
SLAC-PUB-5303
July 1990

(1)

FAST TRACKING IN A TRIGGER SYSTEM BASED
ON A MEMORY LOOKUP UNIT*

-.

I. Navon (‘I and A. Navon
Stanford Linear Accelerator Center,

Stanford University, Stanford, CA 94039, USA
and Tel-Aviv University, Ramat-Aviv, Israel

E. Piasetzky, Y. Mardor, and J. Alster
Raymond and Beverly Suckler Faculty of Exact Sciences,

School of Physics, Tel-Aviv University, Ramat-Aviv, Israel

S. E. Rock
The American University, Washington, DC 20016, USA

Abstract

One section of a fast tracking trigger system for a proposed large particle
spectrometer is presented. This subsystem is based on a novel use of a
Memory Lookup Unit. The electronic circuit and the associated software
table are described in detail. The subsystem can accomplish the tracking
for a complex event in a few microseconds. A prototype subsystem was
assembled and tested successfully.

Submitted to Nuclear Instruments & Methods A.

* Work supported by Department of Energy contract DE-AC03-76SF00515,
by the US-Israel Binational Science Foundation, and by the Israeli Academy
of Sciences.

(E) Mailing address: Physics Department, Tel-Aviv University, Ramat-Aviv,
Israel 69978

1 Introduction

In this paper we describe a novel use of memory lookup units (MLU) in a
trigger tracking system. This system was developed as part of the proposed
PEGASYS[l] d t t e ec or at SLAC. We choose to describe only a simple sub-
system which performs linear tracking because it presents the basic ideas,
yet is simple enough to be fully portrayed here. The same principles were
used successfully to design more complex subsystems that perform curved
tracking in a magnetic field.

1.1 General design considerations

. The triggering system for PEGASYS has to cope with an initial expected
hit rate of 5OkHz, remove the backgrounds and select the few events (no
more than 200 per second) that will be read and written to tape for off-line
analysis. Th e rejection of this high background rate required the inclusion
of fast tracking in the trigger electronics. A multi-level trigger system was
developed, with a sophisticated “high level” trigger processor to perform the
tracking and to calculate the kinematical parameters. The expected rate
for starting this level is a few kHz thus, to keep the deadtime reasonable,
it should be able to decide whether a specific event is “good” in less than
20~s. A calculation of tracking through several detector layers, involving
energy readout from a few dozens of fast ADCs, is needed to reach this
decision. Clearly, a microprocesor - based system would hardly have time to
read in the data, and certainly would not be able to complete the tracking
calculations within the required time limit. This was the principal reason
that led to the development of this tracking system based on memory lookup
units.

Memory lookup units were suggested previously as part of fast tracking
logic [2,3], but normally it was limited to single step calculations. Looping,
if any, was done externally under hardware control. Here we “looped” the
MLU on itself so that it would perform the equivalent of a FORTRAN “DO
loop”, with self counting of the number of iterations. The MLU itself con-

-. - trols the looping (in this case two nested loops), and stops it under complex
“software” e.xit conditions. The introduction of a new large MLU unit with
128 Kbyte memory (16 bit input address and 16 bit output data), which

2

. .

was developed at the Cyclotron Laboratory of Michigan State University [4],
made the implementation of this idea feasible,

The trigger system was built entirely from available CAMAC ECL mod-
ules and a few supporting NIM units. The heart of the system is that new
larger MLU, while the rest of the modules are mostly standard CAMAC
“ECLine” from LeCroy.

2 The Vertical Tracking subsystem

.

We choose to describe here the vertical tracking subsystem. The PEGASYS
magnet spectrometer is designed to have horizontal deflection only, so the
vertical tracking is done along straight lines (except for small second order

.
corrections that can be neglected for the triggering system). Also, the target
size is sufficiently small so that, for the accuracy needed in the triggering
calculations, it can be considered to be a point source. These two facts
make the vertical tracking exceptionally simple. In figure-l, we show the
basic geometry for the vertical tracking, where all the detectors that are not
relevant to the tracking are removed. There are two drift chambers, called
top and bottom, with 40 horizontal wires each. There are also four quadrants
of horizontal shower counter bars with 16 bars in each quadrant.

Initially, the shower counter data (after some pre-processing which is not
relevant here) are stored in a Data Stack (LeCroy 2375). The stack can
contain up to 256 words of 16 bit. Each data word corresponds to a hit in
the shower counter, and its structure is as follows:

16

I 1
I;;V

1
;;B

1
,i;R 12 - 9 8-l

1 sub-address AD C (energy)

Bit8 1-8 contain the ADC value (energy) of a shower counter hit . Bits 9-12
contain the subaddress, i.e. the number (O-15) of the bar that fired. The
quadrant is identified as left/right and top/bottom by bits 13-14. Bit 15
identifies it as vertical information (number of the horizontal bar), so that in
our example it will always be set. Bit 16 is not used. The number of words in
the stack equals the number of bars that were hit in the event. For a typical

- ev_ent this number is 2-7.
The hit pattern of the Drift Chambers was transferred initially to a Data

Array (LeCroy 2376A). In th’ is array of 1024 bits, each wire is represented by

3

a single bit which is on when the corresponding wire fired. The Data Array
can answer queries whether a specific address, or range of addresses, is on by
switching a status bit on or off. This answer comes in response to a search
address and search width (if necessary) which are present at the search input,
in coincidence with a strobe pulse at the search strobe input.

The purpose of the vertical tracking subsystem is to determine whether

.

a specific hit in the shower counter (represented as a stack word) has a
matching drift chamber hit in the Data Array. If such a match is found,
the vertical position in the input word (shower counter bar number) will
be replaced by the drift chamber vertical position (wire number), and the
result (energy and vertical position) will be written to the output stack. The
hits in the shower counter without a matching hit in the drift chamber will
be discarded. The result will have a better position resolution because the
resolution derived from the drift chamber wire number is better than the one

-derived from the shower counter bar number. It is important to point out
that for each shower counter bar we have to search several DC wires, but
it cannot be accomplished in a single query of width larger than one. The
reason is, that in order to improve the resolution, we not only wish to know
whether a wire fired in a certain range, but also the specific wire that fired.

3 Circuit description T

The circuit shown in fig. 2 accomplishes the task described in the previous
section by performing a search loop for each word in the stack. For each
stack word the MLU issues five search addresses to the Data Array in five
consecutive cycles. The search starts at the “central address”, which is the
DC wire number closest to the position obtained by linear interpolation be-
tween the center of the SC bar and the target. Next, the search proceeds up
and down, first by one wire and then by two, for a total of five wire checks.
If a hit was found in the searched range, the updated information is written
to the output stack and the loop is terminated. Thus, if there was more
than one hit in the search range, the one closest to the “central address” is
automaticlly chosen because it was tested first.

-_ - -The circuit includes four CAMAC modules: two data stacks (LRS 2375),
a data array (LRS 2376A) and a MLU [4]. Only a few coincidence units

4

(2/16 of LRS 4516) are used in the timing circuit. The delays are easily
implemented by selecting the proper cable lengths. Two external signals are
used: a 40ns start signal which starts the activity of the circuit and a 1OMHz
external clock with a width of 15ns. A “fast clear” signal is generated at
output pin 15 of the MLU in case that no valid event was found.

3.1 Timing considerat ions

The MLU operates in latched mode (internal control register=12). In this
mode the input data are latched by a “Hold” signal, and are held there until
a “Clear” signal will be applied. The timing of the circuit is illustrated in
figure 3. A valid “Hold” signal has to be preceded by a “Clear” signal to the

. previous “Hold” by at least 18ns. This is the reason for adding a 20ns delay
to the Clock signal going to the “Hold”. The output and the output “Ready”
signal appear 4Ons after the leading edge of the “Hold” signal. Since some
of the MLU outputs are connected back to the input, the timing situation
is-somewhat like that of a cat trying to catch its own tail. To latch a new
input we first have to clear the unit, but this will clear the outputs that we
wish to latch at the input! Luckily, the output signal persists for 35ns after
the “Clear”, which is sufficient to latch the new input. As can be seen in the
timing diagram the input lines must be stable for 15ns starting 5ns prior to
the “Hold”. This allows the previous output to be latched just before the
“Clear” will erase it.

It is important to note that the internal delay of the DA, from search
strobe to a valid output (Stat), is 60ns. This means that when a specific
MLU input generates a search query to the DA, the DA answer (Stat) may
change state about 10572s after that MLU input was latched (40ns for the
MLU, 60ns for the DA and 5ns for wiring). This would happen right in the
middle of the “Hold” of the next cycle when all the input lines should be
stable. To avoid this ambiguity, a 20ns delay was added to the search strobe
of the DA. In practice, this means that the answer to a specific input will
not be present at the next input cycle, but only in the following one. This
hardware delay has to be taken into account in the software that builds the

._ _ lookup table. I n contrast, we see that the response to “next SC” signal (bit
8 - MLU output) does arrive at the next input cycle, because the Data Stack
needs only 30n.s from “Read Enable” to “Read Ready”. However, for the

P

5

sake of compatibility with other more complex subsystems, we delayed the
use of the new SC subaddress to the following cycle.

The start is given by an external signal. Unless the start is synchronized
with the clock the length of the first cycle will not be constant. To avoid the
complication, the software was designed to be insensitive to this variation.

4 Circuit operation

The external “start” signal clears the output stack with a “Master Reset”
and starts the cycles by giving the first “Hold” to the MLU. The subsequent
cycles are generated by the MLU output “Ready” signal in coincidence with
the external clock, until the process is stopped by the “done” signal (output

-. bit 16). For every stack word the MLU uses the SC subaddress (bar number)
in -bits 9-12 to “calculate” the expected DC wire number. The resulting
“predicted DC address” at the MLU output bits 9-14 is presented to the DA
as a search address. The search strobe to the DA comes from output bit 5
with a delay of 2072s. The DA’s answer to this query (Stat) is received at
the MLU input bit 7.

Bits l-3 of the MLU serve as a loop counter. If there is no positive
answer from the DA, the loop continues to query the neighboring addresses.
A positive response from the DA causes the search address that initiated this
response to reappear at the MLU output together with a Write Enable to
the output stack. The address, together with the ADC value and the two
bits that identify the quadrant (left/right and top/bottom) are written into
the output stack. Concurrently with the Write Enable we set bit 6 (“at least
one”), which is then latched by being fed back to the input. The software is
designed to keep this bit “on” at the output whenever it is “on” at the input.
After processing all the input stack words this bit will indicate whether there
was at least one good event. If a DC hit was found (a positive answer), or if
all five search attempts failed, a “next SC” signal is issued (output bit 8) to
strobe the Read Enable of the input stack and to get the next SC. A “next
SC” will not be issued in case that the Read Overflow (ROF) from the stack
is “on”, signaling that the last data word in the stack was read. In that case

-a icdone7F signal is turned on at output bit 16, which blocks the next “Hold”,
and thus stops the processing until the next start. If the bit “at least one

6

good” is not on at the end of the process, the “fast clear” (output bit 15)
will be set.

5 The Lookup Table and related software

The lookup table (a 64K array of 16 bit words), which controls the operation
of the whole circuit, is created by external software. Each MLU in the trigger
system requires its own table-creating program. The programs were written
in FORTRAN on a VAX computer. The program for the MLU in fig. 2
is listed in the appendix. A central point in the design is that the whole
complexity of the required calculations is handled by these external programs, -
i.e. the “intelligence” resides in the resulting lookup tables. Therefore, the

. iteration cycle time, even for very complex calculation, can be 1OOns or less.
A common loading program is used to load the prepared tables into the MLU
in the appropriate CAMAC slot.
-. The logic of the program is based on “cycle tables” which describe the
desired operation at each hardware cycle. Table 1 presents two examples of
such a table, which will be discussed in details below. It is important to
note that in these tables each cycle corresponds to a specific time slice. The
propagation time through the MLU takes up one cycle, so that the input at
cycle 1 generates the suitable output at cycle 2, and so forth. On the other
hand, the output lines that are looped back (l-3,6,7) take only a nanosecond
to appear at the input. Thus, the outputs of the “Counter”, “Write Enable”
and “At Least One” appear during the current cycle at the input. This is
contrary to intuition because the output of each cycle generates the input of
that cycle and not vice versa!

Table 1 shows the status of selected inputs and outputs during consecutive
cycles. We begin with example 1 of table 1 which describes the case where
no matching hit is found in the DA. At the beginning, all the lines that are
looped back are at logical zero because the unit is stopped after a “Clear”
so that all the outputs are at zero. The operation starts at cycle 0 with
an external start pulse which latches the specific SC subaddress (SUB) that
is present at input lines 9-12. The counter (CNTR) at lines 1-3 is looped

- . -.
- back and thus is at “0” indicating the number of iterations that were done.

Similarly, the WE at input line 5 and the latch “at least one” at input line

P

7

6, are also “0”. Th’ IS input combination generates the output at cycle 1 and,
in particular, the first search address (1 SRCH) that is then presented to
the DA. Simultaneously we also set the DA search strobe (DA) at output
line 5 to “l”, so that the search is activated. The counter (CNTR) is set to
1 indicating the cycle number, and the write enable (WE) that strobes the
output stack is still zero.

.

The input at cycle 1 gets the cycle number from the output. Together
with the subaddress (SUB), that is now static at the input, they generate
the second search address at the output of cycle 2. In the meantime, the
DA’s answer to the first search request arrived at input line 7 (we denote it:
Y/N). What happens from now on depends on the value of the DA status bit
(Y/N). In our example the DA answer is negative (Y/N=N) and we continue
the search as before. The third search address (3 SRCH) will appear at the
output of cycle 3, etc. The maximum number of queries (search addresses) to
the DA is five, as explained in section 3. The last answer from the DA arrives
at the input of cycle 6 which, in turn, generates the output at cycle 7 and .-.
sets NEXT=l. This causes the next subaddress (nextSUB) to be fetched
from the input stack. After cycle seven the input counter is reset and the
next search loop will start. Note that in our example, where no matching hit
was found, the loop took up eight cycles.

Example 2 of table 1 describes a search loop which ends with a positive
result in the second try. Cycles 0’1 and 2 are as in example 1. The positive
answer arrives at the input at cycle 3 (Y/N=Y), indicating that the search
address at cycle 2 (2 SRCH) f ound a matching hit in the DA. This address
is regenerated at the output of cycle 4, together with a strobe signal to the
output stack (WE). The signal (WE) strobes the hit address into the output
stack together with the energy and the quadrant bits. In the same cycle we
set NEXT=l, which causes the next subaddress (next-SUB) to be fetched
from the input stack. The WE signal is also fed back to the input of cycle 4.
There it instructs the MLU to clear the cycle counter (CNTR) for the next
cycle so it will be ready to start a new search loop with a new subaddress
at the input. The procedure ensures that the search loop will be truncated
after the first match. In this example, where the match was found in the

-_ - _ second try, the loop took up five cycles. In general, the positive answer from
the DA may appear at the input in any one of the cycles 2-6. The loop will
then take 4-8 cycles, respectively.

8

.-

-

In summary the search consists of two nested “DO loops”. The inner one
is generated by the MLU and loops through the search addresses. The outer
one loops through the SC bars (input stack words) and is controlled by the
hand shake between the input stack and the MLU. Bit 6 acts as a latch. It
is set if there is a positive answer from the DA for any of the search queries.
The bit is returned to input line 6, and the software leaves this output on
when the input is on. In this way we know whether the whole event in the
input stack has at least one good track. Simultaneously with reading the last
word in the event, the input stack turns on the read overflow (ROF) signal.
This signal is connected to input line 8 of the MLU and, if it is on at the
end of the search loop, the MLU issues a “done” signal at output 16. Then
this signal stops the MLU activity by blocking the next strobe to the unit. If

. there wasn’t “at least one good track”, a “fast clear” pulse is issued together
with the “done” signal. The MLU is stopped after a “Clear” but prior to the
latch (“Hold”). Th us, 35ns after the “Clear” all the outputs will be reset to
“011, and the unit will be ready to start processing the next event.

6 Conclusions

The concept of looping back MLU output bits, and using them as a loop
counter, proved to be easy in design and implementation. In this way the
MLU can make several iterations over a specific input, thus enabling more
sophisticated processing. We used it extensively in other sections of the
trigger system (e.g. to check the tracking through several detectors layers
for a given single hit). In a sense it amounts to building a special purpose
computer without a CPU, that can complete a loop iteration in less than a
loons. Such a scheme should find wide use in fast intelligent trigger systems.

Acknowledgments
It is a pleasant duty to thank F.Dietrich and M. Perl, whose support

and encouragement made this work possible. We thank C.Hyde-Wright for
- - loaning us the computer. The hospitality of SLAC and of group E, in par-

ticular, created a pleasant working environment. All the collaborators of the
PEGASYS project have acted to stimulate this work. Special thanks are due

9

to I.Mardor who helped us with the simulation programs, and to Z.Szalata
for advice on computer problems.

References

[l] PEGASYS proposal, Stanford Linear Accelerator Center, 1989.

[2] A. Fucci, Sr. Amendolia, E. Bertolucci, U. Bottigli, C. Bradaschia, L. Foa,
A. Giazotto, M. Giorgi, M. Givoletti, P. Lucardesi, A. Menzione, D. Pas-
suello, M. Quaglia, L. Ristori, L. Rolandi, P. Salvadori, A. Scribano,

- R. Stanga, A. Stefanini, M.L. Vincelli, Nucl. Instr. and Meth. 147 (1977)
587. .

[3] L.B. Levit, M.L. V incelli, Nucl. Instr. and Meth. A235 (1985) 396.

[4] The Fast Decision Module, M.R. Maier, M. Robertson, A. vanderMolen
and G.D. Westfall, to be published in Nucl. Instr. and Meth.

Figure captions:

Fig. 1 Schematic geometry for vertical tracking. The spectrometer magnet
and all the detectors that are not relevant were omitted.

Fig. 2 Circuit diagram of the electronics. The input Stack, output Stack,
Data Array and MLU are all CAMAC modules.

Fig. 3 Timing diagram for the circuit in fig.2. All the signals are drawn in
positive logic.

10

TABLE 1. MLU logic for the search loop cycles

(example 1: no matching hit in DA)

cycle 0 1 2 3 4 5 6 7 0

In ROF=O FLOP=0

SUB SUB SUB SUB SUB SUB SUB SUB LlCXtSUB

CNTR=O CNTR=l CNTR=Z CNTR=J CNTR=4 CNTR=6 CNTR=B CNTR=I CNTR=O

WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0

Y/N=N Y/N=N Y/N=N Y/N=N Y/N=N

out 0000 1 SRCH 2 SRCH 3 SRCH 4 SRCH 6 SRCH 0000 0000 0000

CNTR=O CNTR=l CNTRz2 CNTR=J CNTR=I CNTR=K CNTR=6 CNTR=? CNTR=O

DA=0 DA=1 DA=1 DA=1 DA=1 DA=1 DA=0 DA=0 DA=0

WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0 WE=0

NEXT=1

(example 2: hit found in second try)

cycle 0 1 2 3 4 0

In ROF=O

SUB

CNTR=O

WE=0

out 0000

CNTR=O

DA=0

WE=0

SUB SUB

CNTR=l CNTR=Z

WE=0 WE=0

Y/N=N

1 SRCH 2 SRCH

CNTR=l CNTR=Z

DA=1 DA=1

WE=0 WE=0

SUB

CNTR=J

WE=0

YIN=Y

3 SRCH

CNTR=J

DA=1

WE=0

SUB

CNTR=4

WE=1

2 SRCH

CNTR=I

DA=0

WE=1

NEXT=1

ROF=O

nextSUB

CNTR=O

WE=0

0000

CNTR=O

DA=0

WE=0

11

-

program VERTl
C -------------
C
C Vertical Tracking.
C The program calculates the lookup tables that would be loaded into
C the MLU, so the electonics would be able to find good vertical tracks.
C “Good track” means that for a SC address there is at least one DC wire
C that fired out of the five wires that are nearest to the linear track
C to that SC.
C
c Input Stack : (bits 1-16)
c ------------
C 1-8 ADC energy (PR+3TA)
C 9-12 Sub Address (of SC)
C 13 Left / Right
C 14 Top / Bottom
C 16 hor./ver.
C
C Output Stack : (b its 1-16)
C ---------____
C 1-8 Energy Ey (from horizonta I SC bars)
C 9-1 4 Y (from search address)
C 15 Left / Right
C 16 Top / Bottom
C
C MLU Input : (bits l-16)
C --------mm
C 1-3 -. Loop counter (from MLU Output)
C 4
C 6 WE: Write to output stack (from MLU Output)
C 6 At least 1 Good vertical track (from MLU Output)
C 7 DA Yes/No (from DA)
C 8 ROF (from Input Stack)
C 9-32 Sub Address (from Input Stack)
C 13-16 -
C
c MLU Output : (bits l-16)
c -----------
C 1-3 Loop Counter
C 4
C 5 DA strobe
C 6 At least 1 Good vertical track
C 7 WE: Write to output Stack
C 8 Next SC (Goes to Input Stack)
C 9-14 Search Address
C 16 Fast Clear - Not even 1 Good Track
C 16 Done
C
c--

APPENDIX
-------- --------

12

C
C

implicit none
C

i nteger*2
- c

i nteger+4
i nteger*2
equivalence

C
i nteger+4
1
2
3
4
5

i nteger*4

i nteger*4
i nteger*4

i nteger*4
;;;;on /Ip/

C

MLU(0:65636) ! 64K memory

MLU-output, I
MLU-Output-Short (2)
(MLU-Output, MLU-Output-Short(l))

INSLoop-Counter, OUTSLoop-Counter,
INSWrt-enable, OUTSWrt-Enable,
INSAt-Least-l, OUTSAt-Least-l,
INSYN-DA, INOROF, INSSub-Adrs,
OUTSDA-strobe, OUTSNext-SC, OUTSSearch-Adrs,
OUTSFast-Clear, OUTSDone

SEARCH-ADRS ! functions

B (16) ! Bit value = 2**(i-1)
va I i d-YN-DA ! when INSYN-DA value is valid

search-offset (0:4) ! how much to offset
search-off set ! each search adrs
search-offset /0, 1, -1, 2, -2/

c--

C
do I =l, 16

B (1) = 2*+(1-l)
end do

C
c------------------- open output fi le -_____---___-----------------------

C
open (1, name = ‘MLU-V.TBL’, status = ‘NEW’, form = ‘UNFORMATTED’)

C
c------------------ fi 11 the table - _~~---_c~------~---~~----~~~~~~~~~--~
C

do I = 0, 66635 ! go over all Input addresses
-.

! get relevant bits from input

INSLoop-Counter.1 I .:;j. ‘7’X ! bits 1-3
INSWrt-Enable '10'X
INSAt-Least-l = I land: ‘20’X

! bit 5
., ! bit 6

INSYN-DA = I .and. ‘40’X ! bit 7
INSROF = I .and. ‘80’X ! bit 8
INSSub-Adrs = I .and. ‘F00’X ! bits 9-12

c----- va I i d-YN-DA ----------
valid-YN-DA = 0
if ((INSYN-DA .ne. 0)

1 .and. (INSLoop-counter .ge. 2)

i
. and. (INSLoop-counter . I e. 6)
.and. (INSWrt-Enable .eq. 0))

4 valid-YN-DA = 1

! calculate output bits

c----- OUTSLoop-Counter -----
OUTSLoop-Counter = INSLoop-Counter + 1
if (INSLoop-Counter .eq. 7) OUTSLoop-counter = 0
if (INSWrt-Enable .ne. 0) OUTSLoop-counter = 0

c----- OUTSDA-strobe -----
OUTSDA-strobe = 0

-_ -
1

if ((INSLoop-counter .eq. 0) .or. (INSLoop-counter .eq. !))
OUTSDA-strobe = 1

if ((INSLoop-counter . le. 4) .and. (INSLoop-counter .ge. 2)
1 .and. (valid-YN-DA .eq. 0)) OUTSDA-strobe = 1

c----- OUTSAt-Least-l -me--
OUTSAt- least-l = 0
if ((INSAt-least-l .ne. 0) .or. (valid-YN-DA .ne. 0))

1 OUTSAt-least-1 = 1

c----- OUTSWrt-Enable --e-e
OUTSWrt-Enable = 0

13

-

if (valid-YN-DA .ne. 0) OUTSWrt-Enab I e = 1

c----- OUTSNext-SC -m-w-
OUTSNext-SC = 0
if (valid-YN-DA .ne. 0) OUTSNext-SC = 1
if ((INSLoop-Counter .eq. 6) .and. (INSWrt-Enable .eq. 0))

1 OUTSNext-SC = 1

c----- OUTSSearch-Adrs -----
OUTSSearch-sdrs = SEARCH-ADRS (INSSub-Adrs,

1 INSLoop-Counter,
2 va I i d-YN-DA)

c----- OUTSDone -----
OUTSDone = 0
if ((INSROF .ne. 0) .and. (OUTSNEXT-SC .eq. I)) OUT%Done = 1

C----- OUTSFast-Clear -----
OUTSFAst-clear = 0
if ((OUTSDone .eq. 1) .and. (INSAt-least-l .eq. 0))

1 OUTSFAst-clear = 1

C
c-------- fill MLU value for I -------_--____
C

1
. 2

3
4
5
8
7 -.

MLU-output = OUTSLoop-counter
+ B(5) * OUTSDA-strobe
+ B(6) + OUTSAt least 1
+ '3(7) z OUTSWrz Enable
+ BP31 + OUTSNextSC
+ B(9) + OUTSSearch-adrs
+ B(15) * OUTSfast-Clear
+ B(l6) * OUTSDone

bits l-3
bit 5
bit 6
bit 7
bit 8
bits 9-14
bit 15
bit 16

MLU (I) = MLU-Output-Short (1) ! equiv. to lower 16 bits
! of MLU-Output, for overflow
! reasons

end do
C
c---------------- write table to output fi le _---__-__----~~~~~~~~~~~~~~~
C

write (1) MLU
C
C do i=0,15
C type +,search-adrs (i*256,0,0)
C enddo

end
C
C
C

14

C

-_ i nteger+4 f unct i on SEARCH-ADRS (sub-adrs, I oop-counter , YN-DA)
C _-__---_--
C
c calculates search address from sub address
c Input :
c - - - - - - - -
c loop-counter - bits l-3 (va I ue 0-4)
c YN-DA - bit 7 (Yes/No for search adrs in DA, ~-NO)
c sub-adrs - bits 9-12 - SC # (value 0-16)
C
c output :
c-------e-
c search-adrs - bits l-6 - DC # (value 0-33 (no. of wires in each chamber))
c---
C

implicit none
include ‘PEGASYS-GEOM.PRM’ ! Geometry def. file

i nteger*4 sub-adrs, addr, loop-counter, SC-num
i ntegertrl YN-DA, central-addr

C
real*4 Y-SC, Y-DC
i nteger*4 search-offset (0:4) ! how much to offset
common /Ip/ search-offset ! each search odrs

C
C
c-- -------
C

SC-num = ISHFT (sub-adrs, -8) .and. ‘F’X ! 4 bits for adrs (0-15) .

Y-SC = PR-GAP-Y + (SC-num +0.5) + PR-ce I I-Y
Y-DC = Y-SC + ZDC / ZPR
centra I-addr = INT ((Y-DC - DC-gap-Y) / DC-ccl I-Y) !wire # from 0..

a.

C

if (central-addr .It. 0) central-addr = 0
if (central-addr .ge. DC-wires-Y) centra I-addr = DC-w i res-Y-l

c-------- add offset according to loop counter and DA status __---_-_-------
C

if ((YN-DA .eq. 0) .and. ! normal search case
1 (Loop-Counter . le. 4) .and. (Loop-Counter ,ge. 0)) then

addr = centra I-addr - search-off set (I ooplcounter) ! check 2 above
! & 2 below

else if ((YN-DA .ne. 0) .and. ! “found hit” case
1 (Loop-Counter . le. 6) .and. (Loop-Counter .ge. 2)) then

addr = central-addr - search-offset (loop-counter-2)! go 1 srch addr
! backwards else

addr = 0
end if

! no need for search adrs

if (addr .ge. DC-w i res_Y) addr = DC-w ‘i res-Y-l ! unless reached
if (addr .It. 0) addr = 0 ! limits (value 0-33)

SEARCH-ADRS = addr

return
end

15

Vertical Tracking Geometry
(simplified)

Y

Drift Chambers
40 wires/chamber

Target
7-90

6683A 1

Fig. 1

I

Circuit Diagram

16

II I

CLOCK
10 MHz

Search

. START

--- .-I

a.

8 YIN 4 I

hoI&

clear

I I I IIT-
9-126 7 561-3

MLU 3"

7 15 9 14561-Q

munter
at least one

/h I
I

Precdicted DC’s Address

b Fast Clear

6663AZ 7-90

Fig. 2

MLU Timing (ns)
0 50 100 150 200

Clock
at colnc. Inp.

Clear

Hold
Ready
& OlJtDUt

I DA search
strobe

I DA stat

7-90
6663A3

Stable Stable
Input Input

Jllll~lll~lllllllllhlllll~~~~~~~~~~~~~

Fig. 3

