
SLAC-PUB-5302 
SSCL-305 
July 1990 

(4 

SSCTRK: A PARTICLE TRACKING CODE FOR THE SSC” 

D. RITSON 
Stanford Linear Accelerator Center, 

Stanford University, Stanford, CA 94309, USA 
and SSCL,t Dallas, TX 75237-3946, USA 

1. Introduction 

Critical to the SSC performance is an understanding of the factors controlling the 
dynamic aperture of the main storage ring. The most critical problems are expected 
to arise at injection time prior to ramp-up to full energy. At injection the beam will 
coast for up to one hour. This long time is required to fill sequentially the two rings. 
It is known that the effective aperture of a proton storage will progressively degrade 
with storage time. 

The SSC storage time at injection is N l/2 hr or N 7 x lo6 turns around the 
machine. The SSC aperture will be 4-5 cm, approximately half that of the Teva- 
tron. The multipole field errors, both random and systematic are thus substantially 
greater than those of the Tevatron. The tune of the SSC will be about five times that 
of the Tevatron and the sensitivity to systematic tune shift will then be worse by a 
factor of 5. Therefore it cannot be argued that success of the Tevatron guarantees 
success for the SSC. 

While many indirect methods are available to evaluate dynamic aperture there 
appears at this time to be no reliable substitute to tracking particles through realis- 
tic machine lattices for a number of turns determined by the storage times. Machine 
lattices are generated by “Monte Carlo” techniques from the expected rms fabrica- 
tion and survey errors. Any given generated machine can potentially be a lucky or 
unlucky fluctuation from the average. Therefore simulation to serve as a predictor of 
future performance must be done for an ensemble of generated machines. Further, 

* Work supported by Department of Energy contract DE-AC03-76SFOO515. 
t Operated by Universities Research Association, Incorporated, for the US Depart- 

ment of Energy contract DE-AC02-89ER40486. 

Invited talk at the Workshop on Nonlinear Problems 
in Future Particle Accelerators, Capri, Italy, April 19-25, 1990. 



several amplitudes and momenta are necessary to predict machine performance. 
Thus to make Monte Carlo type simulations for the SSC requires very considerable 
computer resources. Hitherto, it has been assumed that this was not feasible, and 
alternative indirect methods have been proposed or tried to answer the problem. 

We reexamined the feasibility of using direct computation. Previous codes have 
represented lattices by a succession of thin elements separated by bend-drifts. With 
“kick drift” configurations, tracking time is linear in the multipole order included, 
and the code is symplectic. Modern vector processors simultaneously handle a large 
number of cases in parallel. Combining the efficiencies of kick drift tracking with 
vector processing, in fact, makes realistic Monte Carlo simulation entirely feasible. 

SSCTRK uses the above features. It is structured to have a very friendly inter- 
face, a very wide latitude of choice for cases to be run in parallel, and, by using pure 
FORTRAN 77, to interchangeably run on a wide variety of computers. We describe 
below the program structure operational checks and results achieved. 

2. Description of Program 

The code splits naturally into two parts. A Monte Carlo generator to provide 
one (or more) machine lattices and tracking code to examine the long term stability 
of particles launched into the generated machine lattice(s). 

The Monte Carlo generator sets up a nominal thin lens FODO lattice chro- 
matically corrected by sextupoles to provide the desired numbers of elements, tune 
values and radius. Files of orbit errors and multipole errors are then generated from 
specified rms and systematic field and orbit errors. These are combined together (in- 
cluding multipoles caused by orbit error feed down) into effective multipoles centered 
around the equilibrium orbit. The program then makes user specified corrections, 
employing multipole families, to provide a final file that should correspond to that 
to be attained operationally during the commissioning of the accelerator. 

The generator is fast, and it provides lattices with the expenditure of seconds 
or less of cpu time. The generator can be used to sequentially generate specified 
lattices or cases and to accumulate them into an array indexed by the case number 
that is to be used for parallel (vector) processing. 

Kick drift tracking then tracks the particles over the required number of turns 
through the set of lattices provided by the generator. The tracking simulation can 
include synchronous motion, ramping in energy, and power supply ripple for the 
focusing quadrupoles relative to the bend magnets. 

At each turn, quantities such as averages and rms deviations of the Courant 
and Snyder invariants are accumulated. After n turns (a specified number), these 
quantities are dumped into an output minifile. The minifile data is then put through 
a postprocessor to provide graphics or other outputs. The final orbit data are also 
dumped to permit resumption of running if so desired. 

2 



3. Physics Inputs 

We represent the lattice by a succession of thin elements. This naturally pro- 
vides sympleticity and, in view of the fact that the focusing quadrupoles only occupy 
5% of the arcs of the lattice, it is a reasonable approximation. At present the IRS 
are represented as unit transformations. This is a reasonable approximation under 
injection conditions, but it will require modification to simulate the low beta inter- 
action optics and future code will include IP effects. The RF acceleration is modeled 
by a single “thin” RF cavity located in a dispersion-free location. The drift-bend 
transfer matrices are approximated with a standard six-by-six linear transfer matrix 
acting on the vertical, the horizontal coordinates, and the longitudinal coordinate 
and momentum. 

A SSC half-cell contains a quadrupole, a chromatic sextupole corrector and 
five bend magnets. All of these components may be incorrectly placed or contain 
systematic or random multipole errors. 

To economize cpu time, we use the Simpson Rule procedures of Neuffer and 
of Forest and Peterson to concatenate lattice errors into the ends and cell centers. 
Essentially, this procedure redistributes the errors in the five dipoles in a half-cell into 
three positions. The procedure takes a series of multipoles of order n sin at points 
ti, where ti is the displacement from cell center and 2to is the half-cell length, and to 
replace them with three values Sin, Ssn, S3n lumped at the beginnings, midpoints 
and ends of the half-cells. 

The Sin, i = 1,2,3 are determined for each half-cell by the three conditions 

Sin + S2n + S3n = C Sin 

-tO.Sln + tOeS3n = Cti-Sin 

ti.Sl, + i!g.S3n = C tf.Sin . 

(1) 

(3) 

This procedure takes account of the variations of beta and eta values over the 
cells and cancels the deviations of the these parameters to second order for random 
errors and to third order for systematic errors. The efficacy of these procedures 
for random errors is detailed in the 1988 Rome Particle Accelerator Conference, by 
Peterson and Forest, page 827. The results are good to 5-10%. We have compared 
this to a noncorrelated concatenation that assigns random errors to the beginning, 
center and end of the cells in the ratio of 1 : fi : 1. Both schemes give results 
equivalent on the 5% level. Etienne Forest analytically finds both schemes to be 
nearly equivalent. For systematic errors in the SSC, we have compared analytic first- 
order predictions of tune shifts in the distributed case with errors lumped according 
to the Neuffer procedure for both octupole and decupole systematics, and we have 
found agreement to a few percent. We therefore assign an upper bound to the error 

3 



on the dynamic aperture of < 10% smaller than that associated with predicting 
tolerances to be achieved in practice. 

4. Code Checks 

As is standard, the code is double precision. Detailed below are checks or 
procedures used to ensure integrity of the code. 

4.1 Overall Organization 

A potential source of problems is the unavoidable complexity of code written 
to model a real machine with all its underlying warts and blemishes. To minimize 
the complexity SSCTRK was designed as a “linear” code. The main program steps 
sequentially through subroutine calls that take the specifications and translate theme 
into a design lattice structure. The program assembles this structure into a “real” 
object flawed by systematic and random errors. It applies corrections to this object 
and finally checks this object by tracking to find the maximum usable aperture. 
Each of these steps is done using main subroutine calls. The subroutines are simple, 
perform general tasks and contain an absolute minimum of internal branches or 
special purpose assumptions. Any operation or piece of code occurs only once in 
the program. The only subsidiary subroutines or functions called by these main 
subroutines are mathematical functions or subroutines such as a random number 
generator. 

Tricks or shortcuts in coding, equivalence statements, and backward “goto” 
statements are deliberately avoided, and at all stages the code is designed to be 
explicit and to conform fully to FORTRAN 77 protocol. To further ensure full 
transportability, no external system specific routines are invoked. 

The complete SSCTRK code (excluding comments) has less than one thousand 
lines of FORTRAN. This amount of code is easy to debug, edit and transfer between 
machines. 

Identical running on IBM, CRAY, SX2 and SUN computers is already a strong 
check on the generality of the code. 

4.2 Standard Code Checks 

We have made use of many of the standard techniques currently available to 
ensure error free coding. These include: 
(1) The “IMPLICIT NONE” convention. This convention forces the programmer to 

explicitly assign integer, real etc. types to all variables. The compiler automati- 
cally flags any variable that is not explicitly typed (spelling errors for instance) 
or whose type conflicts with a previously typed variable of the same name. 

(2) Load options to check for improper initialization of variables. These options per- 

4 



mit loading of memory banks with zeros or alternately with “overflow” numbers. 
Incorrectly initialized variables are flagged by the program running differently 
with different load options or abending with error messages. 

(3) Quadruple precision compilation. The code can be compiled with a quadruple 
precision option and compared to the standard double precision results to ensure 
that round off precision is indeed sufficient. 

(4) The debug option. All sections of the code were stepped and looped through 
under the “debug” option to ensure that operations were indeed proceeding as 
expected. 

4.3 Redundancy checks 

Central to the integrity of the code is the central tracking routine. Kick code 
can be written very simply in complex notation. As the tracking routine dominates 
the cpu usage, there is a high premium on optimizing its performance. In practice, 
therefore, this routine utilizes real quantities and is arranged to minimize the mul- 
tiplication and additions required for evaluation. For operation with the CRAY 2, 
where the FORTRAN compiler was less than optimal, an assembly coded routine 
was used (this, in fact, gained a factor of 2 in speed). These substantially more 
corn-plicated and opaque routines were checked against the results from a slower 
but transparent tracking routine implemented in complex notation, and they gave 
identical results within the double precision roundoff errors. 

The fact that the code runs “identically” on a variety of different computers has 
already been alluded to. 

Twiss parameters and tunes are calculated directly from the lattice charac- 
teristics. They are independently evaluated from the orbits obtained in tracking. 
Agreement of these Twiss parameters and tunes obtained from orbit data provide 
an important redundancy check on the code. 

Chromatic tune shifts resulting from systematic errors are obtainable analyti- 
cally to first order, and it has been checked that the code produces correct results 
for these terms. 

Finally, intensive useage by a number of people over an extended period is an 
excellent tool for uncovering potential flaws in the underlying structures. 

4.4 Reverse tracking 

An interesting code check is provided by taking a particle through a number 
of turns, reversing its direction and returning it through the same number of turns 
to ensure that it returns to the identical starting amplitude. This test did indeed 
return the particle to the identical starting pointing within the precision expected 
from the previously determined roundoff errors. 

5 



5. Long-Term Running 

A standard worry in long-term simulation is whether artificial damping or beam 
blowup is caused by nonphysical artifacts of the code. 

In principle the code is fully symplectic. There are, however, a number of 
approximations that have been used. 

Fully accurate tracking involves a “finite momentum” correction. This correction 
is of the order of as/u where us is the longitudinal component of velocity, and V, the 
magnitude of the velocity. This is a very small correction indeed but it results in a 
loss by a factor of 2-3 in tracking speed. Most codes do not include this correction, 
and we have also omitted it for most running. We have, however, checked with 
a million turn thirty-two case run that inclusion of this factor did not effect the 
dynamic aperture determination. 

We have made long runs with linear lattices that show no growth or change in 
the Courant Snyder invariants. This demonstrates that roundoff errors that cause 
departures from symplecticity are sufficiently small in double precision simulations 
as to not cause problems. It also provides a check that coding artifacts do not 
appear to be producing spurious problems. 

6. Computation Requirements 

6.1 Memory Usage 

Considerable care was taken to minimize the memory requirements of the pro- 
gram. Typically, memory requirements are dominated by the array used to de- 
scribe the lumped multipole content around the machine plus, of course, a standard 
overhead of a few megabytes. An initial parameter statement sets the size of this 
multipole array. 

For a lattice of eight hundred quadrupoles there will be, including midcell loca- 
tions, sixteen hundred sets of multipoles. If multipoles up to sixth order are included 
for each lumped element the required storage is twelve REAL*8 numbers per loca- 
tion or a total of N 154,000 bytes per case. The program therefore is relatively 
modest in its demands for memory, even when used in a vector mode. 

6.2 Speed 

SSCTRK has made extensive SSC simulation studies. To economize super com- 
puter use we have assembly coded the actual short tracking routine. We give below 
in Table 1 typical cpu tracking times required for a model machine with eight hun- 
dred half-cells, lumping multipole errors into the center and ends of the half-cells, 
and multipole order up to six included. 

Current technologies are rapidly evolving, and it can be expected that the above 
performance figures will improve by substantial factors. Usually most of the required 
information can be obtained running between 32 to 64 cases for a lo5 turns each 

6 



Table 1: Benchmark computer speeds for SSCTRK. 

Scalar processors 
SUN SPARC workstations 
IBM 3080 
IBM 6000 workstation 

Vector processors 
CRAY 2 
CRAY YMP 
sx2 

15 particle turns/set 
80 particle turns/set 

100 particle turns/set 

1,000 particle turns/set 
2,000 particle turns/set 
3,000 particle turns/set 

I I I I I I 
0 zooo,ooo 4,000,~ WWOO 

Turns Sa2A1 

Figure 1: The evolution of the root of Courant and Schnyder invariant for individual particles 
averaged for 5,000 turns plotted against turn number out to six million turns. 

requiring N 1 hr of supercomputer time. At complete evaluation of evaluations of 
dynamic aperture using 32 parallel cases and 5 x lo6 turns per case can be run in 
about one day of cpu time. 

7. Typical Results 

Figure 1 shows the behavior of tracks launched at different amplitudes. Plotted 
is the root of the Courant and Schnyder invariant averaged over 5,000 turns versus 
turn number. At small amplitudes well within the dynamic aperture the amplitude is 
unchanging. At larger amplitudes the motion begins to show chaotic irregularities 
and beyond the dynamic aperture the particle motion is chaotic and loss occurs 
after 150,000 turns. An informative display of results is provided by a “loss-plot.” 
Figure 2 shows the history of a group of particles at four closely spaced amplitudes 
injected into an ensemble of eight Monte Carlo generated lattices for 4 cm aperture 
machines. The particles at amplitudes well above the dynamic aperture. After 
relatively few turns the particles are lost from the machine aperture. If a particle 
is lost it is restarted at a smaller initial amplitude. This process continues until it 

7 



- Particles 
lo5 E Surviving 

106 

105 

lo4 

lo3 

lo2 
I 

I I I 

Particles 
Lost from 
Aperture 

l- 

. 

I I I 1 I 
. 

. . . l .:y , (b) . .*I I ‘0.. ‘. .* .*: . . :‘:*’ :;. 
l . 
l :‘:yf 

“‘.rlf!:*~ 

. *I l . :. . 

10’ E . 
. . 

loo- I I I ’ I ’ I ’ 
. 

’ 
0 0.5 1.0 

7-w Initial Amplitude (cm) 6612A2 

Figure 2: Particles initially launched at 4 amplitudes close to 1.1 ems into eight Monte-Carlo 
generated lattice structures. After a particle leaves the aperture it is restarted at 1 mm in. Plotted 
is the logarithm of the number of turns prior to loss versus aperture. (a) Surviving particles and 
(b) lost particles. 

is injected at an amplitude just within the long-term dynamic amplitude. Plotted 
in Fig. 2(a) is the logarithm of the number of turns made by the surviving particles 
versus aperture; and in Fig. 2(b), the logarithm of the number of turns before loss 
versus aperture. The envelope of the curve in Fig. 2(b) effectively delineates the 
edge of the dynamic aperture as a function of turns. Typically, an increase in the 
number of turns required, by a factor of 30, will decrease the dynamic aperture by 
ln-lm. 

8. Conclusions and Future Directions 

On the basis of the above SSCTRK appears to provide a sound reliable basis to 
predict the SSC performance. This has been achieved via straightforward computer 
tracking. Computer ca.pabilities are increasing at a remarkable speed and over the 
next few years one can predict with confidence that tracking simulations for long 
storage times will become increasingly simple. 

For the future, detailed IP configurations and operational simulation capability 
will be added to the code. 

8 


