
SLAC–PUB–5293
June 1990
(E)

SOFTWARE
MANAGEMENT ISSUES*

Paul F. Kunz

Stanford Linear Accelerator Center
 Stanford University

Stanford California, 94309
<BITNET: PFKEB@SLACVM>

ABSTRACT

The difficulty of managing the software in large HEP collaborations
appears to becoming progressively worst with each new generation
of detector. If one were to extrapolate to the SSC, it will become a
major problem. This paper explores the possible causes of the dif-
ficulty and makes suggestions on what corrective actions should be
taken.

Invited paper presented at Computing in High Energy Physics, Oxford, England, April 10–14, 1989
amd published in Computer Physics Communications 57 (1989) 191-197.

* Work supported by the Department of Energy, contract DE-AC03-76F00515.

 SOFTWARE ISSUES

 2 SOFTWARE MANAGEMENT ISSUES

1.0 SOFTWARE ISSUES

Today, in high energy physics, software is generally in a
mess. That is to say, most experimental groups, especially
the new large detector groups, are having a difficult time
developing and managing their software. As each new large
detector comes on line, the management the software effort
seems to be getting more difficult. This seems to lead to a
conclusion that for Superconducting Super Collider (SSC)
we will have a major software problem. Although not ex-
plicitly stated, there seems to be many in our community
that believe the reason that software will be a problem at the
SSC is that “we need to develop large (200-500K lines of
FORTRAN) complex code for the detector with 400 phys-
icists at 50 institutions.” [1] . We will first explore if the
above reasoning is fact or fiction.

First of all, lets look at the size and complexity of the code
for a very large detector. The size and complexity of the
code should scale with some aspects of the detector. If we
can find the scaling laws, we should be able to estimate the
size of the problem for an SSC detector by extrapolation
from our current detectors.

The size and complexity of the code should scale, for ex-
ample, with number of different kinds of detector elements
in the detector. This is because each detector type will need
its own pattern recognition code and there will be some
code that links tracks between the detector elements. For an
SSC detector, however, there is no reason that there be
more different kinds of detector elements than a large Teva-
tron, LEP, or SLC detector. Therefore, this scaling law
would say that the software for an SSC detector would not
be more difficult.

Another scaling law is the size and complexity of the code
scales with the number of boundaries in the detector. This is
because each irregular boundary takes additional code to
calculate the position of the boundaries, cross the bound-
ary, and in general, makes for a lot of exceptional case han-
dling in the code. There is no reason that an SSC detector
should have more boundaries than existing large detectors,
so the software problem for an SSC detector should not be
more complex because of this scaling law.

The size and complexity of the code should scale with the
track density due to confusion a pattern recognition pro-
gram must try to resolve. However, these problems are in a
limited area of the detector code and the effect is not very

strong. Thus we would not expect a great deal of size and
complexity from this effect alone.

So far, we have seen areas where an SSC detector is not
necessarily very different from our present day detectors.
However, there is still a feeling shared by many that the
large physical size of an SSC detector is going to lead to a
larger software code problem. For example, an SSC detec-
tor will have many more detector channels. But the size and
complexity of the code should not scale with the number of
channels; not to first order. Only the size of the arrays
should grow, not the size of the code. The same could be
said about the number of tracks in the detector, except for
the second order effect that with a large number of tracks
one expects to have areas of higher track density. Nor
should the change in energy scale of the particles in the de-
tector have a strong effect on the code. And certainly, the
total amount of iron in the detector doesn’t have effect on
the size and complexity of the code.

There are other effects that I would consider second order
effects. With each new detector, for example, one frequent-
ly tries to push the state of the art in detector resolution, or
two particle separation, or both. This will lead to more code
and perhaps somewhat complex code. However, since this
code should be localized in the module that does pattern
recognition for the subdetector, I consider it a second order
effect. Also the large number of channels will require some
form of database management system. for calibration and
alignment constants. But again, if well planned and mod-
ular, it should not lead to overall impression of large and
complex code.

Thus we see that because an SSC detector is very large
compared to our current detectors, there is no inherent rea-
son that the code for the detector be any larger. The notion
that a large detector leads to large software problems is thus
mostly fiction. The second part of the reason is the people
factor, which we will now explore a bit further.

Over 400 physicists are expected to be collaborating on a
large SSC detector. Getting so many people working on a
software project is clearly a problem. But in our modern
era, it seems that only about 10% of them actually work on
the Monte Carlo or event reconstruction code for a signif-
icant fraction of their time. This means the real size of the
software team is about 40 people; a much more manageable
number. Of these 40, we might expect them split up
amongst 4 to 6 detector types. That is, for example, the ver-

 SOFTWARE MANAGEMENT ISSUES 3

 Causes of our Software Problems

tex detector, central drift detector, particle id device (if one
exists), calorimetry detector, and muon chambers. If equal-
ly divided, there would be 7-10 software people per detec-
tor type. Another small team would also be working on
system architecture, utilities and tools. People in industry,
experienced with managing large software projects, tell us
that this is about the right size for a software team [2] . In
fact, today’s large detectors are usually under-manned in its
software development effort, leading to software teams
which are even smaller. Thus there should not be an in-
creasing software development problem because of too
many people, unless of course, all the people try to get
heavily involved in one area, such as the utilities and tools.

The number of institutions involved with a large detector is
frequently said to be the cause of the software problem. But
computer networking, as we have it today, should have
largely solved the problem of the geographic dispersion of
the software team. It is true that people working at remote
locations can not attend as many meetings as those a the
central site, but too many meetings break one’s concentra-
tion on developing code anyway. There is, of course, a need
for a system to distribute program libraries to remote com-
puters, and the possibility of having the program run on
multiple computer types. But the difficulty of such a dis-
tribution system should be a second order effect compared
to the software problems we are experiencing. It is also fre-
quently the case that even at the central site, one needs to
run the code on at least two different machines.

To the question: “will software be even more difficult at the
SSC?”, I think the answer is “no, it shouldn’t be”. It
shouldn’t be because we have not identified any first order
scaling laws from which we could conclude that software
will be more difficult. I would argue that the reasons that
are usually given for predicting a major software problem
for SSC detectors is largely fiction.

And yet we know it is a fact that with each generation of
large detectors, the software problem is growing. The dis-
crepancy between what we have concluded is fiction and
the fact that software is an increasing problem lies in cor-
rectly identifying the causes of our software problems.
Without correctly identifying the real causes, it will be dif-
ficult to find real solutions.

2.0 Causes of our Software Problems

I do not profess to understand all the causes to the software
problem. Nevertheless, I am willing to hazard some rea-
soned guesses. Amongst these, I do not pretend to under-
stand the relative importance between them. Amongst the
large collaborations, in fact, their relative importance may
be very different.

The first cause is that some people don’t take software se-
riously enough, early enough. The second is that some peo-
ple take software too seriously, too soon. Lets explore the
first a bit. Some people are too busy prototyping, building,
testing, and installing the hardware to be “bothered” with
software. They may think that they can always fix the soft-
ware later. It is likely that some of these people are the real
experts on how the detector works, thus the ones that will
ultimately write the code that works. And yet, in the early
stages of building the detector, how much time do these ex-
perts spend in monitoring or controlling what software is
being written by others. And who are these others? They
are probably younger, less experienced physicists who
could very well use some guidance from those who have
been through this kind of software development before.
This kind of situation can lead to large important parts of
the code being re-written at the last minute perhaps, even
perhaps, after the first data has been taken.

Another cause is that some people take software too seri-
ously too soon. A telltale clue that this is happening is when
religious wars break out. The topic of these wars are such
things as whether to use FORTRAN or another program-
ming language, which is the “best” operating system to use,
or which code or data management system should be used.
An excessive amount of time can be spent discussing these
issues, attempting to make decisions, and/or designing new
tools. It is as if people believe that decisions can be made at
this early stage of software development that are really go-
ing to last for five or more years. Hardware people know
they can not make final decisions on design or construction
without making a prototype first. But for software people,
the word “prototyping” isn’t used very often.

Frequently, when software is taken too seriously, a group
builds an overly complex software architecture which is
full of gadgets. These architectures frequently lack an en-
gineering trade-off analysis, in that concerns about details
that may occur 5% of the time seem to outweigh 95% prob-
able usage. There may be a lose of contact with reality and

 Causes of our Software Problems

 4 SOFTWARE MANAGEMENT ISSUES

the end-user for whom the system is presumably designed.
There may be also a lack of cost-effectiveness analysis of
the gadgets, where the real costs of a gadget include not
only the writing the code to support it, but also the inte-
gration, maintenance, documenting and training of users.
The documentation cost is not only in writing it, but also in
people needing to read it, or people learning that they don’t
need to read it because a gadget is not useful to them.

One problem with programmers, in general, is that they
seem to be rugged individualist, and yet there is little con-
straint on them. Ask an engineer to build an electronics
module and he is constrained by choice of chassis and in-
tegrated circuit family. Constraining a programmer to use
FORTRAN, on the other hand is almost no constraint at all.
Try to constrain a programmer to write his source files to
certain standards and you’ll find that if he doesn’t like it
then he may either ignore it, or complain bitterly about it.
And yet, code written by one person, needs to be integrated
with code written by others, and may need to be maintained
at a much later time by another.

Another area that sometimes leads to difficulty is how of
the software development teams are organized. Ideally, one
would like to see a clear chain of command from top level
manager to individual software writers. Frequently, how-
ever, one finds a set of people from the various collaborat-
ing institutions, and at various stages in their professional
career. The software manager in HEP thus doesn’t neces-
sarily have the same level of control, authority, or influence
over the software team as say a manager would in industry.
When a programmer doesn’t agree on development direc-
tions with his manager, and the two are from different in-
stitutions there can be additional problems. He may try to
circumvent his manager by going to his manager’s man-
ager, or by going to his real boss (i.e. the person who ef-
fectively signs his pay check) That person may not even be
a software person. Such situations are probably not the
cause of the software problems in HEP, but when other
problems exist, these situations surely don’t help.

The software team structure leads to another area: how are
decisions made? One needs to understand the consequenc-
es of decisions made by committee, by recognized leaders,
or by who ever is doing the work. Also an important ques-
tion is how long decisions last. On the one hand one would
like to have strong leadership in order that the software ef-
forts lead to a coherent, well engineered whole. This works
if the person in charge is a respected, competent leader. It

doesn’t work when the person in charge is a leader on an or-
ganization chart only and he isn’t recognized as competent
by the software team. On the other hand, a committee de-
cision can function well by bringing out the best ideas from
all the committee members. Or a committee can make de-
cisions based on who talks the loudest or who is most per-
sistent in pushing his ideas. The committee room could be
the battle ground of religious wars where compromises are
made in the heat of battle. Some of these may come back
later to be the source of many problems. The person writing
a software subsystem can be the best person to decide how
it is going to look to the users, if he has a good feel for end-
user needs, or he can be the worst person if he lacks that
good feel.

Even with an attempt of strong leadership, one still needs to
realize that these large software system are never built from
scratch. This leads to code in different areas that could have
quite different styles, internal rules, and methods. Tempo-
rary interfaces are made between these different areas
which may never be eliminated. In practice, one may never
be able to achieve a desired level of uniformity of the code.

Another question is what basic methodologies are being
used. Some people argue for “old proven” methods. This is
fine if they have indeed proven themselves to work well.
But they made indeed be old and proven themselves to be a
burden. Others argue for “modern engineering” methods.
Some of these methods are indeed modern and effective,
others may be a passing fad or a dream in computer sci-
entist mind. One must keep in mind that some inventors of
new methods are theorist who have lost contact with the
real world, while others have gained insight from long ex-
perience on large software projects. Also is the question on
whether new methods are tried out on a small scale to see
how they work in practice, or whether decisions are made
to use them first on a big scale. The word prototyping again
comes to mind.

There is also question of overall project control. When
spending large sums of money for a detector, it is not un-
common that the funding agency requires a rigorous form
project control and hosts meetings to see that they are being
met. What does software project control mean in HEP?
There may be little control leading to a software free for all.
Or there may be an overly rigid control creating a unnec-
essary burden on all the writers. One needs some control
but only where it is cost-effective. One also needs to give
programmers a lot of freedom because software is more of

 SOFTWARE MANAGEMENT ISSUES 5

 Software lifecycle

an art form than a commodity that can be mass produced in
a factory. And yet, all the code needs to fit into an integrated
whole.

Project control is one item and quality control is another.
There is some form of quality control being exercised by
the software development team, whether the words are be-
ing used or not. It may be in the form of trusting the author
of the code that it works, in one extreme, or code may go
through regular technical reviews in another extreme.
Some programmers can be trusted, while others need guid-
ance. Technical peer reviews can be very effective in bring-
ing out faults in a code or is basic design, or they can be a
waste of time depending on how they are conducted.

In general, there is little professionalism in managing the
software effort, compared to that found in the building of
the hardware. All of the factors mentioned above, plus the
independent mindedness of most HEP software writers,
contribute to this lack of professionalism.

3.0 Software lifecycle

To properly manage any project, not only software, one
needs to be able to monitor progress towards completion.
To measure progress, one needs a specification or require-
ments document to know what completion means. Neither
is easy to do with any software project and it seems espe-
cially hard for HEP software projects. It is much easier with
hardware projects, where one can really see things being
designed, built, tested, and installed.

The software lifecycle is much more difficult to visualize.
Let us take a closer look at it. It must start with a planning
stage. A software team is formed and responsibility for
each sub-detector is dealt out. A sub-group may or may not
be identified to deal with architecture, utilities and tools.
The requirements document may or may not be written, but
in many cases it might be just one sentence: write a Monte
Carlo program, and a program to reconstruct the events.
That might be the end of planning and the team then pro-
ceeds to the next step: writing code.

The code writing stages proceeds with apparent rapid
progress. Thousands of lines of code are written by each
sub-group each week. Measuring the number of lines of
code written, however, is not a good measure of progress.
The sub-systems must still be integrated into the whole,

and code needs to be debugged. Here the 90-90 syndrome
may happen. When asked for a progress report, the devel-
opment team might say they are 90% done and should be
completed in a few weeks. After that amount of time has
elapsed the next progress report says that the code is 90%
done and should be completed in a few weeks or more. The
90-90 syndrome is when code is 90% done about 90% of
the elapsed time. It happens all too often with software
projects and when it does it is a sure sign that one doesn’t
know how to measure progress.

Finally, at some point the whole code runs without bomb-
ing. Could one use it for production on real events to pub-
lish results? Probably not, it probably can’t be trusted to do
physics with reconstructed events.

The next stage is that of tuning the code to get it to work
halfway decently. One needs to understand what’s wrong
with it. One probably needs to change the value of lots of
cuts. Even some parts of the code will probably have to be
rewritten. At some point one can ask again if it is ready to
be used for production. The answer might be “not really”,
but if a conference is coming up in a few months, the group
may have to use it for very preliminary results.

The next stage is fixing the major faults in the program.
This may imply making some compromises. For example,
track finding efficiency may be very high, but it consumes
much to much CPU time, thus re-programming to reduce
the CPU time at some cost to efficiency may be required.
Other major faults may be things like too much memory is
needed, or the interface between subsystems may be very
wrong, or the wrong data may be on the Data Summary
Tapes. When this stage is complete, is the program ready to
use for production? The answer is of course that it will be
used for production because one has done as best as one
knows how. The step of tuning and fixing rarely ever stops
until the detector is ready to be decommissioned.

The above description of the software lifecycle is admit-
tedly oversimplified and somewhat cynical. For example,
some large groups have gone much further at the planning
stage by using formal methods to generate specifications.
However, there is some truth in this description. In attempt-
ing to measure progress, are people fully counting the very
long amount of time spent in tuning and fixing major bugs?
Or do the time-line charts end when the code runs without
bombing? Progress in software is hard to measure, but
however we attempt to do it, we must taken into account

 Production Releases of Software

 6 SOFTWARE MANAGEMENT ISSUES

that code must not only be written but also meet some stan-
dards of quality and fit within some budget of CPU re-
sources required.

4.0 Production Releases of Software

A major program is not written just once, but goes to re-
leases with ever better versions. How are these releases
managed? To answer this question, we need to look at one
model of the stages the code goes through.

After code has been newly written or modified from pre-
vious version it is usually first tested in the private space of
an individual. This must be so, because the code probably
has numerous bugs at this stage and all other users need to
be isolated from it.

Code than moves to a staging area I call development. This
area is shared by all the members of the subgroup that need
the latest version. If modularity of the program is good, this
usually means only that subgroup uses the code.

The next stage doesn’t generally exist in HEP, but I con-
sider a very valuable stage. I call is pre-production. It
should be an area where development code from the sub-
groups first come together before being released further.
There could be a quality control team that tests the code in
this area. We are all familiar with software companies that
have beta release of new software. HEP generated code
should also have this concept so a few can test code before
it effects the whole group.

The final stage is production area. It is used not only for
production jobs, but is the stable code being used by all the
development teams. Many detector groups have a great
deal of difficulty making a new production release. It is an
area where the software problems in HEP are most visible.
Frequently programs that used to work in development,
now bomb when in production. They may be unexpected
interactions between modules tested separately in their de-
velopment areas.

An important question is how often to make production re-
leases. Some groups release on a fixed interval between re-
leases. One large group I’ve been told, has a new release
monthly and with each release nobody’s code runs without
bombing for a few days to a week. Some groups find it so
time consuming to do a new release that they do it rarely,

thus, most of the time the production release is obsolete.
Both of these extremes cases are symptoms of serious soft-
ware problems. For example, there could be serious prob-
lems in the modularity of the code and/or with the quality
control methods being used.

My own feeling on making releases is the following. It
should not be so frequent that production code appears to
be unstable and it should not be so infrequent that every-
body is using all the development area. The time interval
between releases will thus vary over the life of the detector.
By observing what people are doing or feeling, one can
judge if the cycle is too short or too long.

5.0 What Needs to be Done?

The question is, then, what do we need to do and what
tools to we need in order to keep our software efforts from
being such a mess? I don’t pretend to know all the answers,
but will mention three possibilities below.

First, a large software effort needs a good design. Good de-
sign comes with the proper modularity, which may not be
as simple as division by detector type. Between the mod-
ules, there should be well designed interfaces, which usu-
ally come in the form of FORTRAN COMMON blocks
and/or data banks. A good design of a large project can not
be laid down correctly from the start; a certain amount of
prototyping needs to be done. When a software team knows
it is building a prototype, the whole attitude of approaching
decisions changes to the better. That is, final decisions are
not being made, only decisions tot test the prototype.

Second, the program has to have a good architecture and a
good set of tools. These items are good if they are intuitive
to use. The sign of bad architecture and tools is when users
complain of poor documentation or too much documenta-
tion. The architecture and tools should not be overly con-
straining or overly protective. It is better to allow the user to
make mistakes, provided he can find them easy, than to
have a protective system which the user can’t figure out
how to use. There should be some uniformity of style
across levels and not too many levels to learn. By a level I
mean, for example, the batch control language level or the
compiled source code level. I’ve heard of one group that re-
quires the users to learn four levels, none of which are
FORTRAN or the native batch language.

 SOFTWARE MANAGEMENT ISSUES 7

 Conclusion

Third, as in any large project one needs to have progress
and quality controls. Unlike hardware, it is much harder to
quantify progress or quality with software. Although dif-
ficult, it is not impossible to invent some measurement
tools, with which a software manager can judge the rate of
progress. These tools may not be computer based. At the
very least, peer review of software modules should be done
systematically to judge progress and quality.

6.0 Conclusion

It is generally felt in our community, that with each gen-
eration large detector, software is becoming a bigger and
bigger problem. If we extrapolate this trend to the SSC era,

software would be a very big problem indeed. Many people
are inventing or using new tools to attack the software prob-
lem, but some of these tools are like aspirins, they alleviate
some pain but don’t cure the disease. We need to under-
stand the real causes of our current problems, before we can
find the real solutions.

References

[1] Report of the Task Force on Detector R&D for the
Superconducting Super Collider, SSC-SR-1021, June
1986

[2] J. Manzo, Computer Physics Comm., 45 (1987) 215.

