
SLAC-PUB-5297  Rev
May1991
(A)

COUPLING IMPEDANCE FOR MODERN ACCELERATORS*

S. A. Heifets and S. A. Kheifets
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

CONTENTS

List of Symbols
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .

II. Basic Definitions . . . . . . . . . . . . . . . . . . . . . . .
A. The longitudinal impedance . . . . . . . . . . . . . . . .
B. The transverse impedance . . . . . . . . . . . . . . . . .
C. The loss factor for a step . . . . . . . . . . . . . . . . .
D. The resistive wall impedance . . . . . . . . . . . . . . . .

III. Some General Theorems . . . . . . . . . . . . . . . . . . . .
A. The Panofsky- Wenzel theorem . . . . . . . . . . . . . . .
B. The radial dependence of the impedance. . . . . . . . . . .
C. Dispersion relations and the finite frequency sum rule . . . . .
D. The directional symmetry of the impedance . . . . . . . . .

-IV. The Modal Analysis of the Impedance . . . . . . . . . . . . . .
A. Field matching . . . . . . . . . . . . . . . . . . . . . . . .
B. The impedance of a cavity and a collimator . . . . . . . . .
C. The impedance of a step. . . . . . . . . . . . . . . . . .
D. A perturbation method . . . . . . . . . . . . . . . . . .
E. Trapped modes . . . . . . . . . . . . . . . . . . . . . .
F. The narrow-band impedance of bellows . . . . . . . . . . .

V. A Diffraction Model for the High-Frequency Impedance . . . . . .
A. A method of iteration . . . . . . . . . . . . . . . . . . .
B. A diffraction model for a cavity. . . . . . . . . . . . . . .
C. Loss factors in the diffraction model . . . . . . . . . . . .
D. A periodic array . . . . . . . . . . . . . . . . . . . . .
E .  Ataper. . . . . . . . . . . . . . . . . . . . . . . . .

VI. Analytical Results for the High-Frequency Impedance . . . . . . .
A. The basic system of algebraic equa,tions . . . . . . . . . . .
B. The impedance of a cavity in the zeroth-order approximation. .
C. The high-frequency impedance of a cavity in the . . . . . . .

diagonal approximation . . . . . . . . . . . . . . . . . .
D. The high-frequency impedance of an array of cavities . . . . .
E. The high-frequency impedance of a collimator . . . . . . . .
F. The impedance of a semi-infinite circular waveguide . . . . . .

VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . .
Acknowledgments
References

* Work supported by Department of Energy contract DE-AC03-76SF00515.
Submitted to Review of Modern Physics and

to American Institute of Physics Conference Proceedings:
Particle Accelerators, 1991



LIST OF SYMBOLS

Throughout the paper, boldface letters denote vectors.

Latin letters

A(P)
A&
a
a

Ii
d*
E%, t>
Ewk r, 0)

iB,(k, r)m
-E
AE

G&, 4
Go (r, 4
Y
s
Y l

H(r, t>

Hw(6 r, 0)

Hm

Irn

Jm
.
Jw

I(,

k
i
Ak
Sk
L

expansion coefficients
coefficients of Eq. (4.23)
beam pipe radius
transverse vector defining an offset of a bunch
expansion coefficients
expansion coefficients
beam pipe radius
velocity of light
beam pipe radius
expansion coefficients
electric field
Fourier harmonic of the electric field
azimuthal harmonic for mth mode
azimuthal harmonics for mth mode
particle energy
energy loss .L
particle charge
time Fourier harmonic of the Green’s function
space Fourier harmonic of the Green’s function
=  1(1(v) +  11(v)  Ko(Td)/Io(Td)
= ICo(v) - IO(v)  Ko(~d)/Io(~d)
cavity gap
= g/2b
taper length
magnetic field
Fourier harmonic of the magnetic field
Hankel functions of the first kind of the mth order
modified Bessel functions of the first kind of the mth order
Bessel functions of the first kind of the mth order
Fourier harmonic of the current density
modified Bessel functions of the second kind of the mth order
= 4C, wave number
=  k b
averaging interval of wave numbers
difference between neighboring resonance frequencies
length of variation of the cavity shape

2



L
M
m
N
no
n
PL
Pi

Q
Qx

q--.
R
RI
r0
r
rd4
S
dS
s
SB

_- t

Ki
dV
VA
V

W
w(s)w&, r>
WPwf
Xn, It, Yn,Znt

L

longitudinal period of a periodic structure
number of cavities in an array
azimuthal mode number, e.g. monopole m = 0, dipole m = 1, etc.
= 0, 1, . . . , M - 1, cavity number in an array
the integer closest to i
the unit vector normal to the surface
right-hand sides of Eq. (4.23)
= ailb , i = 1,2
= qk/rcy2p2
quality factor of a resonance X
1 total charge of a bunch
= yr: r’l = J(.z - ~5’)~ + r2 + r’ 2 - 2rr’cosO
shunt impedance of a mode X
bunch offset
transverse offset of the trailing particle
equation for a boundary in the (r, z) plane
surface
= n dS, surface element
distance inside a bunch
bunch spacing
time
energy stored in a mode X --
volume element
eigenfunctions of a mode X
particle velocity
total field energy
longitudinal point wake function
transverse point wake function
longitudinal resistive point wake function
transverse resistive point wake function
normalized expansion coefficients
Bessel functions of the second kind of the mth order
longitudinal resistive impedance
transverse resistive impedance
the impedance of a cavity
the impedance of a collimator
the impedance of a step-in
the impedance of a step-out
longitudinal impedance of a taper
longitudinal impedance
transverse impedance
=  47r/c E 3 7 7  52



21

22
.qNB
zjyB

real part of the impedance
imaginary part of the impedance
narrow-band longitudinal impedance
narrow-band transverse impedance

Greek letters

3
P
Y
YX-
Ynrn
Q9
w
sn
CN
77
Kl
2

PK.
f”

-Kout

“I
hz
Ah

Pn
P
Vn
Xn
XP
PW
PW

u

01
OR

;2

(44
%.O.

02
44

=  (27r~p/L)~ +  4rka2p/L
= v/c, relative particle velocity
= &/mc2, Lorentz factor

resonance width of a mode X
resonance width of a mode nm
the Dirac’s radial S-function
step function, 19(x)  = 1 for x > 0, 19(x) = 0 for x < 0.
effective surface impedance
local distance in the Nth cavity
parameter of a transition from a cavity regime to a step regime
longitudinal loss factor
loss factor of a mode X
loss factor of a step-in
loss factor of a step-out
transverse loss factor .L
= nx/g

= bdm
= gk/2
nth root of Jo, Vl < v2 < . . . < v,
= d’bn/2
= aR
normalized longitudinal charge density
Fourier component of the charge density
rms bunch length
transverse rms size of a bunch
resistivity
= WiP
= dk2 - p2 + 2ikq E + 0
frequency of a mode X
21 c/a, cutoff frequency
the Laplace  operator
terms of the order of c
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ABSTRACT

A systematic review of theoretical results for the longitudinal and transverse
impedances obtained by different methods is presented. The paper comprises def-
initions, general theorems, modal analysis, a diffraction model, and analytical
results. Several new results are included. In particular, necessary and sufficient
conditions are given for the independence of the impedance from the beam lon-
gitudinal direction. The impedances of two basic simple structures-that of a
cavity and that of a stepare  studied in detail. The transition from the regime
of a cavity to the regime of a step is explained, an approximate formula describ-
ing this transition is given, and the criterion for determining the applicability of
each regime is established. The asymptotic behavior of the impedance for a finite
number M of periodically arranged cavities as a function of M is studied. The
different behaviors of the impedance for a single cavity and that for an infinite
number of cavities are explained as resulting from the interference of the diffracted

--waves. A criterion for determining the transition in the impedance behavior from
small M to large M is presented. .L .w

I. INTRODUCTION

The major problem of accelerator physics today is to increase the stored
beam current. This is important for both existing and future high energy accel-
erators, since the rate of events in experiments with high energy particles drops
with the energy &, and increasing the beam current improves the yield.

The current stored in a modern high energy accelerator is limited by col-
lective instabilities (provided, of course, that the single-particle motion is stable,
as is the case for all accelerators). Collective instabilities could arise either from
direct electromagnetic (EM) tin eraction of particles in the same bunch, or indi-
rectly,  since a particle beam in an accelerator generates an electromagnetic field
while passing through discontinuities and variations in the cross-sectional shape
of the vacuum chamber.

Direct interaction between relativistic particles of the same bunch on a
straight trajectory becomes negligible with increasing energy, since the Coulomb
repulsion between the particles is compensated with an accuracy l/y2 << 1,
y = &/mc2, by their magnetic attraction. All the space-charge effects (such as
the Laslett tune shift [79]), h hw ic are dominant at low particle energies, can be
disregarded as y -+ 00. The interaction of particles on a bend trajectory com-
prises a very interesting subject [104] bu will not be considered here (see alsot
Refs. 8, 15, 59, 82, and 98).
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Stability of the ultrarelativistic particle motion depends mostly (apart from
the beam-beam interaction) on the interaction of the particle with electromag-
netic wakefields generated in accelerator structures by the particles moving ahead
of it. The wakefields in turn interact with the particles and may cause such collec-
tive effects as single- and multibunch collective instabilities, bunch lengthening,
increase in the bunch energy spread, its emittance growth, etc. - [39, 1271. The
discussion of the collective effects can be found, for example, in Refs. 16, 17, 54,
and 97. The properties of the wakefields and the methods for their calculation in
the ultrarelativistic limit y + 00 are the subjects of this paper.

The wakefield can be considered as a linear response of the system to an
external excitation produced in our case by a beam current. In general, the
response may be expressed in terms of a Green’s function. However, in most cases
it is sufficient to consider the average effect of the accelerator structure: an energy
loss of a particle and a transverse abrupt change in the particle momenta (kick),
which a particle experiences when passing through the structure. Wake functions
describe such average effects of an accelerator structure. They depend both on
the beam current distribution in the bunch and on the properties of the beam
environment.

To find the bunch wake function excited in a given structure by a bunch of
particles, it is helpful first to find the point wake function excited in it by a point
charge. After the point wake function is found, the bunch wake function can be
determined by its convolution with the charge distribution. Finding the point

--wake  function requires study of the propagation, diffraction, and interference of
the radiated EM waves.

In general, the point wake function has-three components. In &hat follows, .I’
we distinguish between two types of point wake functions: (1) the longitudinal
point wake function, i.e. its projection on the axis of the structure, and (2) the
transverse point wake function, the two-dimensional vector perpendicular to
the axis of the structure.

The point wake function describes the interaction of a particle with its en-
vironment in the time domain [5]. T he same interaction can also be described
in the frequency domain by the Fourier transform of the point wake function-
the coupling impedance [4, 1241. In what follows we consider the longitudinal and
transverse impedances.

The range of frequencies w studied here extends up to some high frequency
which is well above the cutoff frequency of the beam pipe of radius a, but is also
such that the corresponding dimensionless wave number is still small compared to
the particle Lorentz factor: 1 << wa/c << y. This range is sufficient for studying
the stability of the shortest bunches used in or designed for modern accelerators.
Below the cutoff frequency, impedance is defined by a few eigenmodes and can
easily be found by means of existing numerical codes. For w > CT/U  the impedance
falls off exponentially.

From its definition it is clear that the coupling impedance is a property of
the beam environment, but not of the beam itself. This is the main advantage
of the coupling impedance concept. The real (resistive) part of the longitudinal
impedance describes the energy loss. The imaginary part of the impedance is
responsible for an incoherent tune shift and bunch lengthening. If the frequency
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shifts of any two low-order synchrotron modes lead to their degeneracy, transverse
mode coupling (also called fast head-tail instability) occurs. Other instabilities,
such as microwave longitudinal instability and transverse fast blowup instability
depend on the absolute value of the impedance. It is worth mentioning that single-
bunch instabilities are due to the high-frequency impedance, whereas multibunch
instabilities depend on the low-frequency narrow-band impedance.

The narrow-band impedance may be described as a sum of narrow reso-
nances. Each resonance is produced by a localized mode whose frequency is below
or not much above the cutoff frequency of openings present in the structure. In
the time domain, this corresponds to a slow-decaying oscillating wake function.
In the high-frequency region, well above the cutoff frequency, the resonances over-
lap, producing a smooth frequency dependance  of the impedance. In the time. domain, this defines the short-range behavior of the wake function.

The high-frequency impedance describes interactions of particles due to the
presence of abrupt changes of the beam pipe cross section as well as high-frequency
tails of resonant structures such as radio-frequency (rf) cavities, bellows, vac-
uum ports, etc. It is significant if the bunch length is small compared to the
beam pipe radius. Until recently the bunch length in all accelerators was larger
than the beam pipe radius, and consequently the detailed behavior of the high-
frequency impedance was not a major concern. It was usually approximated by
single broad resonance parameters that were estimated from an experiment. This
model of the high-frequency impedance is usually referred to as a broad-band

- - impedance [55]. However, the new generation of accelerators, such as high energy
colliders, synchrotron light sources, storage rings designed to yield large numbers.-,
of mesons (& and B-factories), etc., utilizes very short bunches, and therefore the
energy loss is defined largely by the high-frequency impedance. This makes desir-
able a careful analytic analysis of the high-frequency behavior of the longitudinal
impedance [lo]. This subject is emphasized here.

This paper is restricted to theoretical methods and results for the impedance,
and does not discuss measurement techniques or purely numerical methods of the
impedance calculations.

-

The impedance of a given structure can be measured on a test bench either
by using a small dielectric probe and then interpreting the results according to the
Slatter theory [102], or by using a short current pulse sent through a wire [33, 991.
The impedance of the whole accelerator can be estimated from measurements of
bunch lengthening, the coherent tune shifts, etc. Lambertson [77]  and Palumbo
and Vaccaro [99] have discussed this subject.

Numerical calculation of the point wake function is not a simple task because
of the singularity of the charge distribution. Numerical methods are more appro-
priate for finding the bunch wake functions for nonsingular charge distributions
[117, 1181. T hey are also the only methods applicable to complex structures. Nev-
ertheless, such calculations require significant time even with the most advanced
computers.

A more conventional method consists of finding the impedance and using
its inverse Fourier transformation to find the point wake function. Clearly, use of
this method demands knowledge of the impedance up to very high frequencies.
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Direct numerical calculation of the impedance similarly faces difficulties from
the enormous number of resonance contributions that should be taken into account
[ill], which justifies development of the analytical and semianalytical methods
described here. Such methods not only provide useful formulae for estimating the
impedance but also give insight into the physics of the wakefield generation.

Whenever possible we check our results by the numeric code TBCI [119],
which allows calculation of the bunch wake functions in the time domain. Another
useful code for this purpose is ABC1 [19].

.

Throughout our discussion we assume that the particle energy is constant
and does not change as a result of the radiation in the structure. We also neglect
small oscillations of a particle moving in an accelerator. In other words, we assume
that the vector of the particle velocity v is constant (at least while the particle is
traveling through the structure under consideration) and is directed parallel to the
axis of the structure, which is the z-axis in the coordinate system we have chosen.
The particular case of a beam circulating in a toroidal cavity where Iv1 = constant
has been considered by Warnock and Morton [114,  1151,  Ng [86,87], and Ng and
Warnock [88].

We also neglect the resistivity of the metal walls (exception in Section 1I.D).
In the ultrarelativistic limit, the resistive corrections are negligibly small and are
outside the scope of this paper. The assumption of superconductivity allows us to
impose simple boundary conditions on the EM field, which substantially simplify
our derivations.

--(in th
Our main objective is to review the properties of the point wake function
e rme domain) or, equivalently, the behavior of the coupling impedance (in.-,t’

the frequency domain). The basic concepts are defined in Section II.
In Section III several general theorems concerning the impedances are stated.

Here we give the Panofsky-Wenzel [96] re a1 t ion of the transverse and longitudi-
nal point wake functions, and consequently the relation of the transverse and
longitudinal impedances. We then present the radial dependence of impedance
modes due to Weiland [120].  Two useful results follows: (1) an expression of the
impedance in the high-frequency region in terms of low-frequency eigenmodes,
and (2) a proof of the independence of the impedance from the direction of the
bunch motion along fz.

-

Section IV is devoted to evaluation of the narrow-band impedance for a step,
a cavity, and a collimator using the field matching technique. A perturbation
method is developed which simplifies calculations, and a hypothesis explaining
the appearance of trapped modes is suggested.

In Section V a simple diffraction approach for evaluating the high-frequency
impedance is developed. For two structures for which exact methods exist and
the impedances are known, this simple approach is shown to give correct results.

In Section VI we present some analytical calculations of the high-frequency
impedance. These can be done only in limited, cylindrically symmetric, simple
cases, such as a cavity or a step in a waveguide cross section. Nevertheless, there
are several reasons to consider these cases analytically.

(1) Analytical considerations improve our understanding of the details of
the radiation process.
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(2) Analytical results complement the purely numerical results of existing
codes, and provide an answer in parameter regions where existing codes have
difficulties.

(3) Analytical results for a cavity and for a step are interesting in themselves.
Sometimes, other more complicated structures can be considered as combinations
of cavities and steps. A good approximation for the coupling impedance of such a
structure could be a sum of contributions of its parts. Solutions for several inter-
esting structures can be obtained from the two cases studied here. For example,
a cylindrical pipe of radius a ending with an infinite flange is a special case of a
step in a pipe cross section from radius a to radius b in the limit as b + 00.

Because of the enormity of the field, we cannot present a comprehensive
. description of all the results obtained up to now, nor can we mention all the

. relevant papers. Our aim is to provide an introduction to the present status of
the field, with a representive list of references.

II. BASIC DEFINITIONS
A. The longitudinal impedance

The longitudinal point wake function wl is defined as the energy loss AEr
of a test particle with charge e, that follows, at a distance s, a point-like bunch
having total charge q = eN [3, 41;

AEr - eqwl(s) . (24
If the electric field E excited by the charge q is known, then the point wake

function can be found by integrating the instantaneous work produced by the field.-
on a trailing ultrarelativistic particle with an offset r:

Ccl

wl(s,r)  G -b
J

dt v - E(z, r, t)lz=vt--s  , v M c I (2.2)

Note that the field E(z, r, t) does not include the self-interaction of the particle.
The radiated part of the field satisfies the homogeneous wave equation and the
radiation condition IE] + 0 as z + foe [57].

Equations (2.1) and (2.2) can also be derived by considering the energy flow
of the EM field. The field of a particle moving along the axis z of a smooth pipe has
only two nonzero components: the radial electric E, and the azimuthal magnetic
Ho. The energy flow described by the Poynting vector P w E x H is directed along
the axis z and remains constant. There is no energy loss in this case. The field of a
particle changes at a discontinuity of the vacuum pipe, causing the energy loss. In
the first approximation, the loss is given by the product of the z component of the
electric field E, at the discontinuity and the unperturbed azimuthal component
Ho. This gives a nonzero  radial energy flux, producing Eqs. (2.1) and (2.2).

*The dimensions of the longitudinal wake function are V/C (volt per coulomb)
in the MKS system and l/cm in the CGS system. For this reason we chose not
to call this quantity the wake potential as is usually done. Dimensions of the
longitudinal impedance in these systems are R (ohm) in the MKS system and
set/cm  in the CGS system.
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In general, the radiated field depends on the transverse offsets of both the
trailing and the leading particles. The dependence on the transverse offset of the
trailing particle r is explicitly indicated in Eq. (2.2).

We define the Fourier harmonic of a function f(t) by

f(w) E /v d t  f ( t )  eiwt .

-CO
(2.3)

The longitudinal impedance Z,(w, r) is defined as a Fourier harmonic of the point
wake function:

loo
Zl(w,r) - ; J ds wl(s,r)  eiwslu . (2.4)

-03

If the particle velocity has only the longitudinal component vZ, the longitudinal
impedance is expressed in terms of the Fourier harmonic of the longitudinal electric
field:

zl(w,r) E -i J dz E,,(z,  r) e--iwzfv . (2.5)
-CO

For a single bunch, the energy loss K:I per particle averaged over the particle ._,
distribution in the bunch is given by the convolution of the point wake function
with the normalized longitudinal particle density p(s, r), s ds dr p(s, r) = 1:

Kl E (Wl(S))  = J dsldrl dwh p(sl, rl) p(s2, r2> w(sl - ~2, rl, r2) . (2.6)

In the case when the transverse dimensions of the bunch are small, p(s, r) can be
approximated by p(s)&(r) and the loss factor is

Kl = -2’, J dw -w) ~,+a~ . P-7)

Here Zl(w) E Zl(w, 0) and i(w) is the Fourier ha.rmonic  of p(s).-
For a particular case of a Gaussian longitudinal distribution of the bunch

density with the rms length CJ

its Fourier harmonic is real

/qw)  = e-w2a2/2c2  ) W-9
and there is no need to take the absolute value in Eq. (2.7).
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For resonant structures such as radio-frequency resonators, cavities, etc., the
impedance has narrow maxima at the resonance frequencies. Hence, the narrow-
band impedance may be represented by the sum of resonances:

zflB(w) =icK:, w-w:+iyl + w+w:+iyA) ’(
(2.10)

x

where WA,  yx, and K: are the frequencies, widths, and loss factors of the Xth reso-
nance, respectively. In the complex w-plane these parameters define the positions
of the poles and their residues. Equation (2.10) is usually written in the form

.z,NB(w) = c RA.
x 1 + ~QA(WA/W  - W/WA>  ’

(2.11)

where K: and yx are related to the shunt impedance Rx and the quality factor &A:

1 _ wxRx 1 WAKA - -
2&x ’ Yx = Fgy’ (2.12)

For example, for the fundamental. mode of a typical rf resonator (R/Q)0 M 200 R,
and for wg M 500 MHz, the loss factor ~‘0 M 0.35 cm-‘.*  In the time domain, the
point wake function that corresponds to the narrow-band impedance Eq. (2.10) is

w(s) = 2 c tci cos (wxs/v)  e-wxs~2Qxv  , s>o: (2.13)“’
x

The action of a bunch on a trailing particle at some large distance s is domi-
nated by a few low-frequency higher-order modes (HOM). On the other hand, for
s = 0 [123],

Wl(0) =  c K: . (2.14)
x

-

The seeming discrepancy between this formula and Eq. (2.13) is a consequence of
the fundamental theorem of beam loading [123].  The factor l/2 appears because
a particle is subject to the wake function produced only by the charge preceding
it and hence “feels” on average l/2 of its own charge. Since there is no EM field
in front of an ultrarelativistic particle, it follows from the causality principle that
wl(s) = 0 for s < 0. The energy loss per particle into a single mode X of an
infinitely short bunch is

A&x 21- = e Kx .
N

(2.15)

*Sometimes the loss factor is expressed in units of volts per picocoulomb (V/PC),
1 V/pC = 1.11 cm-l.
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The loss factor K: can be expressed [123] in terms of the eigenfunction Ei corre-
sponding to the mode X:

K’x = IW2
4ux ’

where

VA = J dzEi(z)  e-iwzlv

(2.16)

(2.17)

and Ux is the energy stored in the mode X.
In practice, the loss factors and the resonance frequencies of the low modes

are found numerically by using a suitable computer code such as URMEL [121],
SUPERFISH [40], AMOS [23] or others for two-dimensional (2-D) structures. For
3-D calculations one can use code MAFIA [74], ARGUS [84] or MAGIC [22].

In the case when the bunch wake functions are excited by a train of equidis-
tant bunches with bunch spacing sg, the interference of the fields excited in the
same structure by different bunches of the train has to be taken into account [124].
The loss factor of a given mode in the limit v + c should be multiplied by a fac-
tor F(kxsB/2&x,  kxsg),  where kx = WA/C and &A are the mode wave number and
the quality factor, respectively. The function F of two arguments is

J&Y)  -
sinh x

coshx - cosy ’ (2.18)

--If &A >> 1 and the condition for the resonance excitation kxsg = 27rn,  n an
integer, is fulfilled, the loss factor can be substantially enhanced, i.e.

._I

F 4Qx

?i&
(2.19)

Modal analysis is an effective way to calculate the impedance for frequencies
below or comparable to the cutoff frequency w,.,.  N c/a, where a is the beam
pipe radius. For higher frequencies, the density of the resonances increases. In
addition, since such an EM field may propagate in the beam pipe, the widths
of the resonances get large. In this case the impedance as a function of the
frequency becomes extremely complicated. Observable effects though, can always
be described by an expression containing the convolution of the impedance with
the spectral density of the bunch. Hence, only the average impedance plays a role.
Such a high-frequency impedance is a smooth function of the frequency.

B. The transverse impedance

A particle moving in a cylindrically symmetric structure that is uniform in
the longitudinal direction with an offset, generates transverse Eh/I field propagat-
ing with the particle. However, in the ultrarelativistic case, the transverse electric
and magnetic forces cancel each other, and hence the net transverse kick is zero.
Any disruption of the uniformity impairs this balance, and a particle experiences
transverse force that depends on both the bunch and the particle offsets. For a
small magnitude of the bunch offset ra, the transverse EM field is proportional
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to ro. The dependence on the bunch offset can be removed from all the expres-
sions by dividing them by ro. The conventional definition of the transverse wake
function is done in this way. The price for this is different dimensions of the re-
spective transverse and longitudinal wake functions, loss factors, and impedances.

Correspondingly, the transverse point wake function is defined as the inte-
grated transverse kick caused by the transverse component of the radiated field
divided by the bunch offset ro:

w

wl(s,r)  = -A J (d z  E+xxH
C >I (z, r, %=(z+s)/v  s

-W
(2.20)

The transverse impedance Z,(w) is defined as the wth Fourier harmonic of -iwl:

w

Zl(w,r) = -:‘J ds wl(s,r) eiwsiv ,
V

- w

or, cf. Eq. (2.5),

.W

Zl(w,r) = -2‘J (dz
_ cc-0

E, + 1 x H, I
C >

e--iwz/v  .

-w

(2.21)

(2.22)

The transverse loss factor is defined analogously to Eq. (2.7): *

dwlBb412  u-4 - (2.23) -

Here Z,(w)  = Z_L(W,O).
The transverse narrow-band impedance can be represented by a sum over

the pole terms:

(2.24)

This gives the transverse point wake function

wl(s) = 2 C K; sin(wxs/v) e-wxs/2Qxv  , s>o. (2.25)
x

Similarly to Eq. (2.16) the transverse loss factors K; can also be expressed [2, 51
in terms of the eigenfunctions VA:

c v,*vgf,,f& = -
w-0 h ’

(2.26)

where VI means the derivative over r.

13



I I
I b

03

a

S-90

qP 0 2
5423Al

Figure 2.1 Geometry of the waveguide cross-section step and the coordinate sys-
tern: (a) incoming charge, (b) outgoing charge.

C. The loss factor for a step .L .w.

-To illustrate the concept of a longitudinal loss factor, we estimate it here for
a simple example of an abrupt change in the cross section of a circular waveguide
from radius a to radius b (a step); see Fig. 2.1.

We start by considering a particle moving in free space. It is convenient to
direct the z-axis along the particle trajectory. For an ultrarelativistic particle, a
good approximation for the nonzero  components of the field in the region r < -y/k
is

E 2q ikzwT = - e ,cr
(2.27)

H 2q ikzwe=-e .
cr

(2.28)

The field propagates synchronously with the charge. In the region kr > ,@y the
field is exponentially small. The total field energy of the charge is given by

w W W C-717

w = 2T J Jdt rdr : (E x H)Z = -27rc J Jrdr d w  IEw712 .  ( 2 . 2 9 )
- w 0 rmin 0

With the field from Eq. (2.27),  the integral diverges at small r:

WE&.
rmin

(2.30)
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If rmin is the classical electron radius e2/,c2,  the energy of the synchronous
component of the field W is of the order of the energy of a particle E: W N I,
and it actually depends on the definition of the electron mass and the charge of a
particle. For a rigid bunch of N particles the contribution of all particles

,ik(ti-2,) (2.31)

can be found by replacing the sum by the integral over the normalized distribution
function p(z):

- . JEw712 =  (5,” /- dq dz2 p(q) p(z2) eik(zl--zz)  .

For a Gaussian bunch with rms length u the energy per particle is

(2.32)

(2.33)

Consider now a particle moving in a circular waveguide of radius a. For
ya > a the energy of the synchronous component of the field moving with the
particle is

(2.34)

Suppose now that the particle passes through an abrupt change of the pipe.-
cross section. Then the change in the energy of the synchronous component of
the field AW is the difference W(a) - W(b):

A W  =  -21 1,:. (2.35)

We must distinguish two cases: a particle entering a narrowing pipe (a step-
in) and a particle exiting into a broadening pipe (a step-out). The energy loss in
these two cases is defined by the term AW and the radiated energy A&,.,d:

& = A&,,d - AW , (2.36)

1
Kout  = A&,,, + AW . (2.37)

For the step-in case, the radiation propagates in the direction opposite to
the direction of the particle motion.
the particle is small, I&

Hence, the interaction of the field with
M 0. The energy of the radiation is taken out of the

synchronous component of the field: A&r,,d M AW. From Eq. (2.37) for the step-
out case, we obtain

&bt =
2Ne2 ln b2 A W  =  -
J;;u a’

(2.38)

More accurate calculation shows that nfn is not exactly zero but has a small nega-
tive value. This corresponds to the gain of energy [14, 671 that can be interpreted

15



as the attraction by the image charge. Thus, KLUt is less than given by Eq. (2.38).
Nevertheless, the difference is always the constant

1 1 2Ne2 b
Kout - %n = 2AW = -

J&T %-
(2.39)

Since below the cutoff frequency of a pipe no radiation occurs, A&,,, = 0,
for a long bunch u > a it follows from Eqs. (2.36) and (2.37) that & = -AW
and xLUt = AW, i.e. the absolute value of the energy loss or gain AW in such
a case equals half the value of the energy loss KiUt for a step-out. The above
consideration for the energy loss is also applicable to the longitudinal impedance;
seesection  1V.C.

D. The resistive wall impedance

One particular source of the high-frequency impedance is the resistivity of
the beam pipe walls. Although the effects of the resistivity in the ultrarelativis-
tic case are small and are neglected here, we present formulae for the point wake
functions and the impedances forcomparison with those produced by discontinu-
ities of the waveguide.

The longitudinal point wake function generated by the image current flowing
-in the wall of radius a with resistivity a~ decays asymptotically with the distance
s behind the leading particle as s-‘I2 [16, 85t

.w.

1 312w;(s) = +-& 2 -d-0 f o r  s > O .
s

(2.40) -

The corresponding resistive impedance per unit length is inductive and increases
with frequency:

(2.41)

Here 20 = 4n/c = 377 ohm.
Similarly, the transverse point wake function decays asymptotically with the

distance s behind the leading particle as s-l/2:

f o r  s>O. (2.42)

The corresponding resistive impedance per unit length decreases with frequency:

(2.43)
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III. SOME GENERAL THEOREMS

In this section we discuss several useful general statements regarding the
coupling impedances.

A. The Panofsky-Wenzel theorem

The Panofsky-Wenzel theorem [96] gives the relation between the longitudi-
nal and transverse point wake functions:

dwds, r> =
8.5

i 7~ w(v) . (3-l)
This relationship follows directly from the definitions of Eqs. (2.2) and (2.20) and
Maxwell’s equation ikH = V x E, provided that transverse components of the
radiated field are zero at infinity:

limEl(z,  r, t) = 0 a s  z+*:oo. (3.2)
By applying the Fourier transformation in the longitudinal coordinate s to

both sides of Eq. (3.1), one obtains the expression for the transverse impedance
in terms of the transverse gradient of the longitudinal impedance:

(3.3)
.w.

B. The radial dependence of the impedance

For cylindrically symmetric structures the radial dependence of the coupling
impedances in the &rarelativistic  case was found explicitly by Weiland [120].
To obtain his result, note that the radiated part of the EM field satisfies the
homogeneous wave equation. For its Fourier harmonic E,, the equation is

V2E,+k2E, =  0 , k = E.
C

The synchronous component of the field, i.e. the component whose phase
velocity equals the velocity c of the particle, is then defined as

Ek(r,6)  G
J

dz Ew(z,r,8) eeikz  . P-5)
-CO

The boundary conditions for Eo(z, r, 0) mix components of &(r, 0) with different
k. However, for cylindrically symmetric structures, the boundary conditions do
not mix the azimuthal harmonics E,, which are the coefficients in the expansion:

Ek(r,fl)  =  c E,(k,r) eime . (3.6)
m

Hence, the azimuthal harmonics can be treated independently from each other.
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The equations for the projections of the azimuthal harmonics are easy to
obtain by using Eqs. (3.4) and (3.5):

( ld d m2---r-s-
r dr dr r2 >

&‘(k,r) = 0 ,

( ld d----f-s (m f 1)2
r dr dr r2 >

&?(k,r) = 0 7

(3.7)

(3.8)

where EC) - J!$) f i~$). The solutions of Eqs. (3.7) and (3.8) which are finite
on the axis r = 0 are

&‘(k,r) = $(k)rm ) m20, W)

Ec)(k,r) = Y~)(k)rmfl , (m f 1) > 0 , (3.10)

where functions T:)(k) and TE)(k) are defined by the boundary condition for
Ek(r,d). Under the conditions considered here, the longitudinal and transverse
impedances for each mode m can be expressed in term of J$)(L, r) :

(3.11)

z
1 a&‘@, T-) mYt)( k) m-ltm = - -

qk dr = - qk
r 7 rnz.1, (3.12).-

im ,&‘(k, r)
zg, =  - -

imTk)( k) m - l=- r
qk r qk

7 m>l. (3.13) - -

These formulae, which agree with the Panofsky-Wenzel theorem, Eq. (3.3), give
the scaling of the impedance with the offset r of the trailing particle. In the
dimensionless form, Zl, - (~/a)~  and Zl, - (r/a)m-l  where a is a character-
istic transverse dimension-for example the pipe radius. Usually the transverse
size of the bunch al is much smaller than a (to prevent particle losses, usually
a 2 (10 to 20)~). Hence, the monopole mode (m = 0) dominates the longitudi-
nal impedance, and the dipole mode (m = 1) dominates the transverse impedance.
Higher-order modes m 2 2 can dilute the transverse emittance  of a bunch. How-
ever, this effect is usually negligible.

From Eqs. (3.11) to (3.13),  it follows that the longitudinal impedance of the
azimuthally symmetric monopole mode (m = 0) is independent of the coordinate
r. The transverse impedance of this mode is zero. Hence, in this case the longi-
tudinal impedance can be calculated by integrating the field over z at any value
of the coordinate r. In particular, it is convenient to integrate the field along the
pipe wall and its continuation inside the structure. Since the longitudinal field
on the wall is zero, the integration is restricted to the line inside the structure
only. With subsequent resealing of the respective impedance with the offset r,
this procedure can be applied to any other mode m as well.
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For the dipole mode m = 1 from Eq. (3.12),  it follows that

z
Tl

= &llr=a

ku ’
(3.14)

In what follows we consider the longitudinal impedance. -The transverse
impedance can be obtained from it by applying either Eq. (3.14) for m = 1, or
the Panofsky-Wenzel theorem for any m.

C. Dispersion relations and the finite frequency sum rule

Several important properties of the impedance can be derived from the an-
alytic continuation of the impedance into the complex w plane. First, the point
wake function is real by definition. Therefore,

q-w*)  = +.qw) ) (3.15)

where an asterisk indicates the complex conjugate value. It follows from this equa-
tion that Im Zl(O) = 0. [Note that according to the definition of the transverse
impedance Eq. (2.22),  Zl(-w*) = -Z;(w)].

Next, causality requires that in the ultrarelativistic limit y + 00 there is no
field in front of the charge:

w ( s )  =  0 for s < 0 . (3.16) ._I
Therefore, all the singularities of the impedance must lie in the lower half of

the complex w plane. Provided that Z,(w) tends to zero as ]w] + 00, the Cauchy
integral formulae give the following Kramers-Kronig dispersion relations between
Z,(w) and 22(w), the real and imaginary parts of the longitudinal impedance,
respectively:

-

00

Zl(w) =  3 P V
J

du vZ2(4
3 - ,2 '

0

CCJ

Z,(w) =  - i?f P V  du v?(v)
Ii- J --,2 '

0

(3.17)

(3.18)

where PV denotes the principal value of the integral. If the impedance tends to a
finite limit as ]w] -+ 00, similar dispersion relations hold for the difference between
the impedances at finite and infinite w. The dispersion relations allow one to find
the impedance by calculating either the real or the imaginary part only.

The dispersion relations can be used to determine the asymptotic behavior
of the impedance from the parameters of its low-frequency resonances [46].  The
derivation of this formula is similar to that of the finite energy sum rule [56].
Analogously, we call this result the finite frequency sum rule.
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Suppose, for example, that the high-frequency tail of the impedance of some
structure decreases with frequency as w-1/2, cf. Eq. (6.32), and that it can be
expanded for large w into a power series in w -Ii2 (to the end of Section III.C, we
restrict frequency w to positive values, w > 0). We know that such asymptotic
behavior has, for example, the impedance of a cavity with side pipes [24, 47, 50,
80, 811. In this case Eq. (3.15) gives

G(w) = (1+i) ica - + --J + o(w-312)  ,Jw
(3.19)

where Q and [ are two unknown real constants. We keep here the first few terms
of the impedance expansion.

_ Consider the difference
cr(1+i) ;c

B(w) = Zl(W) - + -; . (3.20)

The function g(w) decreases asymptotically, at least as w-3/2. Its real part Sr
satisfies the dispersion relation Eq. (3.17). It s imaginary part .& has an additional
pole at w = 0. Hence, the dispersion relation for it must be

gj2(w)  = -4 - 2
w lr

P V  *dv j$), .
J W
0

(3.21)

To assure the correct asymptotic behavior .&J(W) M we3i2 for 1.~1 -+ co, the ._,
following superconvergence relation must hold:

J d&(v) =  2 . (3.22) -
0

Otherwise, 22(w)  would fall off as w-r,  which is too slow.
Define now a sufficiently large frequency wc such that for any w > wc

&(w) = %[1+0(?)]  *

Then for any R > wc, Eq. (3.22) gives
R

J [
dv Z,(Y) - g] = $[1+0($]  )

0

or

1
a = 2&l

dvZl(v)  -

(3.23)

(3.24)

(3.25)

Note that the right-hand side of this expression is independent of R, since (Y is a
constant independent of w.
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In the region w < 0,’ Z,(w) can be represented as the sum of resonant
terms. Using Eq. (2.10) we obtain

(3.26)

Equation (3.19) now defines the impedance for all w in terms of the parameters
of several low-frequency resonances:

(3.27)

Here d(x) is the step function:
The parameters K:,

29(x)  = 1 for II: > 0, and d(x) = 0 for x < 0.
WA, a.nd yx can easily be found for any given structure by one

of the existing computer codes, e.g. URMEL. If R is large enough, Z,(w) obtained
in this way is independent of the particular choice of 0. The sum

c(n) E c KA (3.28)
wx<n

.-
can be parametrized as

(3.29) -

from which both unknown parameters cr and [ can be found.
Figure 3.1 [43] illustrates this procedure. The sum Eq. (3.28) was calculated

with the help of the code URMEL for the CEBAF cavity (the fundamental and
cutoff frequencies are 1.5 GHz and 3.2 GHz, respectively) and is plotted here as a
function of R. Parametrization by Eq. (3.29) (solid line in Fig. 3.1) gives 5 = 0 and
shows that cr is independent of R for R larger than, say, twice the cutoff frequency.

D. The directional symmetry of the impedance

The lack of dependence of the impedance on whether the bunch is moving
in the +z or the -.z direction is an important feature of an accelerator structure.
Recently Gluckstern and Zotter [29] considered a cylindrically symmetric but lon-
gitudinally asymmetric cavity with side pipes of equal radii. They were able to
prove that for a relativistic particle the longitudinal impedance of a cavity with
arbitrary shape is independent of the direction along the z-axis in which the bunch
travels. Their result corroborates numerical observations of the independence of
the bunch wake function obtained with the code TBCI. Bisognano [ll] gives an
elegant proof of the same statement. His approach is based on a reciprocity rela-
tion applied to the tensor Green’s function.
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Figure 3.1 The finite frequency sum rule [see Eq. (3.28)]. Crosses represent
results of numerical calculations. The curve is a parametrization by
Eq. (3.29).

We follow here his idea in a somewhat simpler way [45] to obtain a more
general and physically transparent proof of this property for both longitudinal and.,.
transverse impedances. The result is valid for a cavity with no azimuthal symme-
try, and for arbitrary particle velocity as long as it may be considered constant.
At the same time it is shown that the impedance is directionally symmetric only
if the entrance and exit side beam pipes have the same cross sections.

Consider a cavity of arbitrary configuration and let a bunch travel through
it along the axis z. We attach a subscript, + or -, to all quantities pertaining
to the cases when the bunch travels in the positive or negative direction parallel
to the z axis. To examine both the longitudinal and transverse impedances, we
assume that the bunch trajectory is offset from the axis by a transverse vector a.

The current densities have only z-component. The Fourier harmonics are

jwz+  =  qS(r - a )  exp(iwz/v) , Pw+ =  jwz+/2’ , (3.30)

j,,- =  -qS(r - a )  exp(-iwz/w) , pw- =  -jwJ?J  . (3.31)

Note that

j,- = -j:+ 9 pw- = PC+ *

The fields E,+ and E,- excited by such sources satisfy the following wave
equations:

47riw .
Ew+ = 4~77pw+  - ~2 Jw+ , (3.33)
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(v2+ $) 47riw
E,- =  47rVp,- - 7 j,- ,

as well as the boundary conditions for their tangential components:

Ew+ltan  =  0 , Ew-Itan =  0 ,
and the radiation conditions for the radiated part of the EM field:

I

lim E;“%, r, t)lt+++ = 0 ,
a s  z-kfc~.

limEI_ad(z,  r, t)lt++,)/,  = 0 ,

The longitudinal impedances Z+ and Z- are, cf. Eq. (2.5)’
00

1Z + ( w , r )  =. - -
Q J

dzE,,+(r, z) e--iwzlv  ,

(3.34)

(3.35)

(3.36)

(3.37)
- C O

co

Z-(w,r)  = +i
Q J

dzE,,- (r, z) e+iwzlw  . (3.38)
-00

Let us find out under what conditions the fields E,+ and E,- are complex
.-conjugates  of one another. Substituting Eq. (3.32) into Eq. (3.34) and taking its

complex conjugate, we obtain ._I
47riw

EL- =  47rVp,+ - c2 jw+ .

The boundary conditions shown in Eq. (3.35) are also valid for E:-. We now
need only one additional assumption, that no incident waves accompany particles
+ and -; then the equations and all the boundary conditions for EL- and E,+
are the same, and we may conclude that

EL- = E,+ . (3.40)
From the Maxwell equation i(w/c)  Hk = V x Ek, it follows that

Hz+ = -H,- . (3.41)

We now multiply Eq. (3.33) by E,- and Eq. (3.34) by E,+, subtract the
results, and integrate the difference over the volume of the cavity and the side
pipes bounded by imaginary cross sections at z = &t,[ + 00. We then obtain
the Lorentz reciprocity theorem [2O]:

4lr
T J dV(E,- . jw+ - E,+ . j,- ) = Jds - (E,, x H,- - E,- x H,+) . (3.42)

The integration on the right-hand side is performed over the surface enclosing the
volume over which the integration on the left-hand side is performed, i.e. over the
walls of the cavity, the walls of the side pipes, and the bounding cross sections.
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Since the tangential electric field on the walls is zero, it is sufficient to perform
the integration only over these cross sections. The integration over the transverse
coordinates in the left side of Eq. (3.42) is p fer ormed easily by using Eq. (3.30).
The remaining integration over z gives the longitudinal impedance, cf. Eqs. (3.37)
and (3.38). We obt ain the following expression for the difference betweem the
impedances for two directions of the bunch travel:

!?!if [Z-(w,r) - Z+(w,r)]  =
c

s.dS . [(E,+  x H,- - E,- x H,+)r, - (Ew+ x Hw- - Ew- x Hw+M 7 (3.43)

where the subscripts R and L refer to the beam pipe cross section at z = A[,
respectively. By using Eqs. (3..40) and (3.41) this equation can be rewritten as

!T2 [Z-(w, r) - Z+(w, r)] =
C

J dS - [(E,+ x H;+ + EL+ x H~+)R  - (Ew+ x H;, + E:, x H~+)L]  . (3.44)

The right-hand side of this equation is real. Hence, the imaginary  Parts  of
.-the impedances are equal: -

ImZ+(w, r) = ImZ-.(w, r) . (3.45) .-I

The integrals in the right-hand side of Eq. (3.44) have a simple physical
meaning. They give the EM field energy flow through the cross sections of the side
pipes. If these cross sections are far enough from the cavity, then the only part of
the EM field impinging on them is the synchronous component accompanying the
bunch. This is a direct consequence of the radiation condition, Eq. (3.36)’ which
is assumed to be fulfilled here. For the case when both side pipes have similar
and equal cross sections, the synchronous components of the field at z = foe are
the same. It follows then from Eq. (3.44) that the two longitudinal impedances
are equal. Applying now the Panofsky-Wenzel theorem, Eq. (3.3), we see that the
same is true for the transverse impedances.

- However, for unequal or nonsimilar pipe cross sections, the synchronous
components of the two fields are different, even at z = foe. We cannot say
that Eqs. (3.40) and (3.41) are necessarily true. In this case the real parts of the
impedances for two directions may differ by a constant.

In the ultrarelativistic case, y t 00, for the side pipes with round cross
sections, the difference between the energies of the synchronous components in the
pipes with radii a and b is proportional to the constant In (b/u) [l], cf. Section 1I.C.
Hence, the difference between the real parts of the impedances is proportional to
the same constant. The impedance for such a case is calculated in Section 1V.C
[62, 631.
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IV. THE MODAL ANALYSIS OF THE IMPEDANCE

We now turn to the study of the narrow-band impedance given by the sum of
resonant contributions of eigenmodes, Eqs. (2.13) and (2.14). Effectively, only the
modes that have frequencies below or comparable to the cutoff frequency w,.,. N
c/u of the beam pipe with radius a contribute to the narrow-band impedance
[42]. The widths of the resonance peaks above the cutoff frequencies rapidly
become large and their height decreases. The resonance curves overlap, producing
a smooth high-frequency impedance considered in Sections V and VI.

The narrow-band impedance can be found analytically in the case when the
structure may be divided into several parts for which the solutions of the Maxwell

. equations are known. The field for the whole structure can then be found by
the field-matching technique [60, 1281, i.e. by requiring the field to be continuous
across contiguous regions.

The field-matching technique is described in Section 1V.A. With its use,
the exact infinite system of linear equations for unknown coefficients of the field
expansions into eigenmodes is derived. For low-frequency modes, the system of
coupled equations can be solved either by perturbation methods or by series trun-
cation. We demonstrate the method of truncation for a cavity and a collimator
in Section IV.B, and for a step in the waveguide cross section in Section 1V.C.
The method of perturbation, applicable for an arbitrary cylindrically symmetric

.-cavity, is described in Section 1V.D. Comparison of the two methods shows good
agreement. In Section 1V.E we briefly discuss the problem of trapped modes. ._,

In cases of smoothly varying boundaries, the field-matching technique is
hard to apply. Structures of this type are widely used in accelerators in the
form of bellows. Several methods have been developed for such cases [18, 21,
61, 66, 72, 74-761.  To illustrate an approach for such cases, in Section 1V.F we
describe the calculation of the longitudinal narrow-band impedance for bellows
[75]. Calculations of the transverse narrow-band impedance have been published
[72, 761.

A. Field matching

-
The field-matching technique [60] will be demonstrated for axially symmetric

structures, such as those sketched in Fig. 4.1 for a cavity (a) and a collimator (b).
The symmetry axis is the z-axis. We chose the interfaces to be at z f g/2. The
point charge q is assumed to move on the axis with speed v. The Fourier harmonic
of the current density, cf. Eq. (3.30),  has only the z-component:

jwz = q@-) exp (WP) ,
where k = w/c, p = v/c, and S(r) is Dirac’s radial S-function.

The Fourier components of the solution of the Maxwell equations that satisfy
the boundary condition E,(z) = 0 on the pipe wall and the radiation condition at
z = 00 are known [103]. We denote such a solution for the region z > g/2 by the
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Figure 4.1 Cylindrically symmetric structures of radius b and length g with side
pipes of radii al and ~2; (a) a cavity, (b) a collimator.

. superscript + and for the region z < -g/2 by the superscript -. It is convenient
to introduce the following notations:

Q =  qklw2P2 ,

Go(r,d)  =  Ko(v) - IO(v)  Ko(Td)/Io(7d)  , (4.3)

where d stands for al or uz>and  r = k/+yP.  Ko, 1-1, lo, and 11 are modified Bessel
--functions of the second and first kind of the zeroth and first order, respectively.

For 7 >> 1, yQGl(d,d) = Zoq/4r2d, w here 20 = 377 R. With these notations .*’

E,‘, = yQGl(r,  d) exp(ikz/P) -i c &&Jd)Jl(~~r/d)xJ, exp(fiz&) , (4.4)
n

E,‘, = -iQGo(r,  d) exp(ikz/P) + c B$(~~/d2)Jo(~~+) exp(fiz&) ) (4.5)
n

H,fs = y,BQGl(r, d) exp(ikz/@ - ik c B,f(vn/d)J1(vnr/d)  exp(fizXd,)  . (4.6)
n

Here Jo and J1 are Bessel functions of the first kind of the zeroth and the first- order, and ~1 < ~2 < . . . . < co are the roots of JO. The signs of the imaginary
parts of the propagation constants Xdn = dm should be chosen positive:
Im Xdn > 0. Such a choice is defined by the radiation condition, cf. Eq. (3.36).

The first terms in Eqs. (4.4) to (4.6) correspond to the synchronous compo-
nent of the EM field. Each term in the sums of these expressions describes either
(a) the nth diffracted wave propagating in the positive z direction, if k > v,/a2,
or (b) an evanescent wave, if k < u,/u~. Similarly, for the reflected field each
term describes either (a) the nth wave propagating in the negative z direction, if
k > u,/ul, or (b) an evanescent wave, if k < v,/al. For any given k, there are
finite numbers of propagating waves and an infinite number of evanescent waves.
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We also need to define similar expressions for the region -g/2 < z < g/2
with radius b (region 2 in Fig. 4.1):

e, = rQGl(r,  b) ew (iWP>

- i C (vn/b)Jl(vnr/b)&n [C+ eXp(iZ&)  - C- eXp(-iZ&n)]  7 (4.7)
n

E;, = - i&Go(r)  b) exp (ikz/,f?)

+ c (ui/b2)  Jo(w/b) [C+ exp(izXa,)  + C- exp( -iz&)]  ,
n

(4.8)

f& = rPQG1 (r, b) exp @z/P)

- i k  C (vn/b) Jl(vnrlb) [C+exp(izXb,)  + C- exp( -izh)l . (4.9)
n

For certainty, the same positive sign is chosen for the propagation constant in
region 2: Im Xb, > 0.

Expansions of the EM field are constructed in such a way as to fulfill the
boundary condition on the wall of the pipe in any region with a constant pipe
radius. For example, for r = a2 and for all z > g/2, Et(z)  = 0. On the other

-hand, unknown coefficients B,f and C* have to be defined by the boundary and
continuity conditions in the planes z = fg/2 between adjacent cylindrical regions:‘“’
(a) the radial component of the electric field on the inner side of the wall should
be equal to zero for all r, and (b) all three components of the field should be
continuous through the opening.

For example, in the case of a cavity at z = g/2 for a2 < r < b,

E&.(r) =  0 , (4.10)

and for r < ~22,

E,+,(r) = G?,(r) , (4.11)

J%(r) = ES (4 * (4.12)

Analogous expressions can be written for another cavity interface at z =
-g/2, and for a collimator.

Introduce now dimensionless variables:

; = kb, (4.13)

pi = ui/b 7 i = l ,  2 , (4.14)

c = g/2b. (4.15)

In these variables the propagation constants are
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&in E X,;,b = @ - L$/$ , i=l, 2 , (4.16)

ibn G &,b = di2 - v;4. . (4.17)

It is also convenient to redefine the expansion coefficients

XVl = (iwc/2bQ)  exp [@(x/P + Ian)] B, , (4.18)

t, = (im/2bQ) exp [--@(i/P + L)] Ci , (4.19)

Yn =  (inc/2bQ)  e x p  [Gj(L/p - ibn)] Cz , (4.20)

zn = -(irc/2bQ)  exp [-Gj(K/p - xazR)]  Bz . (4.21)

The expressions for the field components [63] in the planes z = -g/2 and
z = g/2 in these variables are, correspondingly,

E& = (‘JQ/acb) exp(--W/P) [(@W2)W-,  ~1)

+ (l/Pl)~nXnY,Jl(Vn~/~l)Jaln]  7 (4.4a)

EL = (2Q/rcb) exp( --&T/P)  [( i/27P2)G (7-,  b) ,

+ LvnJl{vnr/b)Lz{tn ex&%(i/P + Am)] - Ynl] 7 (4.8~)

Eiz = -(2iQ/wcb)  exp(-&g/p)  [(i/2-y2p2)Go(r,al)  .

+ (l/pf)Lxnv~ Jo(vnr/al)] 3

Ez, = -(2iQ/acb)  exp(-&j/P) [(t/2y2p2)Go(r,  b)

+ C,viJo(vnr/b){tn exp[2@(V/3 + L)l + Yn)] , (4.8b)
and

E$. = (2&/d) exp(i~g/P)[(~/2yp2)Gl(r,a2)

+ (l/p2)Cnznvn J1 (vnr/a2)Ln] 7 (4.4c)

Je, = (‘JQ/~cb)exp(&T/~)  [(@yB2)G(7-,  b)

+ Cnvn  J1 (vnr/b)jbn{  tn - yn exp[-%7( i/P - Ln)]}] 7 (4.8~)

E+ = -(2iQ/rcb)  exp(&c/P)  [(1/2y2p2)Go(r,  ~2)WZ

- (l/~~)Cnznv~J0(v,r/a2)]  , (4.4d)

E;, = -(2iQ/rcb)  exp(ikj/P) [(i/%y2P2)Go(r, b)

+ CnvzJo(vnr/b){tn  + yn exp[-2ii?(i/P  + j\bn)I)] - (4.8d)

These expressions are valid both for a cavity for which pi < 1 and for a collimator
for which p; > 1.
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The unknown coefficients x,, yn, n,t and z, are defined by the set of linear
algebraic equations that are obtained by substituting expressions for the field
components into Eqs. (4.10) to (4.12) for z = g/2, and into similar equations for
the second interface, z = -g/2.

If we introduce a matrix of coefficients

XN Gn N = 1, 2, 3, 4 , (4.22)

then the set of equations can be written in a compact form:

CNC,A&X,N = Pi, L,N=l,2,3,4; n,l=1,2 ,..., oo. (4.23)

Equation (4.23) constitutes an infinite system of linear algebraic equations for
unknown coefficients Xf. The coefficients A& and the right-hand sides Pz of
Eq. (4.23) are presented in Table I for a cavity and in Table II for a collimator
[40].  There

VnJO(VmP)J1(Vn)I(V~  -P2Gz) if Vn # pvrn ;
4mn(P> = (4.24)

vnJF(vn)/(vn + PVm) -- if VT8 = PVm 1 .*.

In particular, - _
4mn(l) = &mJf(vn)/2  -

In a smooth pipe for which pl = pp = 1, all PL = 0. Since DetlA$I # 0,
only the trivial solution X,N = 0 exists. This means that no radiation occurs in a
smooth pipe.

An equivalent system of equations can also be obtained by matching the
field on the surface r = a [51]. For small openings, matching at z = fg/2 is
preferable because the field in the structure under consideration, in this case, is’
close to the field of a pillbox  cavity. This type of matching is also the only one
possible when the tubes have different radii. In calculations with equal side-pipe
radii, the two types of matching are in close agreement.

B. The impedance of a cavity and a collimator

Suppose that the coefficients X, ,N defined as the solution of the system
Eq. (4.23), are found. Using definitions Eqs. (4.18) to (4.21),  we can now find
the longitudinal component of the electric field E,(z) from Eqs. (4.5) and (4.8).
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TABLE II. Coefficients A& and right-hand sides PL of Eq. (4.23)  for a collimator.

L
N 1 2 3 4 f%

E+ = ev[2G(dP t L>l , E- = exp[-2ig(rc/,O  - ibn)],

F(u) = IG)(Tb)/IrJ(Tb) - Ii-iJ(ru)/Il)(Tu), P l  =  al/b, ~2 = azlb t ;=g/2b.



Substituting it into formula Eq. (2.5) and performing the integration in it, we find

Z(k) = - (ZO/r)Cn { Xn(x/P - Lln)/[l t (Tul/Vn)2]

+ y&P t %J {exp[2G(Xb - z/P)1 - WP + (+d21
- t,(i/p - &) {exp[2@(&  t i/p)]  - l}/[I + (Tb/vn)2]

+ Zn(i/P + L2n)/[l  + (Tu2/vn)21} * (4.25)

Quantities z,c, and 31 are defined in Eqs. (4.13) through (4.17). Formula (4.25)
is valid for both a cavity and a collimator, if the expansion coefficients x,, yn, tn,

. and Z, in it are understood to be given by the solution of Eq. (4.23) for a cavity
and for a collimator, respectively.

In the ultrarelativistic limit, 7 + co, the impedance can be found by inte-
grating the field along any path displaced by r [120],  cf. Section 1II.B:

Z(k) = -(20/r) En {znJo(vn~/ul)(~-~~ln)

+ ynJo(vnr/b)(i + %) {exp[‘&7(~a  - x)1 - 11
- tnJo(vnr/b)(i  - &) {exp[%F(%, + i)] - 1)

+  ZnJ,(,nr/u2)(z  t  L2Tt)}  *.- (4-W  ,~

The remarkable feature of this formula is that the right-hand side of it does not
depend on r in spite of its explicit presence there.

In particular, for a cavity with equal side-pipe radii a, b = pa, a convenient
choice is f = a, since then the regions z > g/2 and z < -g/2 do not contribute
to the value of the integral:

z,,,(k) = - (z~/K) CnJO(vnp)  [yn(z+ k) {exr$G(k -i)l- 1)

- t,(Z - Xb) {exp[%G(xb  +  i)l - 111 . (4.27)

For a collimator a convenient choice is r = b. In this case, the region
-g/2 < z < g/2 does not contribute to the value of the integral:

zco~(k) = -(20/r)  Cn[xnJO(vn/P~)(~-  L) t  znJo(vn/p2)(i  t  k)] - (4.28)
In general, a solution of Eq. (4.23) can be found only numerically. Two

computer codes RCVTY (for the geometry sketched in Fig. 4.la) and RCLMTR
(for that in Fig. 4.lb) exist for this purpose [63].  An approximate solution is found
by truncating the system to a finite size, inverting its matrix and solving for the
coefficients. Such a solution is expected to be valid for modes with wavelengths
larger than the diameter of the opening. For parameter values that are not too
extreme, a matrix size of 20 x 20 is usually sufficient to obtain reasonable accuracy
for the values of Icu in the range 0 < ka 6 3.0. The results are independent of the
matrix size up to the maximum size of 100 x 100 allowed by the codes.
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2.4 2.6 2.8 3.0 3.2

ka = am/c 5599A2

Figure 4.2 The real part of the longitudinal impedance of a cavity as a function
. - of dimensionless parameter ka = aw/c;  a = al = aa, g/2b = 0.302,

u/b = 0.152. .L ._I

2.4 2.6 2.8 3.0 3.2

940 ka = am/c 5598A3

Figure 4.3 The same as Fig. 4.2, but for the imaginary part of the impedance.

33



The impedance of the same structure was also calculated by Henke [51] who
matched the field on the surface r = a, -g/2 < z < g/2. In Figs. 4.2 and 4.3
[63]  we present the real and imaginary parts of the impedance calculated with the
code RCVTY. Good agreement is found with the impedance calculated by Henke
[51] for all frequencies except for a small region around the cutoff frequency of the
pipe Ica = 2.405. Other calculations of the narrow-band impedance of a cavity
with beam pipes have been published [105,  109, 110, 112, 1131.

The dependence of the impedance on the particle energy is illustrated in
Figs. 4.4 and 4.5 [63], where the real and imaginary parts of the longitudinal
impedance of a cavity are plotted for several different Lorentz factors y. The
impedance for y = 100 is indistinguishable from that for y = oo.

400

z
N” 200

2

0
‘ 5

I 1 I I I I
2.4 2.6 2.8

0.00 ka = am/c 5508A4

Figure4.4 An illustration of the de-
pendence of the real part
of the impedance on y for
the same cavity shown in
Fig. 4.2: (1) y = 100,
(2) 7 = 10, (3) 7 = 5,
(4) y = 2, (5) y = 1.4.

400

200

z

o(
g O

-200

9-90

2.4 2.6 2.8
ka = adc 5599A5

Figure4.5 The same as Fig. 4.4,
but for the imaginary
part of the impedance.

s To illustrate the behavior of the impedance of a collimator, the real and
imaginary parts of the impedance of a thin collimator for the SLAC geometry are
plotted in Figs. 4.6 and 4.7 [63]. T he ransverse impedance of a cavity has beent
calculated [52, 64, 651.
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Figure 4.6

Figure 4.7

o-90

4 6 8 10
ka = aolc 5599A8

The real part of the longitudinal impedance of a very thin collimator
as a function of dimensionless parameter ku = uw/c;  a = al = aa,
g/2b = 0.217, u/b = 0.281. -- . .w.

5 0 ‘ I 1 I 1 I 1 I 1 I

- -

O -

-150 -

-200 I I I I I I I l I
0 2 4 6 8 10

9-90 ka = am/c 5599A9

The same as Fig. 4.6, but for the imaginary part of the impedance.
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C. The impedance of a step

Another important case is an infinitely long straight pipe with an abrupt
change of its cross section (a step). T he coupling impedance of a step for a planar
geometry was considered by Hereward  [53]. We give here the calculation of the
coupling impedance of a step in a cylindrical pipe [67, 681.  The geometry and
the coordinate system are sketched in Fig. 2.1. As discussed in Section III.D, one
needs to distinguish two cases when considering a step: a charge coming out of
the bigger pipe of cross section radius a and entering the narrow pipe of cross
section radius b, indicated by subscript in; and a charge exiting from the narrow
pipe and entering the bigger one, indicated by subscript out.

.
Both of these cases are included in the solution derived in the preceeding

section. For example, case in of a charge passing through a decreasing cross section
can be obtained by assuming a;! = b (or equivalently, pa = l), and g = 0, in the
equations describing a collimator. Similarly, case out of a charge passing through
an increasing cross section can be obtained by assuming al = b (or equivalently,
pl = l), and g = 0, in the same equations.

Using Eq. (4.25) we find that the narrow-band longitudinal coupling
impedance for a charge entering the narrow pipe is

e&(k) =  -3 c [xn(;  - ia) +  z,@+i,)] .
R n

For a charge exiting the narrow pipe,

(4.29)

(4.30) ._.

Coefficients x, and z, here are defined by solving an infinite system of linear
algebraic equations which follow from Eq. (4.23) and Tables I and II:

c bm f 61, Ll &4] sf = fi 7 (4.31)
m

where
p1 = J&P)

4
9 (4.32)

Tim = 4vip4 Jo(vmP) JO(vrP) C
L

n (z/Z - v&p2)(  v; - z$p2)  ’
(4.33)

g, G -xm, g$& G zm, p = b/u, X(Il = a,&/, Xbl = b&l; and a = al, b = ~2 for Zi,,
b = al, a = a2 for ZOZLt.

It is instructive to consider two limiting cases. If there is no step, i.e. b = a,
then Pl = 0 for all 1, xl = 0 , zl = 0 and no radiation occurs. In the opposite
limit, when the pipe is closed, i.e. b = 0, p = 0, one obtains the exact solution

1x  - -n - y~2J~(yn)~~ ’ zn = O ’ (4.34)

which gives the radiation produced in a Faraday cup.
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An approximate solution of Eq. (4.31) has been found numerically by trun-
cating its matrix to a finite size, inverting it, and solving for the coefficients. For
moderate values of parameters, a 20 x 20 matrix is sufficient to obtain reasonable
accuracy. Since the magnitudes of the coefficients g; fall off with increasing m
rather rapidly, the result does not change with larger matrix size. The narrow-
band impedance behavior is illustrated in Figs. 4.8 and 4.9 [67];  where the real
and imaginary parts of longitudinal impedance are plotted for p = 0.1 as func-
tions of the normalized frequency ku. The resonant character of the impedance is
clearly exhibited.

The impedances of narrowing and widening steps are similar except that
the latter is shifted up by a constant. The shift is basically proportional to the
difference between the EM field energies of particles traveling in pipes with radii.
a and b. For a narrowing step, the radiated energy is taken out of the excess of
the particle field energy in a wide pipe. As a result, the loss factor is small, cf. the
area under curve 1 in Fig. 4.8: Careful examination shows that the loss factor is
negative, corresponding to the gain of energy. The increase of the particle energy
can be interpreted as a result of acceleration due to attraction by the image charge
in the flange of the step. This effect was also noted by Chan and Schweinfurth
[14].  For a widening pipe, restoration of the particle field takes place. The energy
for this is taken away from the particle energy. Correspondingly, the loss factor is
positive and large, cf. curve 2 in Fig. 4.8.

--D. A perturbation method

An approximate solution of Eq. (4.23),  bto ained by truncation, is discussed
above. Another approximation for the narrow-band impedance of a cavity is
obtained by using a perturbation method [41, 431.

In a cavity with an opening to a waveguide (beam pipe, rf coupler, etc.), a
mode above the cutoff frequency is coupled to modes propagating in the waveg-
uide. This produces a finite width of the corresponding resonance in the narrow-
band impedance (in addition to the width due to the finite wall resistivity). The
narrow-band impedance exists because this coupling is small. A perturbation the-
ory in this small parameter can be developed.

In the zeroth approximation, the field pattern inside the cavity is the same
as that of the closed cavity, and tangential components of the electric field are zero

- on the opening. In the first approximation the matching of the normal component
of the electric field defines amplitudes of the longitudinal components of the waves
propagating in the waveguide. The transverse components in the waveguide are
then uniquely defined, which in turn defines the tangential components of the field
on the cavity opening. As a result, the relation between the normal and tangential
components of the field on the opening inside the cavity can be written as

E = Cn Hen 7 (4.35)

where the coefficient & = d&is the e ec IW surface impedance of theff t’
opening. For example, the frequency shift of a nth mode caused by the opening
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Figure 4.8

Figure 4.9

I I I I I
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9.90 ka = au/c 5423Al5

The real part of the longitudinal coupling impedance of a cross-section
step as a function of parameter ku = uw/c; b/u = 0.1; the matrix size
is 60 x 60; (1) Re Zi,, (2) Re ZoUt.

I I I I I ._I

O -
- _

-250 -

E

N"
-500 -

E

-750 -

-1000 -

I I I I I
0 20 40 60 80 100

9-w ka = awic 5423A20

The imaginary part of the longitudinal coupling impedance of a step
as a function of parameter ku = uw/c; b/u = 0.1; the matrix size is
60 x 60. The imaginary parts of both Z;, and Zovt  are found to be
equal, in agreement with Eq. (3.45).
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can be calculated by using the well-known result [78] for the frequency shift due
to surface impedance:

ic
WV3 -won = - - JdS(;,IHn12

2 JdS . r(]H,12  - ]En12)  *
(4.36)

The same idea that modes. in the cavity with a small opening are almost the
same as modes in the closed cavity may be utilized for an effective truncation of
the exact system of equations obtained above. To obtain a set of equations suitable
for the perturbation solution, we exclude coefficients xn and z, from Eq. (4.23)
and make the following substitution:

Yn =  i(d,+  +  d;) ei(p-Xn)  , (4.37)

t, = i(dz - d,) e-‘(p+Xn)  , (4.38)

where xn = g&,/2,  with A*,, ‘defined in Eq. (4.17),  and p = gk/2. Such substi-
tution corresponds to decomposition of the field into standing waves. Coefficients
d; are amplitudes of the longitudinal even (cosine-like) and odd (sine-like) modes.
They satisfy two separate systems of equations:

d$ = i
sin xn P,.sin p + i C Tmn d$ cos Xm 1 , (4.39)

m

d, = i 1
P, cosp - -

2 c
- T,,d,sinx,

cos Xn m 1 . a (4.40)“’

The coefficients T,, and P, are defined as follows: - _

Tnrn = 'l: (ip J"(v,ulJbl~Jo~umu/b)  anm ,

n i un
(4.41)

where

c 4(ku)2 - uI”
0nm =

l [u,” - ( unu/b)2]  [u,” - ( umu/b)2] ’
(4.42)

and
-

Pn = (g/zbXn) Jo(vnu/b)/2vi Jf(vn) - (4.43)

For the impedance in terms of di and d, we have

Z(w) = -:; c UZ Jo (vna/b)
n

sin@  - Xn)
(d;t+d,)  (p-xn>  + (d;-d,)

sin(p +  X n )

(P +  X n ) I
.  (4.44)

The concept of narrow-band impedance presumes that the openings are
small compared to the cavity surface. In this case, the field pattern inside the
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cavity is expected to be perturbed only slightly by the presence of the side tubes,
and to be similar to that of the closed cavity [24].  Therefore, in the vicinity of
the eigenfrequencies of the unperturbed cavity for which

and

sin ,& M 0 , 0
Xn M Xnm = mr 7 for n even , (4.45)

COSXn  M 0 , 0Xn M Xnm = (m + 1/2)7r  , for n odd , (4.46)

only diagonal modes d; need be retained in the sums in Eqs. (4.39) and (4.40).
This gives

. d; = i P, sin p
sin xn + % Tnn cos xn ’

(4.47)

and

d, =
iPn cos p

cos Xn - i Tnn sin xn
(4.48)

Other amplitudes d:, where 1 # n, describe the mixing of the modes of
a closed cavity and are zero in this approximation. This approximation can be
refined, however, by substituting Eqs. (4.47) and (4.48) into the right-hand side of
Eqs. (4.39) and (4.40). This will give dz # 0. Repeating the substitution further
refines the approximation. -. - Equations (4.47) and (4.48) have the typical resonance structure with width
7nm and frequency Wnm of the resonance given by .w.

4c2xim T
nm= 2 nn 7 Wnm = C

$7 Warn
(4.49) - -

From this follows the estimate of the external Q-factor: Q = 2ynm/wnm. The
expression on the right-hand side of the first part of Eq. (4.49) is simply the ratio
of the energy flow Wnm of the mode labeled n, m (which is given by the integral
of the Poynting vector over the cross section of the pipe) to the energy Wnl stored
in this mode:

*ram
7n m  = - - .

W
(4.50)

n m

The loss factor &m [cf. Eq. (2.10)] for a mode (n, m) can be found from
Eq. (4.44) and Eqs. (4.47) and (4.48). For a mode xn = rnr, it is

and for a mode xn = (m + l/2)r,  it is

(4.51)

(4.52)
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PO0 ka = aw/c bwoA12

Figure 4.10. The real part’of the impedance according to the perturbation
model. A single mode nearest to ku is taken into account;
u/b = 0.318, g/2b = 0.600 (the solid line). The dashed line
gives the contribution of the nonresonant modes (see text).
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Figure 4.12
The broadening of the higher
resonances due to radiation;
solid line, loaded Q; dashed
line, unloaded &a.

2 4 6
ka = ao /c BWOAM

Figure 4.11 -
The real part of the impedance

- -obtained by truncating the
system of equations;
u/b = 0.318, g/2b = 0.600.
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In calculating the longitudinal impedance, it is instructive to compare two
approximate methods with each other and with purely numerical methods. The
solid line in Fig. 4.10 [43] represents the real part of the longitudinal impedance
Re Z(ku) obtained from Eq. (4.44) by the following procedure. For a given fre-
quency, we find the number no of the nearest resonance that satisfies Eqs. (4.45) or
(4.46). Then we calculate the impedance, retaining in Eq. (4.44) asingle  term with
the number no while the coefficients d$ are defined by Eqs. (4.47) and (4.48). The
dashed line gives the contribution of the nonresonant modes in some band *An
around the resonance. The parameters used are u/b = 0.318 and g/2b = 0.600.
Figure 4.11 shows for comparison the real part of the impedance calculated by
truncating the set Eqs. (4.39) and (4.40). In th is example, the width of the band

- was An = 10 (in total, 20 equations were retained). The agreement between the
results shown in Figs. 4.10 and 4.11 could be even better if, instead of one, the two
nearest resonance modes were retained in Eqs. (4.39) and (4.40). The broadening
of the resonance obtained by the perturbation method for the CEBAF cavity is
illustrated in Fig. 4.12. The real part of the impedance

R”z~~)=C[(W-;~~+72 + (w+;;;+$]
(4.53)

n n

is shown here (solid line). The loss parameters IC, and frequencies wn were calcu-
lated with the help of the program URMEL [121].  The widths 7n (related to the
external Q-factor) were calculated as defined in Eq. (4.49). The dashed line gives

.-the impedance calculated with the widths caused by the finite conductivity of the
walls (unloaded Qo) . .- ,w

It is worth mentioning a calculation by Sands [loo]-closely  related to the
subject of the present paper-which gives the low-frequency radiation from a
small hole in a vacuum chamber. Sands’ derivation is based on the perturbative
analytical solution obtained by Bethe [9].

E. Trapped modes

Trapped modes are narrow resonances observed above the cutoff frequency
both in experiments [28] and in numerical calculations [41].  Their field pattern
corresponds to modes localized within a cavity with a relatively large Q-factor. A
trapped mode of the pillbox cavity with side tubes can be seen in Fig. 4.11 as a
small spike near ku M 4.5. Its amplitude is actually much higher than appears in

_ Fig. 4.11 if plotted with higher resolution.
Calculations for different tube lengths using URMEL confirmed the existence

of a trapped mode for a cavity with parameters u/b = 0.318, g/2b = 0.600. For
the mode with frequency f M 233.3 MHz, which corresponds to ku M 4.5, the
field outside the cavity goes rapidly to zero, thus conforming to the definition of
trapped modes. The ratio R/Q for this mode is unusually small.

The origin of trapped modes is unclear. Several explanations have been
suggested. One maintains that the sharp edges of the cavities can cause multiple
reflection of a wave and, as a result, give a long decay time to the mode. This
explanation seems unsatisfactory, because above the cutoff frequency the reflection
rate is relatively small, even for the sharp edges. If the edges are rounded off,
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the reflection rate goes rapidly to zero. The reflection rate becomes exponentially
small when the function describing the edge boundary and its derivatives all are
continuous.

Another hypothesis is that certain modes of a cavity produce waves in the
tube that cancel each other. This assumption is probably also unsatisfactory if
the modes are to be understood as those of a closed cavity unperturbed by the
beam pipe openings [41].

A trapped mode may occur, however, if two degenerate modes of the closed
cavity are mixed by the perturbation due to the pipe openings. One of the mixed
modes may become a trapped mode.

.
This idea was studied on a mode corresponding to Ica = 4.5. The mode

was chosen because at the frequency Ica = 4.5 there is only one wave that can
propagate in the tube. This wave is generated mostly by the coupling of the two
degenerate modes in the cavity. The degree of degeneracy of the modes can be
varied by changing the parameters of the cavity. The analytical and numerical
analysis supports the hypothesis of the connection between the mode degeneracy
and the existence of the trapped modes. In particular, with the code URMEL it
is shown that the mode remains trapped in a wide range of the cavity parameters,
provided that the mode degeneracy is maintained.

F. The narrow-band impedance of bellows

Consider axially symmetric and longitudina,lly  smooth periodic variations
of a wall of a waveguide commonly known as bellows. Fig. 4.13 illustrates the‘-’
geometry and the coordinate system. In this case application of the field-matching
technique used in previous sections is very difficult. A more appropriate method
for such cases will be described here. In general, all the Fourier harmonics of the
polar angle 0, i.e. modes characterized by the number m, exist. However, our
considerations will be restricted to an axial symmetric mode m = 0 and only the
longitudinal impedance will be derived. The transverse impedance for the dipole
mode m = 1 has been obtained [72].

r
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-

d-

a Figure 4.13
Geometry of bellows and

Z
8

6670A29

the coordinate system.
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Let us assume that the waveguide wall in the plane 13 = constant is described
by the function

r= o(z) , (4.54)

which is periodic in z with period L. If the source particle moves along the axis
of the waveguide, ro = 0, only the axial symmetric modes m = 0 are excited. The
series that gives the general solution of the Maxwell equations suitable for this
case is given by Krinsky and Gluckstern [75]. The expansions of the longitudinal
and radial components of the electric field with unknown coefficients BP in the
limit y ---f  00 are

.wz=-eE iq
co

ikz
c

B e2irpzlL ~o(aP+4
P >7rcu p=-00 NQP)

(4.55)

E QwT = - eikz ;+ 2 BP eaixpzlL (ku + 2rap/L) t’;;;L;
>

, (4.56)
7l-CU p=--00 P

where 10 and 11 are modified Bessel functions of the first kind of the zeroth and
first order, respectively. The quantity oP is defined by

+ 4rkap i . (4.57)

--The expansion coefficients BP in this case are defined by the boundary condition
WI

.L .w.

Ewz(rb, 2) = -Ew&,, +h/dz , (4.58) -

which leads to the following infinite set of linear algebraic equations:
00
c JfnpBp = Nn , n=-co...oo, (4.59)

p=--03

where

_ M~p=[[(~~pn+(~)ka(p+n)](~  eq[--1) p#O,
(4.60)

and

N, = y (TT?!$L.exp  (-T)) . (4.61)
rb

Here the brackets (f) are used to define the value of function f(u) averaged over
its period L. The longitudinal impedance per one period of bellows can be found
by using Eq. (2.5):

Z/(k) = -iZoLBo(k)/2ra . (4.62)
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The system of Eqs. (4.59) can be solved numerically. The computer code IMPASS
(Impedances of Periodic Axially-Symmetric Smooth Structures [66]) enables one
to calculate coefficients of the field expansions and to find both the longitudinal
and the transverse impedances for m = 0 and m = 1 in the low-frequency region.
The approach used here is not valid for the high-frequency region, where the
impedance has a very complicated resonance structure.

Figure 4.14 [66] presents the coefficient Bo found with the help of IMPASS
as a function of the normalized frequency ku for three different values of bellows
parameter 2wa/  L and for the relative depth of the corrugations d/2u = 0.09. More
results are given by Kheifets and Zotter [72].

7-w ka = ati /c

Figure 4.14 Coefficient Bo which defines the longitudinal impedance of bellows, - _
cf. Eq. (4.62), for eb 11ows with the boundary defined by

46 2?Tz
?-b(Z) = a(1 + E + - cos -

n- L)
as a function of parameter ku for three values of the parameter
7 = 27ru/L:  (1) ~=31.42, (2) 7=20.94,  (3) ~=12.57. The depth of
corrugations is defined by E - d/2u=0.09.

- V. A DIFFRACTION MODEL
FOR THE HIGH-FREQUENCY IMPEDANCE

Here we develop an approximate method that is suitable for studying the
high-frequency behavior of the impedance. The integral equation that is equiv-
alent to Maxwell’s equations is solved by iteration using approximate boundary
conditions [42,89]. This approach is very close to the diffraction models discussed
by Bane and Sands [6,7] and by Palmer [90,92,93].

In Section V.A we define appropriate boundary conditions for the first iter-
ation and study the implication of such a selection for a number of cases. In the
next approximation the field on the boundary is assumed to be the field obtained
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on the previous step. For some structures-such as an array of irises-for which
the interference of waves diffracted on different irises is important, the correct an-
swer may be easily found by such a method (Section V.D). For other structures-
such as a taper-for which no solution is known, the method gives an estimate of

- the impedance (Section V.E).

A. A method of iteration

Consider an arbitrary metal structure with openings. Let its volume be
bounded by the surface S. The total field inside the volume excited by a relativistic
particle is the sum of its synchronous field and the radiated field E,, H,. The

- radiated field satisfies the homogeneous wave equation and its value inside the
volume is defined by the fields on its inner surface [57]:

E, =
J

dS’ [ik(n’ x HL) Gk + ( n’ . EL) . V’Gk + (n’ x EL) x V’Gk] , (5.1)

H, =
J

dS’ [-ik(n’ x EL) Gk + (n’ . Hk) . V’Gk + (n’ x II:) X V’Gk] , (5.2)

where n’ is the unit vector normal to the surface pointed inside the volume and
,ikR

Gk(V’) =  m , R = jr - r’l = (2 - z’)~ + r2 + r’ 2 - 2rr’ cos e , (5.3)_
-

is the Green’s function of the wave equation. It satisfies the equation

(V2 + k2) Gk = -6(r - r’) .

In Eqs. (5.1) and (5.2) the derivatives in expression V’ Gk are taken with respect - -
to r’.

For k > 0 the function can also be represented in the equivalent form

dp e@(‘-“)  &kp(r,  r’) , (5.4

where

- A Cgco A,J,(flr) HG’(s2r’) cosm8 for r’ > r ,
Gkp(r, r’) G (5.5)

Czzo  A,J,(Rr’)  Hc)(fh-)  cosme for r’ < r .

Here A, = 1 for m = 0, A, = 2 for all other m, and Jm and J&) are the Bessel
and the Hankel functions of order m, respectively. Function Cl(k,p)  has a cut
along the negative axis in the plane of its argument p. We define it as

R = Jk2 - p2 + 2ik& , E-tO.

Corres ondingly, functions Hi)
as Hg’(ix) = 2(-i)

of the purely imaginary argument ix are defined
“+11<m(x)/7r [38].  For k < 0, Gk is defined by Gk = Glk.
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Consider now the azimuthally symmetric structure with a particle traveling
along its z axis with the velocity of light. Let the metal wall of the pipe be
described by r = rb(z). In this case it is sufficient to consider only the monopole
modes m = 0. The method can also be extended to a general case m # 0.

The system of integral equations (5.1) and (5.2) can be solved approximately
by the method of iteration. The .field on the boundary chosen on the first iteration
defines the field on all the successive steps. The choice of the field for the first
iteration is crucial for the convergence of the solution.

To define the field on the surface of a pipe of arbitrary shape, let us first
consider the situation in a straight pipe, rb = a = constant. The EM field is the
sum of the field of the particle in free space and the field of the image current in
the wall (or the induced field). In the ultrarelativistic case, the electric field of
a sparkle  E,f$) has a large radial component (i.e. normal to the beam pipe wall)
and a small longitudinal (tangential) component. The longitudinal component
induces an image current in the wall. Since the image current has only a tangential
component, it produces only a small tangential component of the induced field
Ez), which compensates for the tangential corn onent of the particle field. The
normal component of the induced electric field Ewln)P and the tangential (azimuthal)
component of the induced magnetic field Hit) are zero on the pipe wall.

We now conjecture that in the high-frequency limit in the first approximation
the boundary conditions for the radiated field in a pipe with a variable shape r =
Q(Z) are locally similar to those for a smooth pipe a = constant. The necessary

-condition for this assumption to be valid is that the length L of variation of the
pipe shape, drb/dz M u/L, has o e art b 1 ge compared to the typical wavelength X: .*’

L >> l/k .

In other words, the assumption is that in the high-frequency limit in the first
approximation the boundary condition for the normal component of the radiated
electric field is zero on any conductive boundary, as it is for a smooth pipe, i.e.

E(l) = 0wn for r = u(z - 0) . (5.6)
At the same time,
of a particle Eiz)

the sum of the tangential component of the synchronous field
and the tangential component of the radiated field E{;) on the

metallic surface has to be zero:

E(l) = -$Itw f o r  r=u(z-0). (5.7)
Hence, the components of the radiated field on the conductive boundaries are

E(l) = -E(O) sin a
I-W tw 7 E(l) = -E!;)zw cosa ) P-8)

where
E(O) = Eif,) sin (Y + Egtw cosa . W)

Here E:$ is given in Eq (2 27) and Ez M 0. The angle (Y = a(z) is defined by
’ ’tano = drb(z)/dz.
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The magnetic field in the azimuthally symmetric case has only an azimuthal
component Hfl,. It can be shown [42] that from Eq. (5.6) follows

H(l) = 0
WO for r = a(2 - 0) . (5.10)

The radiated field on the- cross sections z = 0 and z = g is the same as
that in a straight pipe. This means that for the azimuthally symmetric mode
m = 0, the radiated field is zero. Equations (5.8) and (5.10) specify the field on
the boundary for the first iteration.

Equation (5.1) together with the radiation condition at infinity gives the
(1). component E, inside the pipe as the surface integral over the metallic walls of

. the pipe:

E(l) = dS’ dGkz s dr’ E,(“)(r’,z’) . (5.11)

For a smooth pipe Q(Z) = a, dS = 2radz,  and E,(O) is defined in Eq. (5.9).
In this case Eq. (5.11) gives

J$) = 2iqT2---$--  I&-r) I~o(TU)  eikz , p M 1 ) (5.12)

which agrees with the exact solution for a straight pipe given by the first term in
-Eq. (4.5). Note that in this approximation Io(ra)  M 1.

Equation (5.1) may be used to find the radiated field in a cavity iteratively.‘*
The field in the cavity found in the first approximation defines the radiated field
on the boundaries, including beam pipe openings. It may be taken as the value of
the field on the boundary for the next iteration. The series obtained in this way
are analogous to the Born’s series of scattering theory. The expansion parameter
of the series is the ratio of the amplitude of the tangential component of the
radiated field E,(l) to the amplitude of the tangential component of the particle
field in Eq. (2.27). Note that the first approximation allows one to estimate this
parameter and find the amplitude of the diffracted waves in the side pipes.

This method is next used to evaluate the impedance of a pillbox  cavity with
side pipes.

B. A diffraction model for a cavity

Consider a pillbox  cavity of length g, and radius b, with side pipes of
radius a. The surface integral Eq. (5.1) for this geometry is the sum of two inte-
grals. The first integral, and the main contribution to the sum, is over the sides
of the cavity at z = 0 and z = g for a < r < b. This is given by Eq. (5.11) with
E,(O) defined in Eq (2 27). The second integral is over the cylindrical wall r = bfor
0 < z < g, which’gives a negligibly small contribution of order (l/~)~. Similar
considerations are used by Gluckstern and Neri [34-361  to obtain the narrow-band
longitudinal impedance above the cutoff frequency of the beam pipe.

48



For the region 0 < r < a,
co

&>(r, z) = -‘i2c J
dp eipz [l - ei(k--p)g]  Jo(Or)  [Hi’)(Rb)  - H;l)(Ra)]  . (5.13)

--oo

This expression gives the first approximation for the diffracted field inside the cav-
ity. Hence, to find the impedance as defined in Eq. (2.5), we have to choose the
path of integration along the beam pipe wall T = a in accordance with the discus-
sion in Section 1II.B [120]. Since on the pipe wall outside the cavity Ewz(u,  z) = 0,
the range of integration in Eq. (2.5) is 0 < z < g. For k > 0, we therefore have

Jo(Ru)  [H,$‘)(fh)  - Hi’)(Rb)]  sin2 : (k -p) . (5.14)
-CO

An estimate of the integral in Eq. (5.14) is obtained by Heifets [46].  For the
region of parameters where g << ku2 (a cavity regime), it reproduces the Lawson-
Dome formula [24,80]:

Zcav(k)-= (1 + ;) 2 (5.15)

- For the region of parameters where ku2 << g << kb2, there is a transition regime

(5.16).*  -

and for the region of parameters where g >> kb2, one obtains the impedance of - _

a step found by Balakin and Novokhatski [l] and independently by Kheifets [63],
cf. Eq. (6.79):

(5.17)

The difference between the impedances of a cavity, Eq. (5.15), and a step,
Eq. (5.17),  corresponds to different diffraction regimes. For g << ku2 the transverse
dimension of the area illuminated by the diffracted wave increases with z as T -
dw, which characterizes Fresnel diffraction. For larger g for which r - z/ka,
Fraunhofer diffraction occurs.

The real part Re Zl(k) of Eq. (5.14) is p dro uced by the values p in the range
-k<p<k:

k

Re Z,(k) = 2 / & Jo(h) [Jo(Ru) - Jo(Rb)]  sin2 ; (k -p) . (5.18)
- k

The results of the numerical integration of Eq. (5.1s) are shown in Fig. 5.1
[42], together with the estimate, Eqs. (5.15) and (5.17). According to these calcu-
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Figure 5.1
The transition from a cavity
regime to a step regime.
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lations, the transition from the cavity to the step regime occurs for values of the
cavity parameters such that

77 f k(b: u)2 = ’ * (5.19)

Let us now evaluate the radial component of the radiated field Ei’). It can
-be derived from Eq. (5.1), where the surface integral has to be taken over the,*
surfaces z = 0 and z = g, for a < r < b. In the high-frequency region ku >> 1,
neglecting terms of order of l/ku, we obtain

E,$>(r,z)  =  & 2 ( z  - zn) exp[ikz,]
n=l

2%

X exp[ik&(b)]
(b - r cos S) Rn(b) I

, (5.20)
0

where R;(x) = r2 +x2- - 2rxcos 8 + (z - z,)~, n = 1, 2, and the summation is
performed over two waves radiated from the surfaces zl = 0 and z2 = g. It is
easy to see that the wave radiated from the surface z = 0 does not contribute to
E,(l) at z = 0. Only the wave scattered from the other surface changes the field in
the next approximation. This is similar to the situation in scattering theory. The
phase of this wave is proportional to the wave vector k and is large for kg > 1,
giving, on average, a small correction. E?,.)(r)  z) has a singularity (r - .)-l/2 at
r = a as is well known [108].  Note that, at least in this approximation, similar
singularity appears also at r = b. These singularities leave the field energy finite.
They are not essential in evaluating the integral in Eq. (5.1).
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C. Loss factors in the diffraction model

The total impedance of the accelerator vacuum chamber is usually approxi-
mated by the sum of the impedances of its elements. This is equivalent to calcu-
lating the impedance of a given. element while neglecting the diffracted EM field
arising from all the other elements. In general this is incorrect. The interference
of the EM field generated on different elements can be important. This will be
illustrated below for an array of cavities. But, even neglecting the interference,
the estimate of the impedance of a given element is not a simple task, especially
for the high-frequency impedance.

- -Fortunately, in most cases an element can be represented either as a pillbox
cavity with the beam pipes or as an abrupt change of the beam pipe radius. The
second structure (a step) can be considered as a very long cavity. The estimates of
the impedances for these two types of structures [12] according to the diffraction
model discussed above give the correct dependence on all the physical parameters.
This was verified by numerical calculations using the code TBCI over a wide range
of parameters. The results are also valid for a very short bunch where direct
numerical calculations require too much computing time and computer memory.

The high-frequency longitudinal impedance of a pillbox cavity with gap g,
radius b, and side pipes of radii a, which is valid for ku >> 1, is given by Eq. (5.15).

-The impedance falls off as k-1/2 in agreement with the results of Lawson [80, 811
and Dome [24]. For a short Gaussian bunch, for which c << a, this high-frequency‘-’
tail of the impedance gives the main contribution to the energy loss for a cavity:

1.154 . (5.21)

Equation (5.21) has been checked by TBCI calculations for three different
sets of parameters of CEBAF rf structures: (a) the fundamental power coupler,
a = 3.5 cm, g = 2.5 cm, b = 5.5 cm; (b) the higher-order mode coupler, a =
3.75 cm, g = 3.75 cm, b = 5.5 cm; and (c) the gate valve a = 1.75 cm, g = 2 cm,
b = 3.5 cm. The rms length of the bunch (T was varied over the range 0.75 to
1.5 mm. The observed agreement is within 10%; see Fig. 5.2 [la].

The transverse impedance can be estimated from the longitudinal impedance
of the dipole mode by using the Panofsky-Wenzel theorem (see Section 1II.A). The
estimate for the transverse loss factor is

(5.22)

This formula also agrees well with the results obtained by the code TBCI; see
Fig. 5.3 [12]. For a very long cavity (a step), Eq. (5.21) is not applicable. The
longitudinal impedance of a step is given by Eq. (5.17). Note that the frequency-
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Figure 5.3 The transverse loss factor (kick) as a function of the rms bunch length;
a = 3.5 cm, b = 5.5 cm, g = 2.5 cm.

independent impedance corresponds to a point wake function which is proportional
to a S function. The longitudinal loss factor for a step is

(5.23)

The exact expression for the transverse loss factor of a step is unknown. Bisognano
et al. [12] obtained the following estimate:

K&Y) = -
& a :*

In b In (5.24)
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These formulae contain both radii a and b, in contrast to Eqs. (5.15) and (5.21)
for a short cavity. The regime of the cavity differs from the regime of the step in
that in the second case the signal from the outer wall of the cavity has enough
time to reach a bunch traveling inside it, thus probing the outer radius of the
cavity. If the parameter 9 [cf. Eq. (5.19)]  for k - l/rr

rl = (b - u)2 (5.25)

is small, 77 << 1, the formulae for a cavity are valid. In the opposite case, when
‘7 >> 1, the regime of a step is fulfilled. This is illustrated in Fig. 5.4 [12], which
shows the dependence of the longitudinal loss factor ~1 on the radius b of the

- cavity. The longitudinal and transverse loss factors, as functions of the rms bunch
. length U, are plotted in Figs. 5.5 and 5.6. In all cases the agreement of the

estimates with numerical calculations is quite good. Eqs. (5.21) to (5.25) are
convenient for a fast and reasonably accurate estimate of the impedance budget of
an accelerator. However, Eq. (5.24) should be considered as an empirical estimate.

D. A periodic array

The EM waves generated in one element of an accelerator propagate into the
elements downstream of the system. There the waves interfere with the locally
radiated field. Even if the impedance of each element assumed to be mutually
independent is known, finding the impedance for the whole system is, in general,

-nontrivial.
In the high-frequency region, the previously described method of iteration is’-’

applicable. As an example of its application, we consider here a periodic structure.
For an array of cavities with a large number of cavities, the interference can
drastically change the impedance. Another example where the interference is
important (two adjacent cavities) is considered by Heifets [42].

Let us consider an rf structure of a linear accelerator. It can be approximated
by a periodic array of cavities built of irises in a waveguide. The irises, having
equal round beam holes of radius a, are separated by a distance L. In the high
energy accelerator the signal reflected from the outer cavity wall does not reach the
bunch moving with the velocity of light along the accelerator axis. For simplicity
we therefore assume the outer radius to be infinitely large.

The radial component of the radiated field at location z of the accelerator,
to good approximation, is the sum of the field Eq. (2.27) and a field of unknown
amplitude f(k, r) diffracted on the upstream irises:

E$(z 7 r) = -2 eikzIP  8(r - a) + T f( k, r) eikz qu - r) .
cr

Here 29(x)  is a step function. We use this expression as the zeroth approximation
for Et in Eq. (5.1). For the longitudinal field between the irises, 0 < z < L,
Eq. (5.1) yields

E$z r )  =, 2 ~dpe”’ [i-.‘c’-J+]Jdr’[I)(r’-u)-r’f(k,r’)D(a-r’)]

--oo 0
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x -& [Jo(nr)  H;‘)(Rr’)  ti(r’ - r) + Jo(s2r’)  H;l)(Rr)  19(r - r/)1 , (5.27)
J

where R = dv. The impedance per cell is

2 O” dp- -
C J k-P

-CO

The first term here is the same as that for a single cavity, as given by Eq. (5.14),

dP- sin2 f (k - p) Jo(nu)  Hi’)(Ru)  [l i uf(k,u)]
k--P

sin2 4 ( k - p )  H~l~(~u)~dr’Jo(~r’)  -& r’f(k,r’)  .(5.28)
0

except for the additional factor [l + uf(k, a)]. We will see that this factor is of
order l/k. The second term in Eq. (5.28) is small. Hence, the high-frequency
impedance of a periodic array becomes Zi(k) cx km3i2.

The equation defining function f( k, r) can be obtained from the condition
of periodicity for the radial component of the field Ewr(z,  r). The expression for
Eiy(z,r) can be found from the-equation V . E = 0 and Eq. (5.27). At z = L
this yields

00 00

Eiy(L,r) = -if!-2c J
p dp eiPL

s
dr’fzl(r’ - a) - r’f(r’) 8(u - r’)] ‘*

-CO 0

x [Jl(flr)  HI(‘)(Rr’) 29(r’ - r) + J$lr’)  Hi’+) 29(r  - r’)]

For f(k,r) we thus obtain the following integral equation:

f(W = w> + j
a

r’dr’ \Il(r’, r) f(k, r’) +
J

r’dr’ Q(r,  r’) f(k, r’)
0 r

where
Cm

Q(r,r’)= a p d p  e
J

-i(k-p)L J1(Rr)  Hi’)(Rr’)  ,
-CO

and
b

Q(r) = -
J

dr’ Q(r,r’) .
a

(5.29) - -

(5.30)

(5.31)

(5.32)

Note that f(k, 0) = 0.
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Function \k‘(r,r’) describes the Fresnel diffraction on a circular hole. An
estimate of the integral in Eq. (5.31) in the diffraction zone r cx a, r’-r  >> dm
gives

KP(r,r’)  N Qo(r,r’) z .-/z exp{i-$ (r-r’)2-ii}  . (5.33)

Equation (5.30) in this approximation simplifies to

f(k,r) = @o(r) + j r’dr’ Qo(r,r’) f(k,r’) , (5.34)
0

where

Qo(r) N 2 1 Q0(r, 4 for a - r >> &iQi .
a - r

Function @o(r), describing the diffraction on a single iris, rapidly oscillates for
(a - r) > dm, and in this region is negligibly small. A solution of Eq. (5.34)
can be found by an iterative procedure in which the solution fn on the nth step is
found by substituting fn-r for f(k, r) (with fr = as) in the integrand of Eq. (5.34).
Subsequent iterations take into account the diffraction from the consecutive irises
of the array. The iterative solution on the nth step is

f&r) 0; exP
ik _

2L(n+ 1 )  r( - )}a2. * (5.36)‘*

This function has a width that increases with n as (a - r) N d(2L/k)(n + 1).
Its amplitude decreases rapidly when the width becomes of the order of a, i.e.
for n > M N ka2/L. Palmer [91] noted that M defines the minimal number of
cavities sufficient for the impedance of a finite array to be approximated by the
impedance of an infinite periodic structure. We discuss this in more detail in
Section VI.

- -

Function Qo(r, r’) has a sharp peak as a function of r - r’. In the limit as
k + 00 it can be approximated by the 6 function:

limt--too\Ilg(r,r’)  = i S(r - r’) . (5.37)

The solution of Eq. (5.34) in this limit is f(oo,a)  = -l/a. For finite but large
k >> L/a2, we have 1 + af(k,a) N (l/k), see Eq. (5.41) below. The amplitude of
the radiated field f(k, r) at the iris increases from f = 0 at r = 0 to f M -l/a at
r = a, and then decreases as -l/r for r > a. Recall that for a single cavity &,$J
has a discontinuity at r = a, changing from zero to -l/a. The continuity of the
function f( k, r) and, correspondingly, of the radiated field E,!$) at the point r = a
arises from the interference of the diffracted waves in the periodic structure. This
is the reason that the asymptotic frequency dependence of the impedance for a
single cavity differs from that of a periodic array of cavities.
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To solve Eq. (5.34) numerically, it is convenient to introduce a new function,
F(a - r), defined by

g rf(k,r) =  -A F ( a - r ) ,

where

A = 1 + af(k, a) .

The function J’(a - r) satisfies the integral equation

(5.38)

(5.39)

a
F(a - r) = 6 90(u, r) +

J
dr’ &‘(a - r’) fl Qo(r, r’) , (5.40)

0

with QIlg(r,r’)  defined in Eq. (5.33). Equation (5.40) was solved numerically for
different wave numbers k. The typical behavior of function r f(k, r) is shown in
Fig. 5.7 [42].  The parameter A(k) has b een found from these calculations; its
dependence on ka2/2L is shown in Fig. 5.8. It wobbles around [42]

Function F(a - r) oscillates rapidly (see Fig. 5.9); therefore, the last term
--in Eq. (5.30) is small. The-remaining term has the same structure as that for a

single cavity, but has an additional factor A a l/k. Hence, the impedance of the,*
periodic array decreases with the wave number as k-3/2.  For the real part of the
impedance we obtain

ReZ(k)=Zo-$ (5.42)

while the same quantity decreases as k -1/2 for a single cavity. The same depen-
dence on k, i.e. Re Z(k) cc ke3i2, was obtained in the optical resonator model
[13, 58, 101, 1061. A more rigorous analytical derivation of these results is given
in Section V1.D.

E. A taper

Consider a gradual transition-a taper----between two cross sections of the
beam pipe from a smaller radius a to a larger radius b. In such a case the energy
loss of a bunch is expected to be smaller than it would be while passing through
a step. Until recently, no analytic methods for evaluating the effects of a taper
were available. Here we use the method of iteration to estimate the effect of a
linear taper, i.e. a taper in which the slope of the wall is constant. For short
bunches, IY << a < b, the energy loss is dominated by the high-frequency modes
kb > ka > 1. This allows one to estimate the loss and the impedance using
Eq. (5.11).
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Figure 5.7
Function r f(k, r) (see text).

Figure 5.8
Parameter A-’ as a function
of ka2/2L (see text).

Figure 5.9
Function aF(a-r) (see text).
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Let us characterize the taper by an angle (Y at which the taper wall is inclined
to the axis Z: cot Q = gl/(b-a), where gr is the length of the taper. For a step we
have gr = 0 and a = 7r/2. On the basis of the previous discussion, we expect the
main contribution to the impedance to come from the waves with large k diffracted
at small angles. The taper may be expected to reduce the impedance or the loss
factor of the transition effectively, if its angle is comparable to or smaller than the
Fresnel diffraction angle.

As shown below, for a bunch of rms length 0, the loss factor decreases with
increasing taper length gr until it reaches a minimal value at gl N (b - a)2/a,

- and it remains constant with further increases of gr. A short taper, for which
. grc+?(b - a>2 < 1, is not effective in reducing the energy loss.

Consider a cylindrical cavity of total length g with slanted side walls com-
prising two symmetrical tapers of length gr on both sides. The symmetry of the
cavity significantly simplifies calculations. We follow here the considerations given
by Heifets [42].  Equation (5.11) for such a cavity gives:

b 00

E,J,lJ(r z) = -‘I dr’7 2c J J
dp eips [ exp{i(k  - p)(r’ - a) cot a)

a --oo

dHi’)( Rr’)- exp{i(k - p)[g - (r’ - a) cot &I}] Jo(%) ar, * . (5.43)‘*

Here R = dw and cot cy = gl/(b - a). The two terms in Eq. (5.43) describe
the waves generated at the two tapers: the taper-out at z = 0 and the taper-in
at z = g. For 91 = 0 Eq. (5.43) becomes  Eq. (5.13). The longitudinal impedance
of a taper-out can be obtained by integrating the first term over z in the interval
0 < z < L and considering the limit L + 00. A taper-in is considered in a similar
way. This gives

r~-p Jo(fW [l - expW(k - $)I

b

X
J

dr’ exp{fi(k - p)(r’ - a) cot o}
all:” (Lb-‘)

dr, , (5.44)
a

where the signs f correspond to a taper-out and a taper-in. In the limit L + co,

2Li1 & [l - eTi(k-P)L]  = & f irS(k  - p )  . (5.45)
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Hence, the impedance is

b

X
J

dr’ exp{fi(k - p)(r’ - a) cot o}
aHi”( Or’)

dr, . (5.46)
a

.

The first term corresponds to the difference in the field energies of a particle
in beam pipes of different radii. It is independent of the angle (Y. The real part of
thesecond term describes the loss to the radiation, which is the same for a taper-
out and a taper-in. The sum of the impedances of two tapers gives the impedance
of the long tapered cavity; for- Q = 0, it gives Eq. (5.14). The difference between
the losses for two tapers with the same angle (Y is independent of Q:

I 2
%ut - & = - lnb

aJR a’
(5.47)

This was noted in numerical simulations [14].  As shown by Heifets [41], a sub-
stantial contribution for a step is given by the region of variable p, for which
l/b < R < l/a. Hence, if

- b - a
tanck >

21ca2’
the exponent in Eq. (5.46) may be replaced by unity and the impedance of a
taper is the same as the impedance of a step. In the opposite case of small Q, the
exponent oscillates rapidly unless

(k - p)(r’ - a) cot o << 1 . (5.49)

Restricting the area of integration by this condition, we obtain for the real part
of the impedance

Re Z(w) = Re Zs(w) - AZl(w)  , (5.50)

where 2s is the impedance of a step, Eq. (5.17),  and the correction term is
-

x0

A Z ,  =;
J

& Jo(ka&-?) [Jo(kr,ds) - Jo(kbJs)]  .

Here,

- 1
(5.51)

tan a
rm=a+xO, xo = k(b - a) ’

(5.52)

To estimate the integral, we note that AZ, may be large only if the argument of
the Bessel function in the integrand 1c, = krmt/m is small within the range
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of integration. This is possible only if ka tan (Y << 1. If this condition is fulfilled,
the correction term is

AZ1 = 1 lni, (5.53)
C

where a/b i f  kbtano<l  ,
5= (5.54)

2ka tancu i f  2 k b  tana>l  .
The loss factor for a taper may be obtained by the convolution of Eq. (5.50)

with the bunch distribution of rms length (T. In the case b >> a, the correction
term to the loss factor is

AQ =
if  tancu >> a/a ,

if tano << o/b .
(5.55)

Thus, the energy loss for a taper-out may be smaller than that for a step-out
(o = 7r/2) maximum by a factor of two, even if the angle cy is very small [42, 1261.
For a long cavity tapered symmetrically from both ends, the correction Eq. (5.55)
doubles, which, for a sufficiently small angle, tan LY << a/b, reduces the loss for a
cavity to zero.

The dependence of the longitudinal loss factor of a one-sided taper on its
-angle can be approximated by ,w

where ;7”1  = min(l.O, VI), and
910

” = (b - a)2 ’

(5.56)

(5.57)

For 71 > 1, the loss factor of a taper reaches half the value of the loss factor for a
step, and it remains constant with further increase of 71.

The results of Eq. (5.56) are compared with calculations by code TBCI in
Fig. 5.10 [44] for a cavity tapered from one side, of length g/a = 115, where
a = 1 cm. The bunch length is assumed to be a/a = 0.3. Curves are plotted for

- the ratios b/a = 4.0 and b/a = 2.0. The two sets of results are in reasonably good
agreement.

For a symmetric taper, VI/~ should be replaced by ;?1:

& = --& (l-61)  lnb.a
(5.58)

A long symmetric taper reduces losses to zero.
The lack of dependence of the losses on the direction of beam propagation

is also confirmed in these calculations.
A quite different approach to the problem of a taper was recently developed

by Yokoya [125].
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Figure 5.10 The longitudinal loss factor of a taper as a function of taper length
91/a; a = 1 cm, a/a = 0.3.

VI. ANALYTICAL RESULTS FOR THE HIGH-FREQUENCY
IMPEDANCE

When the structure under consideration can be separated into. simple parts._,
for which the solutions of the Maxwell equations are known or can be found, a
natural method for obtaining the solution for the whole structure is the field-
mat thing technique. The application of this method for calculating the narrow-
band impedance is discussed in Section 1V.A.

Here we use this method to derive an exact system of equations suitable
for the high-frequency region. An approximate solution of the system is ob-
tained for several simple cylindrically symmetric structures. The high-frequency
impedance is found for a step, for a cavity, and for a periodic array of a finite num-
ber of cavities. It is shown that the observed transition from one regime (charac-
teristic of a single cavity) to another regime (appropriate for an infinite periodic
structure) can be explained by the interference of the EM waves diffracted from

- different cavities. The criterion governing such a transition is given. The results
agree with the results obtained above with another approximation: the diffraction
model. This supports the reliability of the approximations, and allows us to use
them in more complicated cases where analytical methods do not exist. For exam-
ple, Gluckstern and Neri [37] used a similar approach to obtain the longitudinal
impedance of a small obstacle.

The situation for a semi-infinite circular waveguide is unique . In this case,
an exact solution of the Maxwell equations can be found in a closed form. The
Wiener-Hopf technique used for that purpose, and the derivation of the longitu-
dinal impedance for that structure, are described in Section V1.F.
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A. The basic system of algebraic equations

The starting point for calculating the high-frequency longitudinal impedance
is a system of linear algebraic equations for unknown coefficients of the field ex-
pansion. We will derive the system of equations for the general case of a periodic
array of M equal cylindrical cavities of radius b placed on an infinitely long beam
pipe of constant radius a [48, 491. A par ic e with charge Q and velocity v - c (i.e.t 1
,B - 1) is assumed to move along the axis of the system TO = 0. We choose the
plane z = 0 to coincide with the beginning of the first cavity. Figure 6.1 gives the
layout of the geometry considered and the coordinate system used.

A particular case of a single cavity can be obtained by assuming M = 1.
Likewise, a particular caseof a periodic array of cavities can be obtained in the

--limit  as M + 00.
For the cylindrically symmetric (monopole) modes, the Fourier harmonics‘-’

of the electric field generated by a particle can be written as a sum of the jeld
of a particle in a pipe and the radiation field due to the presence of the cavities.
The radiation field satisfies the homogeneous wave equation and must be finite at
r = 0. It can be represented as a superposition of cylindrical eigenfunctions with
unknown coefficients A(p). For the region inside the pipe, r 2 a, the radial and
longitudinal Fourier components of the electric field are, respectively,

co
E,, = Qr eikz G1 (r, a) - i E

J
dp A ( p )  i JI(x,‘/u) eipr, (6-l)

-03

and
co

E,, = -iQ eikz Go(r,  a) + $
J

dp A ( p )  Jo(xg/a) eipZ , (6.2)

where k = w/c, Q = qk/rc’y 2, Go,l(r,u) are defined in Eqs. (4.3) and (4.2), and

xp = d-2 , fl = Jk2 - p2 + 2ike , .5+0. (6.3)

An infinitely small imaginary part E is added to the wave number k to comply
with the radiation condition.
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The radiation field components inside the Nth cavity, a < P < b, N L  5
z < NL + g, are

E,N = 2 A, D,N gill(r) sin (Xn[~) , (6.4)
n=O

and

E,N =  2 (/&z/b)  0: 9!?(r) cm ( M N )  , (6.5)
n=O

- w h e r e
.

9i”‘l’(r)= JO,l(Pnr/b)  Ya(Pn)- Yo,l(f%z~/b)  JO(Pn) 7 (6-6)

pn=bJz’k -X;, An = nrl9 , CN=Z-NL, (6.7)

and 0: are unknown coefficients for the Nth cavity, N = 0, 1, . . . , M - 1. Here
Yo,r are Bessel functions of the second kind, of the zeroth and first order. The
field components in Eqs. (6.1), (6.2), (6.4), and (6.5) are constructed in such a
way that their tangential projections are equal to zero on all the metallic surfaces:
at r = a in the pipe and r = b in the cavities for appropriate values of z, and at

-z = NL and z = NL + g for arbitrary values of r in the interval b > r > a.
To find the unknown expansion coefficients Or, one can use the field-.,.

matching method described in Section 1V.A. Matching the radial components
of the field from Eqs. (6.1) and (6.4) in the Nth cavity on the surface r = a,
0 5 [N < g, defines the coefficients 0: in terms of the radial component of the
radiation field. After that, matching the z-components of the field, Eqs. (6.2) and
(6.5), at r = a produces the following integral equation for the function A(p):

- -

A(P)

X

M-l 00
= C C %-$-$ e x p  { i ( k  -p)NL}

NC0 n=O

co

& V;(k) + a
I

&’ UP’)
JdXP4

XP’
exp {i(p’ - k)NL} A(p’

-CO

where the following notations are introduced:

Cn(k) =
Cln 9fi”)(u)- - M d= tan[(b-u) JG] ,

b 9P(a)
(6.9)

Vn(p) =
I

dz evipz  c o s  (Anz) .
0

‘)1 , (6.8)

(6.10)
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Note that

IK(P)12 =
4p2 sin2 g(p - X,)

(P2 - w2
(6.11)

and that the functions Vn(p) ex.p{ -ipNL} are orthogonal:
co
I d p  V:(p) V&(p) exp{-ipL(N - N’)} =  rg&,, SN,N~  . (6.12)

-CO

The longitudinal impedance is given by the coefficient A(k):

Z(k) = -Z. A(k) , 20 = 377 il . (6.13)

In what follows we assume that b > a, since when b = a all C,(k) = 0
identically. Consequently, all A(p) = 0, h hw ic means that no radiation occurs in
a smooth pipe.

We seek a solution of Eq. (6.8) in the form

M-l co
A(p) = c c -Bf $$$ exp{i(k  - P) W ,

N=O  n = O
(6.14)

--which gives the following system of linear algebraic equations for Br:

B,N = -%wg Cn(k> & V ; ( k )  +  Mc1 c I’;kN’ B,N’ . (6.15) -
N’=O m - -

Here N = 0, 1, . . . , M - 1, and the following notation for matrix elements I’:<“’
is introduced:

r-N’ =
n m V,*(P) Vm(p) exp{i(p  - k) L(N - N’)} . (6.16)

-CO

To evaluate this integral, we use analytical continuation of functions in its inte-
grand into the complex plane of the variable p. According to the radiation con--
dition, cf. Eq. (6.3), the path of integration in Eq. (6.16) must be shifted above
the negative real axis and below the positive of that plane. With the path closed
by a circle of large radius in either the upper or the lower half-plane, it is easy to
show that the integral is equal to the sum of residues in the zeros of the Bessel
function JI-J( vl) = 0:

V,*(ul>Vrn(ur)  exp{Wr - k)(N - WI f o r  N>N’

VA(ul)Vn(ul) exp{-d(uJ  + k)(N  - N’)} for N < N’
(6.17)
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where
p77P for  vl < ku

Ul = .
id- for vl > ku

(6.18)

All terms with vl >
the summation over
diagonal term is

ku in the sum of Eq. (6.17) are exponentially small. Hence,
I may be truncated at vl = La. The imaginary part of the

lmax
Im r:, = C -$ IVn(UZ)12 7I=0

(6.19)

where the integer I,,, on the upper limit of the summation is defined by the
inequality vimax 5 ku.

The longitudinal impedance in terms of the coefficients Bz is
M-l ccl

z(k) = -20 C C K ( k )  B:(k) - (6.20)
N=O n=O

So far, the system Eq. (6.15) constitutes the exact set of equations defining the
radiation of an ultrarelativistic particle.

B. The impedance of a cavity in the zeroth-order approximation
-

In the high-frequency limit, we expect-that the system Eq. (6.15) can be,*
solved by the method of iteration. In the zeroth-order approximation, we neglect
the second term in brackets in Eq. (6.15):

Then the impedance per cell is

z- =
M

-2’ $ 2 IK(k)12 Cn(k>  -
n=O

(6.21)

(6.22)

Note that in the zeroth-order approximation the impedance per cell given by this
formula does not depend on the number of cells in the array and, as seen shortly,
is the impedance of a single cavity.-

For large wave numbers k the impedance, Eq. (6.22), is a fast changing
function of k and goes to infinity at the resonance values

k,,= j/t’l”l”)’ (6.23)

defined by the equation Cil(knr) = 0. The impedance can be presented as a sum
of the resonances with infinitely small width. With C;‘(k)  in the vicinity of a
resonance represented as

C;‘(k) = R,i’(k - k,l + ic) , (6.24)
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where

Rnl = _ HI + WI2
knl(b - u)~ ’

(6.25)

the real part of the impedance is given by the sum of S-functional terms

z
‘Or2Re ?ii? = gku(b - u)~ C IVn(k)12  ‘z’kk~~2’2  S(k - k,l) .n,

,
(6.26)

Practically, we are interested in Re 2 averaged over some interval of wave numbers
_ Ak, which should be large compared with the difference between neighboring

resonance frequencies Sk, given by

Sk = &(z+I) - knl x
7rz

k(b - u)~ ’
(6.27)

We can chose an appropriate Ak in the following way. The factor IVn(k)12
given by Eq. (6.11) has a maximum value of order (g/2)2  for n = no, where

k9no= - ,[ Ilr
(6.28)

and decreases as (n - no) -2 for n # no. The brackets denote the integer part of
.-an argument. The main contribution to the impedance is therefore given by mode

no which, of course, is different for different k. Hence, it is convenient to choose.*
the interval of averaging as

Ak x “/2g , (6.29) _ _

which is large compared to 6k, if k is large.
To estimate the real part of the impedance in Eq. (6.26),  it suffices to con-

sider only the term n = no. The average impedance is then

2
20

1 max (Z + l/2)2
4ka;b’ u)~ Z I=o JCnol ’c (6.30)

where

1m a x  = (b - a>
J
$ -

This estimate of the real part of the impedance, with Ak defined by Eq. (6.29),
differs from the real part of Lawson’s estimate [80]

z
M = (l+i) $ & &

/-
(6.32)

only by a factor r/3. Numerical calculations confirm that this result is indepen-
dent of the size chosen for the interval Ak.
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We conclude that the main contribution to the impedance comes, with good
accuracy, from eigenmodes with eigennumbers

n = no and 0 L 15 Imax  - (6.33)

This result has a simple physical meaning. The eigenmode with the eigen-
numbers (n, Z) >> 1 is characterized by the wave vector k with components
kl = rl/(b - )a and kll = nw/g, corresponding to the wave number k,l in
Eq. (6.23) and the frequency w/c x k,l. The interaction of a particle with a
mode contributes substantially to the impedance if, in the time of flight through
the cavity g/v, the phase slippage is small:

. (w - k,,v) ; < ; . (6.34)

Substituting o M c and n = no. from Eq. (6.28), we obtain the condition Eq. (6.33)
with I,,, from Eq. (6.31).

The zeroth-order approximation does not take into account either the inter-
ference of the radiation from different cavities or the energy escape into the cavity
openings. We next derive a method that allows us to take into account both these
effects.

C. The high-frequency impedance of a cavity
in the diagonal approximation-

We start with the somewhat simpler case of a single cavity, M = 1. In this“’
case, the interference of the radiation from different cavities plays no role, but the
energy flow into the side pipes must be taken into account. For M = 1, Eq. (6.15)
takes the form

9 + C I’gmBm
m

(6.35)

In the zeroth-order approximation, the sum on the right-hand side of this
equation is neglected altogether. In the next approximation, we include the main
diagonal term m = n contributing to the sum. All the other terms give only
small corrections and can be taken into account by the method of iteration. In
this diagonal upprozimution [48, 491, we obtain the following expression for the
impedance:

Z(k)  =  - i  2 c IvnW12
n Y(k) ’

where we define

cot

(6.36)

(6.37)

The sum in Eq. (6.36) is again determined mainly by terms n M no.

68



By treatment similar to that of Eq. (6.22),  the impedance given by
Eq. (6.36) can be represented as a sum over the resonance terms with finite widths.
The resonance frequencies are now given by the condition Re y(k) = 0, while the
resonance widths are defined by Im I’:,. Evaluation of I’:, has been done [49];
for large k NN nr/g, a good estimate is

rin = (i - 1) : /$ . (6.38)

The resonance frequency shift given by Re I’!, is small, and the expansion around
a resonance frequency k,l takes the form

y(k) = Rif( k - k,l + iml) , (6.39)

where

Rnl = -
UP

S2Cb - u)Cax '

and
1 12- -

^Inl = gJz l$,, *( >

(6.40)

(6.41)

- Hence, in the diagonal approximation, Re 2 is not singular as it was in the zeroth
approximation Eq. (6.26),  although it may have rather sharp peaks if ~~1 is small.,*
This is the main qualitative feature of the diagonal approximation for a single
cavity.

The ratio of the resonance width 3;11 to the distance Sk between adjacent
resonances is small for resonances with 1 < Imax:

Ynl I- <  1 .
-ii- = 1,,,

(6.42)

Therefore, averaging over Ak for resonances with different 1 may be performed
independently. Since the integral over a resonance curve does not depend on its
width, the real part of the impedance is the same as that given by Eq. (6.32).
The diagonal approximation allows one to estimate correction, given by the next
iteration, and to prove that such corrections are small in the high-frequency limit
[49].  Recently, Gluckstern [30] showed that Eq. (6.32) holds for a cylindrically
symmetric cavity of general shape.

D. The high-frequency impedance of an array of cavities

Consider now an array consisting of M identical cells. In this case the
interference of waves generated in different cells must be taken into account. We
describe the interaction of a particle with each cell in a manner similar to the
previous treatment of a single cavity. Therefore, we consider Eq. (6.15) in the
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diagonal approximation for the lower indices, retaining only the terms m = n =
no, but keeping the summation over the upper indices N’. This gives [48, 491

B,Ny(k)  = f$ +
M-l
c r:‘-N’BN’

n 7
N’=O,N’#N

(6.43)

whereN=O, 1, . . . . M - 1; I’znmN’ is defined in Eq. (6.17); and y(k) is defined
by Eq. (6.37).

The system Eq. (6.43) is difficult to solve numerically for an interesting
case, namely M N La >> 1. Indeed, the rank of the corresponding matrix is M.
Inaddition, the coefficients in Eq. (6.43) oscillate rapidly with a typical period
of l/M. Therefore, the computational time for the calculation of the averaged
impedance increases with M as M3.

To simplify Eq. (6.43), consider the behavior of its matrix elements given
in Eq. (6.17). All the elements with N < N’ contain factors that oscillate with
large sum frequencies ul + k N 2k. After averaging over a frequency interval, their
contribution is negligibly small. On the other hand, all the matrix elements with
N > N’ contain factors that oscillate with small difference frequencies ul - k.
These terms describe the interact-ion of a particle with the waves traveling in the
same direction. Therefore, we may assume that

F-N = 0
nn f o r  N<N’

and rewrite Eq. (6.43) in the form

B,Ny(k)  =  3 +  Nc I’,N,-N’ B,N’ .
N'=O

(6.45) - -

By omitting the terms with N’ > N we neglect the interaction of a particle with
the waves traveling in the opposite direction. In particular, we neglect the decay

of the modes inside cavities into these waves. Since we do this in the nondiagonal
terms, for consistency, we should do the same in the diagonal terms as well. In
other words, Im l?En in the definition of y(k), Eq. (6.37), should be divided by 2.

Equations (6.45) are the recurrence relations between coefficients Bf. Thus
the coefficients can be found sequentially starting with the zeroth one :

iv,*
B’ = ku2y(k)  ’

(6.46)

Note that this expression gives the impedance of a single cavity.
It is also possible to solve the system of Eqs. (6.45) explicitly. To do this

we note that the Nth coefficient is expressed through coefficients with indices
N’ < N. Although we are interested in only the first M coefficients, the proce-
dure can be formally extended to any N. Since the matrix I’tlN’ depends only on
the differences N - N’, Eq. (6.45) can be solved by applying the discrete Laplace
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transformation. The Laplace  transforms of Br and I’g are defined for a complex
argument s as follows:

Bn(s,k) = C esNs B,N ,
N=o

(6.47)

0 0

L(G) = c emNs r& ,
N=l

. withuERes>O.
Then the Laplace transform of a solution of Eq. (6.45) is

Bn(s, k )  =  ;v,*
1

ku2 [y(k) - lTn(s,  k)] (1 - ees) ’

The inverse transformation now gives the solution of Eq. (6.45):

ix+CJ

B,N =
I

ds
_

iize Ns Bn(s,  k) y a>O.
-i*+a

Hence, the impedance of an array with an
by the following expression [cf. Eq. (6.20)]:

(6.48)

(6.49)

(6.50)

.- ,*

arbitrary number of cells M is given

2 I~(lc)12 ‘T” ds [y(k) _ rnyzLi tcoshs _ 1) ’ (6’51)
n=O -ix+0

Here

L(Q) = 2 2~iIV,(Ur)12
J=O U2,J k iL(k-ul)+s - 1) (6.52)

and

UJ = Jk2 -(~~/a)~  +  2kie  , VJ”” .I (6.53)

The integrand in Eq. (6.51) has the same value on two parallel lines, s =
-ir+a and s = +ia+a,-cc < cr <  0 . Therefore, we can add and subtract
integrals over these two lines, thereby extending the contour of integration in the
complex plane s from -co - ir, then from -ir +a to ir +a, and back to -co+ir.

71



The integral is then equal to the sum of the residues at the roots of the respective
equations coshs = 1 and

y(k) = W, k) . (6.54)

It is easy to see that all the roots of Eq. (6.54) are purely imaginary. Using
that fact, we average the impedance over the interval Ak = “/2g; cf. Eq. (6.29),
as in Section V1.C for a single cavity [47].  The result is

(Re (;)) = c;u$,2  (21 ff @(k, M) , (6.55)

where

Q(k, M) =  krg (&,’ j dt F(;TM) ~(5) ,
--x

F(t, M )  =
sin2 (Mt/2)
M sin2 (t/2) ’

(6.57)

(6.58)

(6.59) ‘-

and
- -

(6.60)

For an array with only a few cavities (M M 1) the expansion of the expression
Eq. (6.51) was obtained by Heifets and Kheifets [49].  Apart from small corrections,

the impedance per cavity is the same as that for a single cavity, cf. Eq. (6.32).
To evaluate the average impedance for M >> 1 we note that, for large M,

function F(t, M) has a sharp peak at t - 0. Hence, a good approximation for it is

C M
_ F(t, W =

if  ItI < a/M ,
o if ItI > r/M .

Then Eq. (6.56) can be simplified to

‘(lcyM) =  $ f (&) [G(P) +  R2(P)] ,

(6.61)

(6.62)

where
P

(6.63)
0
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and

P

R2(P) =
I

pdp %2) , (6.64)
0

(6.65)

(6.66)

(6.67)

We will evaluate integrals RI and R2 in two regions of the parameter P.
(a) Suppose first that P << 1 or

(6.68)

Since P << 1, we can expand functions & and & in the vicinity of p = 0:
t1 =  t2 =  (u/$L),h&  B o t h values are large for large k everywhere inside the

--interval of the integration in Eqs. (6.63) and (6.64). Hence, function B M tV2 M
(4L/u)2(1/rkg). For the integrals RI and & we get RI = R2 E lGL/gM and,*
Q(k, M) M 1. Thus we obtain

( R e  ($))=(fu;,2  (EYE f o r  M>g. (6.69) - -

In other wordsl;p real part of the average impedance per cell decreases with
frequency as w .

(b) Suppose now that P >> 1 or

In this case, the main contribution to the integral RI comes from the vicini-_
ties of the roots of Jl(p):  pm = vrm, where <r x 0. Near the root pm, the function
Z can be approximated by

=‘x 1
3 + [t’(P - Vlm)]2 *

(6.71)

This expression has the correct behavior in the vicinity of the roots p = vrm, and
decreases as t2 far from them. The estimate of the integral R1 is then

(6.72)
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where we used the formula [38]

PI”
c 2 P3

vml M -,
3r P>>l.

m=l

Unlike the situation with RI, the integrand of R2 does not oscillate, and the
relative contribution of R2 to Eq. (6.62) is small [it is of order of (gM/L)-112  < 1
with respect to RI]. The physical reason for such a difference is that the interaction
of a particle with the diffracted waves is substantial only when both travel in the
same direction. Therefore, in this case

.

In other words, the real part of the average impedance per cell decreases as
(kuM)-1/2.  This result was first qualitatively obtained by Palmer [91]. A re-
sult similar to Eq. (6.73) was later obtained by Gluckstern [31, 321, albeit with a
different coefficient.

An intermediate parameter-region M - ku2/L is the transition area. The
transition from one regime to another is illustrated in Fig. 6.2 [49].  The curves

.-represent function @ versusSku2/ML  for different values M, and were obtained by
numerical integration of Eq. (6.56). -- ,*

Let us summarize the results [49]. The real part of the impedance per cell
for a small number of cavities decreases with frequency as k-1/2.  For a large
number of cavities the asymptotic frequency region is divided into two parts. For
an extremely high frequency, the real part of the impedance depends on frequency
in a way similar to that for a single cavity, i.e. as km1i2,  but falls off as Mw1i2  with

the number of cells M because of the interference of the radiated waves emitted
from different cavities. The interference also takes place for moderate (but still
large) frequencies satisfying the criterion Eq. (6.70),  resulting in a much faster
decrease of the impedance, N ks3j2. There is a continuous transition from the
regime where the parameter M satisfies Eq. (6.70) to another where M satisfies

- Eq. (6.68). This result agrees both with numerical calculations for a small number
of cavities [7] and with the optical resonator model [13, 58, 101, 1061.

The fast decrease of the real part of the impedance as k-3/2 has a direct
implication for the design of a short bunch accelerator. Indeed, if the asymptotic
decrease of the longitudinal impedance followed the law ks1j2,  the main contri-
bution to the total energy loss would be given by the high-frequency tail of the
impedance, and the total energy loss would depend on the longitudinal rms size
of the bunch (T as 0-l/2 . The situation is quite different when the impedance falls
off as k -3/2. In this case the total energy loss is defined by the low-frequency
range of the impedance and is generally smaller.
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Figure 6.2 The transition from a cavity regime to a periodic array regime.
The function @ is plotted versus the parameter ka2/ML for different
values of the number M of cavities. (a) Blowup of the region of small
values ka2/ML of (b). Curves are labeled as follows: (1) A4 = 500,
(2) M = 1000, (3) M = 3000, (4) M = 10,000, (5) M = 30,000.

E. The high-frequency impedance of a collimator

The longitudinal impedance of a collimator in the high-frequency region (and
in the relativistic case 7 >> 1) can be found analytically by using formula (4.28).
Since asymptotically I* X Z, only the diffracted field, i.e. the field depending on
coefficients z,, contributes to the impedance. Physically this arises because only
the diffracted field radiated forward can reach a relativistic particle. Hence,

zcol(k) = --2(20/7r)  L&t 2, Jo (vn/d 9 (6.74)

where p = b/a,  a is the pipe radius, and b is the collimator radius.



Coefficients z, can be found from the matrix Eq. (4.23), with the matrix
elements and the right-hand side of it taken from Table II:

z&J,“(zq) = - Jo h/P)

4
+ 2p-2 i Cl-&, - YmJw 417n (p-l) , (6.75)

where quantities $lm(pA1) are defined in Eq. (4.24), and E- in Table II.
Dividing Eq. (6.75) by J,“(q), multiplying by Jo(q/p),  and summing over I,

we obtain

x JF2(vr)  C,(t,  - y,,&) vm J1(vm) (vi p2 - v,“)-’ . (6.76)

Summation here can be performed explicitly by using the following particular
form of the Kneser-Sommerfeld formula [27, 1161:

= = Job/p) [JO yO(z) - Jo(4 yO(~/~>l

4Jo(x)
7 (6.77)

_-where YO is a Bessel function of the second kind. From here it follows that the
second term on the right-hand side of Eq. (6.76) containing coefficients t, and._,
ym vanishes, since the sum over 1 is zero. The first sum in Eq. (6.76) according to
the same formula is

Cl J,2 (4/P) = r
u; Jf(vr) 4 l i m  [Ye(x) - Yo(x/~)]~,o  =  F . (6.78) - -

Hence, in the high-frequency region, the impedance of a collimator does not de-
pend on frequency and is the following constant:

Z(i) = : In % for  y>Z>>l. (6.79)

The same expression holds for the high-frequency impedance of a pipe cross-
- section step for the case of a bunch exiting the narrow pipe. In the opposite case,

the impedance is zero, cf. Section 1V.C.
Formula (6.79) is not valid for z > y. In this range of frequencies the

impedance decreases at least as km2.
It is interesting to estimate the total energy loss A& of a charge passing

through a collimator, cf. Eqs. (2.1) and (2.15). For a Gaussian bunch of rms
length (T, the total energy loss is

A& = $$ In : . (6.80)
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This expression is valid for u > l/r, and agrees with the formula for the
total energy loss of a charge passing through a sudden change in a pipe cross
section [l, 631.

If Re 2 is assumed to be constant for k < y and zero for k > y, as previously
discussed, then the total energy loss of a point charge, u = 0, is proportional to y.
For a charge passing through a hole in a screen, this conclusion is in-agreement with
the estimate obtained by Lawson [80] and with numerical calculations [25, 261.

F. The impedance of a semi-infinite circular waveguide

Here we describe the application of the Wiener-Hopf factorization method
[107,122]  for calculating the impedance of a semi-infinite waveguide with a circular
cross section of radius a [69, 701. A similar structure-a semi-infinite circular pipe
inside an infinite circular pipe of larger radius-is considered by Palumbo [94].
These structures have a unique feature: the Maxwell equations in these cases can
be solved exactly. Levine and Schwinger [83] used the same method to obtain an
explicit solution to the problem of the radiation of sound from the end of an open
pipe.

As discussed in Section III,D, the impedance in this case depends on the
direction of the charge motion. Consider for example, a charge entering a waveg-
uide whose open end is placed at z = 0. Because of the axial symmetry of the

‘-problem,  the current density has only the z component and can be expressed as
the sum of the current densities of the source-charge and the induced charge. .-I

The starting point of the method is a set of integral equations for the longi-
tudinal current density distribution induced in the wall of the pipe. The system
can be obtained from Eq. (6.2). In the ultrarelativistic limit y -+ 00, Eq. (6.2)
can be rewritten as

E&z) = - iQ e’“zA’-o(~r)

- $fg 7 ~PF(P> x; Jo (Xpf)  &‘)(xp) eiP* , (6.81)

where k = w/c, r = k/y, Q = qk/rcy2, and xp = a k2 - p2 + 2kie. In-
Eq. (6.81) the unknown function A(p) was replaced by another function F(p)
according to the formula

A(P) = -& x; H:l)(XrJ  F(P) * (6.82)

As shown by Kheifets et al. [70], function F(p) defined in this way can be inter-
preted as the Fourier component of the induced current density. In Eq. (6.81) we
have also replaced Go(r,u) by I<o(rr)  to take into account that the second term
in Eq. (4.4) 1a so comes from the induced current (cf., Section V.B), and thus is
already included in the second term of Eq. (6.81).
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Function F(p) is defined by the boundary condition which here can be writ-
ten as

&u(% 4 = 0 , f o r  z>O. (6.83)

We define

L(P) = TX2 Jo(xp) J&x > *P P 1 (6.84)

then Eq. (6.83) gives

dpF(p)  L ( p )  exp(ipz) =  0 exp(ilcz) for 2 > 0 , (6.85)
--oo

where 6 = -2ilc2aKs(ru)/r2. Since there is no metallic surface for z < 0, the
induced current density for negative z is zero

00
J dPF(P) exp(G4 =  0  9 for z < 0 . (6.86)

. - -CO
.L .m.

Equations (6.85) and (6.86) constitute a system of linear integral equations for
function F(p). P rovided the function F(p) is found, the longitudinal impedance - -
can be found by integrating Eq. (6.81) according to formula (2.5).

The solution of the system (6.85) and (6.86) can be obtained by factoring
the kernel L(p) in such a way as to satisfy the following requirements [107]:

(1) In the upper half-p1ane of the complex variable p, the product F(p),!,(p)
has one pole at po = k. The value of the residue of this pole is 8/2i7r.  In all other
points of the upper half-plane this product is an analytic function. As IpI -+ 00
in the upper half-plane, F(p)L(p)  --f 0.

- (2) In the lower half-plane, F(p) is an analytic function and tends to zero
as Ipj + 00.

The analytic behavior of F(p) and F(p)L(p) described above causes F(p)
to be the solution of the system defined by Eqs. (6.85) and (6.86). The function
F(p) satisfying both the above requirements is [107]

J’(P) =
;Q r-CPU>

2d?+(  ku)& (ku - ~a)~‘~  ’
(6.87)
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where functions r* are

ka

w4 = PP IO(P)  WP)l
&l/2 exp - 2

{ J
i7r

dt ln[ral  Jo(al>  H&n)]

u2 - t2
0

co

+ r PV dt ‘d2n ‘dad “t&9)]
72.x J t2 - u2

(6.88)
k a

.  where p = dw, 01 = dw, and a2 = /w. Note that at
u- = ku there is no singularity..

In terms of these functions, the impedance produced by the radiation on the
open end of the waveguide [74]  for ,O x 1 is

Z ( k )  = Z. kuKo(nz) -/II(m) _ I’;(ku) 1- -
2w y2 IfJo i IO(TU) I’+(ka) 14ku ’

(6.89)

Figure 6.3 presents the real part of the longitudinal impedance Re Z(k), Eq. (6.89),
for several values of the Lorentz factor 7:

- 3

3-91 ka=adc 667oA30

- Figure 6.3 The real part of the longitudinal impedance of a semi-infinite circular
waveguide as a function of parameter ku = U/C for three different
values of the Lorentz factor y.

In the asymptotic region ku >> 1, the contribution of the discontinuity to
the longitudinal impedance is

Z ( k )  =  2 lnz . (6.90)

This result is similar to that for a step with infinitely large outer radius.
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VII. CONCLUSIONS

Substantial progress has recently been achieved in understanding the physics
of the bunch-environment interaction in modern accelerators and in the develop-
ment of analytical and numerical methods of estimating the coupling impedances
and the loss factors. We have tried to describe the present level of understanding
and the main theoretical results in the field. Clearly, the methods presented are
limited to rather simple cylindrically symmetric geometries. Nevertheless, it is
difficult to overestimate the importance of the comprehension and insight which

_ they help to develop. Certainly much more work is needed for other geometries
such as tapers, bellows, etc. This is especially true for cylindrically nonsymmetric. structures.
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