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ABSTRACT 

- 
In various applications of nonlinear mechanics, especially in accelerator de- 

sign, it would be useful to set bounds on the motion for finite but very long times. 
Such bounds can be sought with the help of a canonical transformation to new 

-- action-angle variables (J, Q), such that the action J is nearly constant while the 
angle K@ advances almost linearly with the time. By examining the change in J 
during a time To from many initial conditions in the open domain R of phase 
space, one can estimate the change in J during a much larger time T, on any orbit 
starting in a smaller open domain R, c R. A numerical realization of this idea 
is described. The canonical transformations, equivalent to close approximations 
to invariant tori, are constructed by an effective new method in which surfaces 
are fitted to orbit data. In a first application to a model sextupole lattice in a 
region of strong nonlinearity, we predict stability of betatron motion in two de- 
grees of freedom for a time comparable to the storage time in a proton storage 
ring (10” turns). 

1. Introduction 

Tracking of single particles, by symplectic numerical integration of Hamilton’s 
equations,’ provides a direct approach to the study of orbit stability. Unfortunately, 
computational expense usually limits the time interval of tracking to values much 
less than the desired storage time of an accelerator beam, and sharply restricts the 
number of initial conditions that can be tested. Favorable results from tracking are 
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regarded as a necessary condition for a good storage ring design, but doubt remains 
about the sufficiency of such results. 

We propose a method to derive definite information on long-term stability from 
short-term tracking of man orbits. The idea derives from the line of argument of 
the Nekhoroshev Theorem, B -5 and depends on determination of an action variable 
J that is invariant to high accuracy in a certain region of phase space. The residual 
time variation of J, stronger in some regions than in others, provides a sensitive 
indicator of unstable behavior. 

Nekhoroshev’s original argument gives an explicit formula for a lower bound on 
the time of stability. The bound increases exponentially as the strength of the non- 
linear perturbation tends to zero. Although our method does not give an explicit for- 
mula, it does yield stability times of practical interest, under realistic conditions. By 
contrast, the Nekhoroshev estimate gives suitable stability times only for absurdly 
weak perturbations. It may be possible to improve the Nekhoroshev estimates in 
simple examples, 6 but sufficient improvement for the complicated Hamiltonians of 
accelerator physics is not to be expected. 

We achieve results for realistic parameters by avoiding Nekhoroshev’s pertur- 
bative analysis. Our nonperturbative method is necessarily numerical, and for that 
reason involves some loss of rigor. We shall try to convince the reader that the re- 
sults can nevertheless be highly reliable for the chosen Hamiltonian. Uncertainties in 
choosing the Hamiltonian are far greater than any ambiguity due to our technique. 

In this brief account we describe only the main ideas, referring the reader to 
Ref. 7 for details of technique. We begin with the action-angle variables of the un- 
derlymg linear system, (I, ‘P). Bold-faced symbols represent d-dimensional vectors, 
where d is the number of mechanical degrees of freedom. We treat an example with 
d = 2, but the method is general. Our discussion is based entirely on the time 
evolution map M for No turns, 

M : (17 @D)e=o t-+ (I, Q&i& , 
where 0 = s/R represents azimuthal location on a closed reference orbit. In the 
present work we evaluate this map through element-by-element tracking. With 
sufficient care it should be possible to represent the map by an explicit formula, and 
thereby enhance the speed of calculations.8fg 

A canonical transformation to new action-angle variables, (I, Q) H (J, @I), is 
induced by a generating function G(J, @,S) that is 27r-periodic in Cp and 8. The 
equations relating old and new variables are 

I= J+Ga(J,*,O) , (2) 
*=Q+GJ(J,~,O) , (3) 

where subscripts denote partial derivatives. It is sufficient for our purposes to con- 
~-sider the transformation at 8 

is Constant, then Eq. (2) g’ 
= 0 only. If the transformation is ideal, so that J 

ives an explicit representation of an invariant surface (a 
torus). That is, it gives I as a 2?r-periodic function of 9. The invariant action J 
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plam. the role of a parameter to distinguish different tori; it is equal to the average 
of I over 9. At 8 = 0 we adopt the notation 

u(J,Q) = G*(J,iP,O) . (4) 
For the nonintegrable systems of interest, exact invariant tori exist, if at all, only for 
values of J on a strange set of Cantor type. Nevertheless, tori that are approximately 
invariant exist as smooth functions of J in open regions of phase space, and they can 
be computed numerically. A family of approximate invariant tori defines a canonical 
transformation. If u( J, a) is a smooth function of J in a region 52, and 

I(0) x J+u(J,@(e)) , 8 = 0,2~,4~,-- , (5) 
then the equation I = J + u(J, 9) d e fi nes a nearly constant function J(1, a). Here 
we assume that the Jacobian matrix 1 + UJ(J, 'P) is nonsingular in the region of 
interest. It is indeed found to be nonsingular in our calculations. Integrating u with 
respect to a, we obtain the generator G(J, @,O) and all the ingredients of a full 
canonical formalism. The function u(J, 0), re p resenting a family of approximate 
invariant tori, is constructed numerically by the method of Sec. 3. 

-2. A Bound on the Change in J 

In a case with d = 2, let s2 be the interior of a rectangle in the J = (Jl,J2) 
plane, and let flzo be the interior of a smaller, concentric rectangle so that 0, c R. 
Denote by AJi the width of the annulus between R, and R as crossed in the ith 
direction. Suppose that the change in J; during No turns, for any orbit with initial 
J in R, is less than SJi. Then any orbit with initial J in the smaller region 0, 
cannot reach the outer boundary of 0’ in fewer than N = qN, turns, where 

q= (6) 
This observation is useful if q is sufficiently large. Since the largest tolerable excur- 
sion AJi is sharply restricted by design considerations, a large q is to be achieved 
by making SJi small through a good choice of the canonical transformation. 

Note that for practical purposes this is an extremely conservative argument, 
since it comes from contemplating the worst conceivable case in which the increment 
of Ji in qNo turns is just q times the largest possible increment in No turns. In reality, 
the q increments are not likely to add up linearly, so that it will probably take much 
more than qN,, turns to move from R, to the outer boundary of 0. 

3. Numerical Determination of the Canonical Transformation 

To determine the canonical transformation, we expand the function representing 
+-torus in a Fourier series. We write 

I = c u&m.* , ; (7) 
m 

3 



- and-determine the coefficients um so that Eq. (7) 
8 = 0 (mod 2r), all 1 

is satisfied at points (I(O), @p(O)), 
ym on a single nonresonant orbit. The coefficient u. of the ’ g 

constant term is identified with the action J, which varies with the choice of initial 
condition of the orbit. We repeat the process for various initial conditions, thereby 
obtaining urn(J) on a mesh of points J = J;, i = 1,2, * .. ,s. We then define 
urn(J) as a smooth function of J by interpolating the values at mesh points with 
polynomials. The resulting transformation, I = J + u(J, (le), is mathematically well 
defined, even though it was obtained numerically. 

In determining the um to satisfy Eq. (7), we face the difficulty that the a(O) are 
scattered unpredictably. For that reason we cannot simply take a discrete Fourier 
transform, which requires regularly spaced abscissae. Furthermore, a direct solution 
of the linear equations for the u m is impractical, since the matrix is dense and too 
large for comfort. We avoid these problems by using the values of I on a regular 
mesh in @ space as unknowns, rather than the um. In one dimension the equations 
relating values of I at orbit points dj to values at mesh points 2?rk/K are as follows: 

where 

-. 
with 

sin[n(si - k)] 
Djk = K sin[?r(zi - k)/K] ’ (9) 

$j 7 2TXjlIC . (10) 

Here K = 2M + 1, where M is the maximum mode number m. To derive these 
equations, one substitutes in Eq. (7) the approximation to um that is given by the 
discrete Fourier transform. Reversal of the order of summations, and evaluation of 
a geometric series, leads to Eq. (8). This system can be solved by iteration provided 
that we choose to fit only a subset of the data, namely, a set in which there is one 
and only one di in each cell of the mesh. With this selection the matrix Djh is close 
to the unit matrix, and an iterative method (Gauss-Seidel) converges rapidly. Using 
the inverse of the discrete Fourier transform, we finally obtain the torus in the form 
Eq- (7). 

This method has three notable properties. First, the resulting torus Eq. (7) 
passes exactly through the orbit points, provided that the Eq. (8) is solved exactly. 
This feature may be partly responsible for the high accuracy of the method. Second, 
the scheme works in any number of dimensions. Third, it provides a useful filter 
against low-order resonances. In the case of resonant orbits of sufficiently low order, 
the process of selecting data will fail. Not every cell of the mesh will contain a 9(O), 
no matter how long the orbit, and the iterative solution of Eq. (8) will fail. We fit 
vnly nonresonant orbits (invariant tori) or resonant orbits of extremely high order 
(which are not distinguishable numerically from tori). In Fig. 1 we plot values of @ 
on a typical resonant orbit. Figure 2 shows values of @ on an apparent invariant 
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Figure 1: Values of 0 = (01, @z) at the surface of section fI = 0 on a resonant orbit. 
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Figure 2: Values of @  = (@I, Q2) at the surface of section 0 = 0 on an apparent invariant torus. 

torus. Figure 3 shows points on a nonresonant orbit, at 0 = 0 mod(27r), plotted in 
three dimensions. We plot (11, @ I, @p2), with 11 on the vertical axis. If the motion 
were linear these points would lie in a plane, 11 = constant. 

The polynomial interpolation in J of the tori forms bridges over resonances. 
Since there are resonances everywhere, this is an essential feature of any canonical 
transformation defined as a smooth function of J. It is not merely a feature forced 
upon us by the use of numerical methods. 

4. Computation of 6Jj 

_ _ To compute a bound it remains to determine SJi. Because of practical lim its on 
~-computation time, there is some uncertainty in this determination, but with some 

care the uncertainty can be made rather small. It should be emphasized that the 
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Figure 3: Plot of 11 (on the vertical axis) versus @r and 02, for a torus 
- in Eq. (13). The origin is at II = 0. 

Figure 4: A commutative diagram showing how the maps N and 0 are induced by the original 
map M and changes of variable. The transformations U and V are given in explicit form through 
derivatives of the generator; see Eqs. (2) and (3). 

only failure of rigor in our argument occurs in the determination of SJi. 
We denote the increment in J over NO turns as 

J’ -J = D(J,cP, NO) . (11) 
To compute 2) we simply observe the time evolution of J induced by the map M 
through the change of variable U : (J, a) I+ (I, +) and its inverse. Here we need 
not be concerned with the time evolution of the new angle \E. It is enough to deal 

~with themixed pair (J, a), which evolves by a map n/: 

n/ : (J,@) I-+ (J’,cP’) . (12) 

in the region Sz defined 

- 
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- The-commutative diagram of Fig. 4 shows how n/ is obtained as n/ = U-l o M oU. 
For the corn utation of n/ we have U in explicit form, since I = J + u(J, 0). To 
evaluate U- P we use Newton’s method, with J as the first guess for J’. The first 
iterate of Newton’s method already provides accuracy that is more than adequate 
for our purposes. 

The map 0 on the new canonical pair (J, !l?), shown in the third level of Fig. 4, 
is needed only for the work of Sec. 6. For the computation of 0 we have Y in explicit 
form through Eq. (3), but V-l must be calculated by Newton’s method. 

In the example studied below, the function 2, has many oscillations as a function 
of @ but relatively few as a function of J on 0. It is impractical to follow every 
oscillation in seeking the upper bound SJ; of Di, but we can do random sampling 
with statistical estimates of sampling error to find a fairly convincing value of SJi. 
The reader may consult Ref. 7 for details on this relatively delicate problem. 

5. An Example 

To illustrate, we derive a bound for two-dimensional betatron motion in a lattice - 
consisting of one cell of the Berkeley Advanced Light Source (ALS). The lattice 

-*parameters are given in Ref. 7. This example involves nonlinear phenomena similar 
to those in large hadron colliders since the sextupoles are so strong as to drive high- 
order-resonances such as those excited by high-order multipoles in superconducting 
magnets. We work in a region 0 of substantial nonlinearity, about half-way to the 
short-term dynamic aperture in the (xma2, ymat) plane. Orbit points on a typical 
invariant surface in this region are plotted in Fig. 3. With actions measured in 
meters the region R is given by 

2.51. 10m6 m < 51 < 2.82 - 10m6 m , 1.34 . low6 m < 52 < 1.64 . 10s6 m . (13) 

We first determine the leading resonances in this region with the help of our 
canonical formalism. The tune Y (winding number) is obtained as a function of J 
from Eq. (3). If J were constant, then the change in \E over one turn would be equal 
to 27r~, and Eq. (3) would give 

SKY = @(2w) - a(O) + GJ(J, @(2a), 0) - GJ(J, @p(O), 0) . (14 

We take this equation to define Y(J), even when J is not precisely constant. It is 
easy to construct the inverse function J(Y) by an interpolation technique described 
in Ref. 7. This function serves to map the resonant tune lines, mlvl + rnZu2 = n, 
into t,he J plane. Figure 5 shows all resonances in the region R of the J plane 
with jrnij 2 20. The stars indicate the mesh points Ji used to set up the canonical 
transformation as a smooth function of J. The transformation as represented in 
Eq. (7) includes up to 20 Fourier modes in each angle @i. 

~- - -We verify that this method accurately locates resonances in the J-plane, even 
in the case of narrow resonances of high order. For instance, we follow an orbit 
by tracking, taking an initial condition on the (17,16) line of Fig. 5. Plotting 
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Figure 5: The image in the (51, .7~) plane of all resonance lines nrvr + mpz = n with (m,I 5 20, 
for the region R defined in Eq. (13). Each line is labeled by (ml, m2). The stars indicate the mesh 
points J, used to set up the canonical transform as a smooth function of J. 

Table 1: Data on J’ - J = D(J, 0, N,), the change of J in Iv, turns, for 400 random samples of 
(J, a) with J in subregion R1 as defined in ttef. 7. The brackets <> indicate ensemble averages. 

- 

_ ..No m=Pl I ma+% I < InI > < PSI > <D, > < Da > 
1 9.9 * 10-13 1.9 * 10-12 2.4. lo-l3 4.7 * 10-13 3.8 . 10-l’ -6.4. lo-l6 

- 10 1.5 * 10-12 1.7 *-lo-‘2 2.7. 10-l’ 4.7.10-13 2.1 * 10-15 3.8.10-‘4 

100 -- 1.2 * 10-11 2.5. 10-l’ 3.1 * 10-13 5.4. 10-13 -2.7 . 10-l’ -2.0.10-r* 

1000 1.5 * 10-12 2.7. 10-l’ 3.3. 10-13 5.2 + 10-l’ 1.3.10-‘4 2.7. 10-l’ 

10000 1.9 * lo-r2 2.7. 10-l’ 4.0 ; 10-13 6.5 . 10-l’ 1.0 * 10-l’ 3.9 . 10-l’ 

t&(e), 8 = 0,2~,4x,-. , we see apparent curves in the (@I,@) plane, having 17 
intersections with the @ I axis and 16 with the @2 axis; (actually, these are resonant 
structures of nonzero width, not curves). 

Turning now to the computation of SJi in the region 0, we show in Table 1 some 
typical results for the deviations Di of Eq. (11). The results are for a subregion 04 
of R, roughly one fourth of the full region, and correspond to an ensemble from 400 
random samples of (J, *p), J E s24, ipi E [0,27r]. The table shows the ensemble 
maximum of ID;], the ensemble average of the same, and the ensemble average of 
Di including sign. It is remarkable that each of these quantities has the same order 
of magnitude at all No up to 104. Recalling Eq. (13), we see that J is constant to 
about one part in lo6 for at least lo4 turns. Moreover, the orbit follows a torus to 
still greater accuracy in some average sense: the ensemble average of Di including 
sign is considerably smaller than the average absolute value. 

The discussion of Ref. 7 yields the following values for the numbers SJi that 
bound D;, for No = 104: 

(SJI, 652) = (2.8,4.0) - lo-l2 m . (15) 

--c 

- 
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Figure 6: Pseudopendulum motion of the angle-action pair (m . J, m . Q) near a (5,6) resonance. 
Here m . 9 is plotted modulo 2x. 

The corresponding values for No = 10k, k = 0,1,2,3,4, have similar magnitudes. 
Let us choose AJi of Sec. 2 SO that q = AJi/bJi = 104, with No = 104. Then the 

- subset fl, of R is defined by 

. -. 2.54 - 10s6 m < 51 < 2.79 e 10V6 m , 1.38. 10m6 m < J2 < 1.60 - 10s6 m . (16) 

Any orbit beginning in Q, will stay within the slightly larger region R for at least 
q& = lo8 turns. 

6. Effect of a Strong Resonance. 

All resonances in the region R defined above are weakly excited, and have little 
effect. The variation of J on the resonance lines is hardly stronger than elsewhere 
in the region. In other regions, at comparable amplitudes, we encounter strong res- 
onances that are associated with larger variations of J. This does not necessarily 
imply a degradation of the time for stability, since oscillations on a well isolated res- 
onance can be stable and not associated with fast transport to nearby resonances, 
even if the amplitude of oscillation is fairly large. We have studied one such reso- 
nance, with (ml, mq) = (5,6). In the vicinity of this resonance, the variables (J, \E) 
follow approximately the pattern expected of action-angle variables in the isolated 
resonance modello That is to say, mgJl -ml J2 is nearly constant, while me J and 
m - \E behave as action and angle of a physical pendulum. The phase portrait of 
the latter variables is shown in Fig. 6, with me Q plotted modulo 2~. 

To establish long-term stability in this situation, we have to limit any movement 
in the center of oscillation of the pendulum, for any initial condition in the region 
considered. That can be done by limiting separately the changes parallel to m and 
perpendicular to m. For the latter, one can merely put a bound on the change 

~-of%2 J1 -- ml 52, as in our previous bounds on the change of J. For the former, 
we examine the pendulum motion beyond the separatrix, where full rotations of 
the pendulum, rather than librations, occur. If the apparent rotation curves of 
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- Fig-6 behaved like K.A.M. curves of a system in l-4 degrees of freedom, they would 
permanently confine the motion of m - J. Actually, the apparent curves are not 
really curves, as inspection on a finer scale reveals. The motion of m - J follows a 
curve within an accuracy of about 10-l’ m, however, for several thousand turns. 
This is entirely analogous to the situation of the previous section in which I follows 
a two-dimensional torus to a certain accuracy. Consequently, we can proceed in the 
same way as before, by finding a continuous family of curves that fit the motion 
to high accuracy, then bounding uniformly the deviation from a curve during No 
turns. We have not yet carried out such a formal program. On the basis of informal 
estimates, we predict stability in a region R, containing the (5,6) resonance for at 
least lo7 turns. 

7. Conclusion 

We have described a method for theoretical prediction of orbit stability over 
times comparable to storage times in hadron rings. With further development the 
method should become practical for machine design. It uses calculational methods 

- that are feasible for elaborate models of large machines, provided that the speed 
-of tracking can be increased substantially. We think that there are good prospects 

of achieving the necessary speed through construction of full turn maps. Indeed, 
the preliminary work of Ref. 8 already indicates that very accurate maps can be 
constructed in a straightforward way. 

-. 
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