeV, 

mH = infinity, and aF(rni) = .12, for rt = 0.5, 0.8, 1.0, and 1.25 times 

its Standard Model value (eq. (6.9), with [V&l = 1). The cross-section is 

measured in units of R, and the energy is measured from twice the top quark 

mass: E = 6 - 2mt. 

16) Effect of the width of the top quark on the t? cross-section, with mt = 210 

GeV and l?t = 0.5, 1.0, 1.25, and 2.0 times its Standard Model value. The 

notation is as in figure 15. 

17) Effect of the top quark-Higgs coupling gttH on the t? cross-section. Total 

cross-section a(e+e- + tf) versus center-of-mass energy, taking mt = 150 

GeV, mH = 100 GeV, and ay(rni) = .12, for C&H = 0.0, 0.5, 1.0, and 1.5 

times its Standard Model value (eq. (7.1).) The cross-section is measured 

in units of R, and the energy is measured from twice the top quark mass: 
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E=&-2mt. 

18) Effect of the top quark-Higgs coupling gttH on the t? cross-section, with mt 

= 210 GeV. The notation is as in figure 17. 

36 



- 
-5 
2 

E .- I- 

IO 

1 

0.1 

9-90 

100 150 200 250 

mt GW 6716Al 

Fig. 1 



9-90 
6716A2 

.** 

Fig. 2  



k + q/2 
P + qJ2 

‘_ 

P + q/2 

k - q/2 

. 

P - qf2 

P - q/2 

Fig. 3 



0.4 / 

0.3 

- aeff 

0.2 

0.1 

9-90 

- 

- 

0 
100 200 300 400 500 

mt WV) 6716A4 

Fig. 4 



2.0 

1.5 

0.5 

9-90 

0 1 

0.13 1 mt= 120 
0.12 

-2 -1 0 

E (GeV) 6716A5 

Fig. 5 



1.25 

1.00 

2 0.75 
- 

0.25 

9-90 

- 

m,=150 

0.13 
/\ 

-6 -4 -2 

E (GeV) 

0 2 

6716A6 

Fig. 6 



1.25 

1.00 

2 0.75 
- 

5 
b 0.50 

0.25 

0 

9-90 

mt= 180 
- 

/ 

0.13 - 
F - 

/ 

- 

-8 -6 

E (GeV) 6716A7 

Fig 7 



1.25 

-1.00 

z 0.75 
- 

s 
b 0.50 

9-90 

mt=210 
- 

01 
-10 -5 0 

E (GeV) 67 16A8 

. 

Fig. 8 



9-90 

2.0 

1.5 

1 .o 

0.5 

-3 -2 -1 0 

E (GeV) 6716A9 

Fig. 9 



1 .oo 

0.50 

0.25 

I- 
. . 

O -6 -4 -2 0 2 

1.25 

m,=150 

9-90 
E (GeV) 

Fig. 10 



. 

5- 40 - 
- 

I---- 00 ?_ 

/ 

- 1: 

0.25 

01 I I I -8 I 
-6 

I -4 -2 ; 
2 

9-90 

m,=180 

E (GeV) 
6716A11 

Fig. 11 



1.25 

s 
0 0.50 

9-90 

mt= 210 
- 

E (GeV) 6716A12 

Fig. 12 



2.0 

1.5 

s 

-5 1.0 
o- 

0.5 

- 
m, = 450 

. 

I80 -60 

9-90 

-40 -20 

E (GeV) 6716A13 

Fig. 13 



4 

3 

cz 

52 
b 

9-90 

. 
a. 

- 

- 

-2 -1 0 1 

E (GeV) 6716A14 

Fig. 14 



1 .oo 

0.50 

0.25 

9-90 E (GeV) 
6716A15 

Fig. 15 



I 

7 2: 

1 .oc 

2 0.75 
- 

5 
b 0.50 

9-90 E (GeV) 

- 

- 

0.25 > 

m,=210 

( 

6716A16 

Fig. 16 



1.2: 

1 .oc ml=150 - 
- 

-6 -4 -2 0 2 
9-90 E WV) 

6716,417 

Fig. 17 



1.25 

1 .oo 

&- 0.75 
- 

mt= 210 

9-90 E (GeV) 6716A18 

Fig. 18 


