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1 Introduction 

In this paper we describe a novel use of memory lookup units (MLU) in a 
trigger tracking system. This system was developed as part of the proposed 
PEGASYS[l] d t t e ec or at SLAC. We choose to describe only a simple sub- 
system which performs linear tracking because it presents the basic ideas, 
yet is simple enough to be fully portrayed here. The same principles were 
used successfully to design more complex subsystems that perform curved 
tracking in a magnetic field. 

1.1 General design considerations 

. The triggering system for PEGASYS has to cope with an initial expected 
hit rate of 5OkHz, remove the backgrounds and select the few events (no 
more than 200 per second) that will be read and written to tape for off-line 
analysis. Th e rejection of this high background rate required the inclusion 
of fast tracking in the trigger electronics. A multi-level trigger system was 
developed, with a sophisticated “high level” trigger processor to perform the 
tracking and to calculate the kinematical parameters. The expected rate 
for starting this level is a few kHz thus, to keep the deadtime reasonable, 
it should be able to decide whether a specific event is “good” in less than 
20~s. A calculation of tracking through several detector layers, involving 
energy readout from a few dozens of fast ADCs, is needed to reach this 
decision. Clearly, a microprocesor - based system would hardly have time to 
read in the data, and certainly would not be able to complete the tracking 
calculations within the required time limit. This was the principal reason 
that led to the development of this tracking system based on memory lookup 
units. 

Memory lookup units were suggested previously as part of fast tracking 
logic [2,3], but normally it was limited to single step calculations. Looping, 
if any, was done externally under hardware control. Here we “looped” the 
MLU on itself so that it would perform the equivalent of a FORTRAN “DO 
loop”, with self counting of the number of iterations. The MLU itself con- 

-. - trols the looping (in this case two nested loops), and stops it under complex 
“software” e.xit conditions. The introduction of a new large MLU unit with 
128 Kbyte memory (16 bit input address and 16 bit output data), which 
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. . 

was developed at the Cyclotron Laboratory of Michigan State University [4], 
made the implementation of this idea feasible, 

The trigger system was built entirely from available CAMAC ECL mod- 
ules and a few supporting NIM units. The heart of the system is that new 
larger MLU, while the rest of the modules are mostly standard CAMAC 
“ECLine” from LeCroy. 

2 The Vertical Tracking subsystem 

. 

We choose to describe here the vertical tracking subsystem. The PEGASYS 
magnet spectrometer is designed to have horizontal deflection only, so the 
vertical tracking is done along straight lines (except for small second order 

. 
corrections that can be neglected for the triggering system). Also, the target 
size is sufficiently small so that, for the accuracy needed in the triggering 
calculations, it can be considered to be a point source. These two facts 
make the vertical tracking exceptionally simple. In figure-l, we show the 
basic geometry for the vertical tracking, where all the detectors that are not 
relevant to the tracking are removed. There are two drift chambers, called 
top and bottom, with 40 horizontal wires each. There are also four quadrants 
of horizontal shower counter bars with 16 bars in each quadrant. 

Initially, the shower counter data (after some pre-processing which is not 
relevant here) are stored in a Data Stack (LeCroy 2375). The stack can 
contain up to 256 words of 16 bit. Each data word corresponds to a hit in 
the shower counter, and its structure is as follows: 

16 

I 1 
I;;V 

1 
;;B 

1 
,i;R 12 - 9 8-l 

1 sub-address AD C (energy) 

Bit8 1-8 contain the ADC value (energy) of a shower counter hit . Bits 9-12 
contain the subaddress, i.e. the number (O-15) of the bar that fired. The 
quadrant is identified as left/right and top/bottom by bits 13-14. Bit 15 
identifies it as vertical information (number of the horizontal bar), so that in 
our example it will always be set. Bit 16 is not used. The number of words in 
the stack equals the number of bars that were hit in the event. For a typical 

- ev_ent this number is 2-7. 
The hit pattern of the Drift Chambers was transferred initially to a Data 

Array (LeCroy 2376A). In th’ is array of 1024 bits, each wire is represented by 
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a single bit which is on when the corresponding wire fired. The Data Array 
can answer queries whether a specific address, or range of addresses, is on by 
switching a status bit on or off. This answer comes in response to a search 
address and search width (if necessary) which are present at the search input, 
in coincidence with a strobe pulse at the search strobe input. 

The purpose of the vertical tracking subsystem is to determine whether 

. 

a specific hit in the shower counter (represented as a stack word) has a 
matching drift chamber hit in the Data Array. If such a match is found, 
the vertical position in the input word (shower counter bar number) will 
be replaced by the drift chamber vertical position (wire number), and the 
result (energy and vertical position) will be written to the output stack. The 
hits in the shower counter without a matching hit in the drift chamber will 
be discarded. The result will have a better position resolution because the 
resolution derived from the drift chamber wire number is better than the one 

-derived from the shower counter bar number. It is important to point out 
that for each shower counter bar we have to search several DC wires, but 
it cannot be accomplished in a single query of width larger than one. The 
reason is, that in order to improve the resolution, we not only wish to know 
whether a wire fired in a certain range, but also the specific wire that fired. 

3 Circuit description T 

The circuit shown in fig. 2 accomplishes the task described in the previous 
section by performing a search loop for each word in the stack. For each 
stack word the MLU issues five search addresses to the Data Array in five 
consecutive cycles. The search starts at the “central address”, which is the 
DC wire number closest to the position obtained by linear interpolation be- 
tween the center of the SC bar and the target. Next, the search proceeds up 
and down, first by one wire and then by two, for a total of five wire checks. 
If a hit was found in the searched range, the updated information is written 
to the output stack and the loop is terminated. Thus, if there was more 
than one hit in the search range, the one closest to the “central address” is 
automaticlly chosen because it was tested first. 

-_ - -The circuit includes four CAMAC modules: two data stacks (LRS 2375), 
a data array (LRS 2376A) and a MLU [4]. Only a few coincidence units 
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(2/16 of LRS 4516) are used in the timing circuit. The delays are easily 
implemented by selecting the proper cable lengths. Two external signals are 
used: a 40ns start signal which starts the activity of the circuit and a 1OMHz 
external clock with a width of 15ns. A “fast clear” signal is generated at 
output pin 15 of the MLU in case that no valid event was found. 

3.1 Timing considerat ions 

The MLU operates in latched mode (internal control register=12). In this 
mode the input data are latched by a “Hold” signal, and are held there until 
a “Clear” signal will be applied. The timing of the circuit is illustrated in 
figure 3. A valid “Hold” signal has to be preceded by a “Clear” signal to the 

. previous “Hold” by at least 18ns. This is the reason for adding a 20ns delay 
to the Clock signal going to the “Hold”. The output and the output “Ready” 
signal appear 4Ons after the leading edge of the “Hold” signal. Since some 
of the MLU outputs are connected back to the input, the timing situation 
is-somewhat like that of a cat trying to catch its own tail. To latch a new 
input we first have to clear the unit, but this will clear the outputs that we 
wish to latch at the input! Luckily, the output signal persists for 35ns after 
the “Clear”, which is sufficient to latch the new input. As can be seen in the 
timing diagram the input lines must be stable for 15ns starting 5ns prior to 
the “Hold”. This allows the previous output to be latched just before the 
“Clear” will erase it. 

It is important to note that the internal delay of the DA, from search 
strobe to a valid output (Stat), is 60ns. This means that when a specific 
MLU input generates a search query to the DA, the DA answer (Stat) may 
change state about 10572s after that MLU input was latched (40ns for the 
MLU, 60ns for the DA and 5ns for wiring). This would happen right in the 
middle of the “Hold” of the next cycle when all the input lines should be 
stable. To avoid this ambiguity, a 20ns delay was added to the search strobe 
of the DA. In practice, this means that the answer to a specific input will 
not be present at the next input cycle, but only in the following one. This 
hardware delay has to be taken into account in the software that builds the 

._ _ lookup table. I n contrast, we see that the response to “next SC” signal (bit 
8 - MLU output) does arrive at the next input cycle, because the Data Stack 
needs only 30n.s from “Read Enable” to “Read Ready”. However, for the 

P 
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sake of compatibility with other more complex subsystems, we delayed the 
use of the new SC subaddress to the following cycle. 

The start is given by an external signal. Unless the start is synchronized 
with the clock the length of the first cycle will not be constant. To avoid the 
complication, the software was designed to be insensitive to this variation. 

4 Circuit operation 

The external “start” signal clears the output stack with a “Master Reset” 
and starts the cycles by giving the first “Hold” to the MLU. The subsequent 
cycles are generated by the MLU output “Ready” signal in coincidence with 
the external clock, until the process is stopped by the “done” signal (output 

-. bit 16). For every stack word the MLU uses the SC subaddress (bar number) 
in -bits 9-12 to “calculate” the expected DC wire number. The resulting 
“predicted DC address” at the MLU output bits 9-14 is presented to the DA 
as a search address. The search strobe to the DA comes from output bit 5 
with a delay of 2072s. The DA’s answer to this query (Stat) is received at 
the MLU input bit 7. 

Bits l-3 of the MLU serve as a loop counter. If there is no positive 
answer from the DA, the loop continues to query the neighboring addresses. 
A positive response from the DA causes the search address that initiated this 
response to reappear at the MLU output together with a Write Enable to 
the output stack. The address, together with the ADC value and the two 
bits that identify the quadrant (left/right and top/bottom) are written into 
the output stack. Concurrently with the Write Enable we set bit 6 (“at least 
one”), which is then latched by being fed back to the input. The software is 
designed to keep this bit “on” at the output whenever it is “on” at the input. 
After processing all the input stack words this bit will indicate whether there 
was at least one good event. If a DC hit was found (a positive answer), or if 
all five search attempts failed, a “next SC” signal is issued (output bit 8) to 
strobe the Read Enable of the input stack and to get the next SC. A “next 
SC” will not be issued in case that the Read Overflow (ROF) from the stack 
is “on”, signaling that the last data word in the stack was read. In that case 

-a icdone7F signal is turned on at output bit 16, which blocks the next “Hold”, 
and thus stops the processing until the next start. If the bit “at least one 
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good” is not on at the end of the process, the “fast clear” (output bit 15) 
will be set. 

5 The Lookup Table and related software 

The lookup table (a 64K array of 16 bit words), which controls the operation 
of the whole circuit, is created by external software. Each MLU in the trigger 
system requires its own table-creating program. The programs were written 
in FORTRAN on a VAX computer. The program for the MLU in fig. 2 
is listed in the appendix. A central point in the design is that the whole 
complexity of the required calculations is handled by these external programs, - 
i.e. the “intelligence” resides in the resulting lookup tables. Therefore, the 

. iteration cycle time, even for very complex calculation, can be 1OOns or less. 
A common loading program is used to load the prepared tables into the MLU 
in the appropriate CAMAC slot. 
-. The logic of the program is based on “cycle tables” which describe the 
desired operation at each hardware cycle. Table 1 presents two examples of 
such a table, which will be discussed in details below. It is important to 
note that in these tables each cycle corresponds to a specific time slice. The 
propagation time through the MLU takes up one cycle, so that the input at 
cycle 1 generates the suitable output at cycle 2, and so forth. On the other 
hand, the output lines that are looped back (l-3,6,7) take only a nanosecond 
to appear at the input. Thus, the outputs of the “Counter”, “Write Enable” 
and “At Least One” appear during the current cycle at the input. This is 
contrary to intuition because the output of each cycle generates the input of 
that cycle and not vice versa! 

Table 1 shows the status of selected inputs and outputs during consecutive 
cycles. We begin with example 1 of table 1 which describes the case where 
no matching hit is found in the DA. At the beginning, all the lines that are 
looped back are at logical zero because the unit is stopped after a “Clear” 
so that all the outputs are at zero. The operation starts at cycle 0 with 
an external start pulse which latches the specific SC subaddress (SUB) that 
is present at input lines 9-12. The counter (CNTR) at lines 1-3 is looped 

- . -. 
- back and thus is at “0” indicating the number of iterations that were done. 

Similarly, the WE at input line 5 and the latch “at least one” at input line 

P 
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6, are also “0”. Th’ IS input combination generates the output at cycle 1 and, 
in particular, the first search address (1 SRCH) that is then presented to 
the DA. Simultaneously we also set the DA search strobe (DA) at output 
line 5 to “l”, so that the search is activated. The counter (CNTR) is set to 
1 indicating the cycle number, and the write enable (WE) that strobes the 
output stack is still zero. 

. 

The input at cycle 1 gets the cycle number from the output. Together 
with the subaddress (SUB), that is now static at the input, they generate 
the second search address at the output of cycle 2. In the meantime, the 
DA’s answer to the first search request arrived at input line 7 (we denote it: 
Y/N). What happens from now on depends on the value of the DA status bit 
(Y/N). In our example the DA answer is negative (Y/N=N) and we continue 
the search as before. The third search address (3 SRCH) will appear at the 
output of cycle 3, etc. The maximum number of queries (search addresses) to 
the DA is five, as explained in section 3. The last answer from the DA arrives 
at the input of cycle 6 which, in turn, generates the output at cycle 7 and .-. 
sets NEXT=l. This causes the next subaddress (nextSUB) to be fetched 
from the input stack. After cycle seven the input counter is reset and the 
next search loop will start. Note that in our example, where no matching hit 
was found, the loop took up eight cycles. 

Example 2 of table 1 describes a search loop which ends with a positive 
result in the second try. Cycles 0’1 and 2 are as in example 1. The positive 
answer arrives at the input at cycle 3 (Y/N=Y), indicating that the search 
address at cycle 2 (2 SRCH) f ound a matching hit in the DA. This address 
is regenerated at the output of cycle 4, together with a strobe signal to the 
output stack (WE). The signal (WE) strobes the hit address into the output 
stack together with the energy and the quadrant bits. In the same cycle we 
set NEXT=l, which causes the next subaddress (next-SUB) to be fetched 
from the input stack. The WE signal is also fed back to the input of cycle 4. 
There it instructs the MLU to clear the cycle counter (CNTR) for the next 
cycle so it will be ready to start a new search loop with a new subaddress 
at the input. The procedure ensures that the search loop will be truncated 
after the first match. In this example, where the match was found in the 

-_ - _ second try, the loop took up five cycles. In general, the positive answer from 
the DA may appear at the input in any one of the cycles 2-6. The loop will 
then take 4-8 cycles, respectively. 
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In summary the search consists of two nested “DO loops”. The inner one 
is generated by the MLU and loops through the search addresses. The outer 
one loops through the SC bars (input stack words) and is controlled by the 
hand shake between the input stack and the MLU. Bit 6 acts as a latch. It 
is set if there is a positive answer from the DA for any of the search queries. 
The bit is returned to input line 6, and the software leaves this output on 
when the input is on. In this way we know whether the whole event in the 
input stack has at least one good track. Simultaneously with reading the last 
word in the event, the input stack turns on the read overflow (ROF) signal. 
This signal is connected to input line 8 of the MLU and, if it is on at the 
end of the search loop, the MLU issues a “done” signal at output 16. Then 
this signal stops the MLU activity by blocking the next strobe to the unit. If 

. there wasn’t “at least one good track”, a “fast clear” pulse is issued together 
with the “done” signal. The MLU is stopped after a “Clear” but prior to the 
latch (“Hold”). Th us, 35ns after the “Clear” all the outputs will be reset to 
“011, and the unit will be ready to start processing the next event. 

6 Conclusions 

The concept of looping back MLU output bits, and using them as a loop 
counter, proved to be easy in design and implementation. In this way the 
MLU can make several iterations over a specific input, thus enabling more 
sophisticated processing. We used it extensively in other sections of the 
trigger system (e.g. to check the tracking through several detectors layers 
for a given single hit). In a sense it amounts to building a special purpose 
computer without a CPU, that can complete a loop iteration in less than a 
loons. Such a scheme should find wide use in fast intelligent trigger systems. 
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Figure captions: 

Fig. 1 Schematic geometry for vertical tracking. The spectrometer magnet 
and all the detectors that are not relevant were omitted. 

Fig. 2 Circuit diagram of the electronics. The input Stack, output Stack, 
Data Array and MLU are all CAMAC modules. 

Fig. 3 Timing diagram for the circuit in fig.2. All the signals are drawn in 
positive logic. 
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TABLE 1. MLU logic for the search loop cycles 

(example 1: no matching hit in DA) 

cycle 0 1 2 3 4 5 6 7 0 

In ROF=O FLOP=0 

SUB SUB SUB SUB SUB SUB SUB SUB LlCXtSUB 

CNTR=O CNTR=l CNTR=Z CNTR=J CNTR=4 CNTR=6 CNTR=B CNTR=I CNTR=O 

WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 

Y/N=N Y/N=N Y/N=N Y/N=N Y/N=N 

out 0000 1 SRCH 2 SRCH 3 SRCH 4 SRCH 6 SRCH 0000 0000 0000 

CNTR=O CNTR=l CNTRz2 CNTR=J CNTR=I CNTR=K CNTR=6 CNTR=? CNTR=O 

DA=0 DA=1 DA=1 DA=1 DA=1 DA=1 DA=0 DA=0 DA=0 

WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 

NEXT=1 

(example 2: hit found in second try) 

cycle 0 1 2 3 4 0 

In ROF=O 

SUB 

CNTR=O 

WE=0 

out 0000 

CNTR=O 

DA=0 

WE=0 

SUB SUB 

CNTR=l CNTR=Z 

WE=0 WE=0 

Y/N=N 

1 SRCH 2 SRCH 

CNTR=l CNTR=Z 

DA=1 DA=1 

WE=0 WE=0 

SUB 

CNTR=J 

WE=0 

YIN=Y 

3 SRCH 

CNTR=J 

DA=1 

WE=0 

SUB 

CNTR=4 

WE=1 

2 SRCH 

CNTR=I 

DA=0 

WE=1 

NEXT=1 

ROF=O 

nextSUB 

CNTR=O 

WE=0 

0000 

CNTR=O 

DA=0 

WE=0 
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program VERTl 
C ------------- 
C 
C Vertical Tracking. 
C The program calculates the lookup tables that would be loaded into 
C the MLU, so the electonics would be able to find good vertical tracks. 
C “Good track” means that for a SC address there is at least one DC wire 
C that fired out of the five wires that are nearest to the linear track 
C to that SC. 
C 
c Input Stack : (bits 1-16) 
c ------------ 
C 1-8 ADC energy (PR+3TA) 
C 9-12 Sub Address (of SC) 
C 13 Left / Right 
C 14 Top / Bottom 
C 16 hor./ver. 
C 
C Output Stack : (b its 1-16) 
C ---------____ 
C 1-8 Energy Ey (from horizonta I SC bars) 
C 9-1 4 Y (from search address) 
C 15 Left / Right 
C 16 Top / Bottom 
C 
C MLU Input : (bits l-16) 
C --------mm 
C 1-3 -. Loop counter (from MLU Output) 
C 4 
C 6 WE: Write to output stack (from MLU Output) 
C 6 At least 1 Good vertical track (from MLU Output) 
C 7 DA Yes/No (from DA) 
C 8 ROF (from Input Stack) 
C 9-32 Sub Address (from Input Stack) 
C 13-16 - 
C 
c MLU Output : (bits l-16) 
c ----------- 
C 1-3 Loop Counter 
C 4 
C 5 DA strobe 
C 6 At least 1 Good vertical track 
C 7 WE: Write to output Stack 
C 8 Next SC (Goes to Input Stack) 
C 9-14 Search Address 
C 16 Fast Clear - Not even 1 Good Track 
C 16 Done 
C 
c-------------------------------------------------------------------------- 

APPENDIX 
-------- -------- 
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C 
C 

implicit none 
C 

i nteger*2 
- c  

i nteger+4 
i nteger*2 
equivalence 

C 
i nteger+4 
1 
2 
3 
4 
5 

i nteger*4 

i nteger*4 
i nteger*4 

i nteger*4 
;;;;on /Ip/ 

C 

MLU(0:65636) ! 64K memory 

MLU-output, I 
MLU-Output-Short (2) 
(MLU-Output, MLU-Output-Short(l)) 

INSLoop-Counter, OUTSLoop-Counter, 
INSWrt-enable, OUTSWrt-Enable, 
INSAt-Least-l, OUTSAt-Least-l, 
INSYN-DA, INOROF, INSSub-Adrs, 
OUTSDA-strobe, OUTSNext-SC, OUTSSearch-Adrs, 
OUTSFast-Clear, OUTSDone 

SEARCH-ADRS ! functions 

B (16) ! Bit value = 2**(i-1) 
va I i d-YN-DA ! when INSYN-DA value is valid 

search-offset (0:4) ! how much to offset 
search-off set ! each search adrs 
search-offset /0, 1, -1, 2, -2/ 

c------------------------------------------------------------------------ 

C  
do I =l, 16  

B (1) = 2*+(1-l) 
end do 

C 
c------------------- open output fi le -_____---___----------------------- 

C  
open (1, name = ‘MLU-V.TBL’, status = ‘NEW’, form = ‘UNFORMATTED’) 

C 
c------------------ fi 11 the table - _~~---_c~------~---~~----~~~~~~~~~--~ 
C 

do I = 0, 66635 ! go over all Input addresses 
-. 

! get relevant bits from input 

INSLoop-Counter.1 I .:;j. ‘7’X ! bits 1-3 
INSWrt-Enable '10'X 
INSAt-Least-l = I land: ‘20’X 

! bit 5 
., ! bit 6 

INSYN-DA = I .and. ‘40’X ! bit 7 
INSROF = I .and. ‘80’X ! bit 8 
INSSub-Adrs = I .and. ‘F00’X ! bits 9-12 

c----- va I i d-YN-DA ---------- 
valid-YN-DA = 0 
if ((INSYN-DA .ne. 0) 

1 .and. (INSLoop-counter .ge. 2) 

i 
. and. (INSLoop-counter . I e. 6) 
.and. (INSWrt-Enable .eq. 0)) 

4 valid-YN-DA = 1 

! calculate output bits 

c----- OUTSLoop-Counter ----- 
OUTSLoop-Counter = INSLoop-Counter + 1 
if (INSLoop-Counter .eq. 7) OUTSLoop-counter = 0 
if (INSWrt-Enable .ne. 0) OUTSLoop-counter = 0 

c----- OUTSDA-strobe ----- 
OUTSDA-strobe = 0 

-_ - 
1 

if ((INSLoop-counter .eq. 0) .or. (INSLoop-counter .eq. !)) 
OUTSDA-strobe = 1 

if ((INSLoop-counter . le. 4) .and. (INSLoop-counter .ge. 2) 
1 .and. (valid-YN-DA .eq. 0)) OUTSDA-strobe = 1 

c----- OUTSAt-Least-l -me-- 
OUTSAt- least-l = 0 
if ((INSAt-least-l .ne. 0) .or. (valid-YN-DA .ne. 0)) 

1 OUTSAt-least-1 = 1 

c----- OUTSWrt-Enable --e-e 
OUTSWrt-Enable = 0 
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if (valid-YN-DA .ne. 0) OUTSWrt-Enab I e = 1 

c----- OUTSNext-SC -m-w- 
OUTSNext-SC = 0 
if (valid-YN-DA .ne. 0) OUTSNext-SC = 1 
if ((INSLoop-Counter .eq. 6) .and. (INSWrt-Enable .eq. 0)) 

1 OUTSNext-SC = 1 

c----- OUTSSearch-Adrs ----- 
OUTSSearch-sdrs = SEARCH-ADRS (INSSub-Adrs, 

1 INSLoop-Counter, 
2 va I i d-YN-DA) 

c----- OUTSDone ----- 
OUTSDone = 0 
if ((INSROF .ne. 0) .and. (OUTSNEXT-SC .eq. I)) OUT%Done = 1 

C----- OUTSFast-Clear ----- 
OUTSFAst-clear = 0 
if ((OUTSDone .eq. 1) .and. (INSAt-least-l .eq. 0)) 

1 OUTSFAst-clear = 1 

C 
c-------- fill MLU value for I -------_--____ 
C 

1 
. 2  

3  
4  
5  
8  
7  -. 

MLU-output = OUTSLoop-counter 
+ B(5) * OUTSDA-strobe 
+ B(6) + OUTSAt least 1 
+ '3(7) z OUTSWrz Enable 
+ BP31 + OUTSNextSC 
+ B(9) + OUTSSearch-adrs 
+ B(15) * OUTSfast-Clear 
+ B(l6) * OUTSDone 

bits l-3 
bit 5 
bit 6 
bit 7 
bit 8 
bits 9-14 
bit 15 
bit 16 

MLU (I) = MLU-Output-Short (1) ! equiv. to lower 16 bits 
! of MLU-Output, for overflow 
! reasons 

end do 
C 
c---------------- write table to output fi le _---__-__----~~~~~~~~~~~~~~~ 
C 

write (1) MLU 
C 
C do i=0,15 
C type +,search-adrs (i*256,0,0) 
C enddo 

end 
C 
C 
C 

14 



C 

-_ i nteger+4 f unct i on SEARCH-ADRS (sub-adrs, I oop-counter , YN-DA) 
C _-__---_------------------------------------------------------ 
C 
c calculates search address from sub address 
c Input : 
c  - - - - - - - - 
c  loop-counter - bits l-3 (va I ue 0-4) 
c  YN-DA - bit 7 (Yes/No for search adrs in DA, ~-NO) 
c sub-adrs - bits 9-12 - SC # (value 0-16) 
C 
c output : 
c-------e- 
c  search-adrs - bits l-6 - DC # (value 0-33 (no. of wires in each chamber)) 
c----------------------------------------------------------------------------- 
C 

implicit none 
include ‘PEGASYS-GEOM.PRM’ ! Geometry def. file 

i nteger*4 sub-adrs, addr, loop-counter, SC-num 
i ntegertrl YN-DA, central-addr 

C 
real*4 Y-SC, Y-DC 
i nteger*4 search-offset (0:4) ! how much to offset 
common /Ip/ search-offset ! each search odrs 

C 
C 
c---------------------------------------------------------------------- ------- 
C 

SC-num = ISHFT (sub-adrs, -8) .and. ‘F’X ! 4 bits for adrs (0-15) . 

Y-SC = PR-GAP-Y + (SC-num +0.5) + PR-ce I I-Y 
Y-DC = Y-SC + ZDC / ZPR 
centra I-addr = INT ((Y-DC - DC-gap-Y) / DC-ccl I-Y) !wire # from 0.. 

a. 

C 

if (central-addr .It. 0) central-addr = 0 
if (central-addr .ge. DC-wires-Y) centra I-addr = DC-w i res-Y-l 

c-------- add offset according to loop counter and DA status __---_-_------- 
C 

if ((YN-DA .eq. 0) .and. ! normal search case 
1 (Loop-Counter . le. 4) .and. (Loop-Counter ,ge. 0)) then 

addr = centra I-addr - search-off set ( I ooplcounter) ! check 2 above 
! & 2 below 

else if ((YN-DA .ne. 0) .and. ! “found hit” case 
1 (Loop-Counter . le. 6) .and. (Loop-Counter .ge. 2)) then 

addr = central-addr - search-offset (loop-counter-2)! go 1 srch addr 
! backwards else 

addr = 0 
end if 

! no need for search adrs 

if (addr .ge. DC-w i res_Y) addr = DC-w ‘i res-Y-l ! unless reached 
if (addr .It. 0) addr = 0 ! limits (value 0-33) 

SEARCH-ADRS = addr 

return 
end 
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