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1. Introduction

Over the past year considerable progress has been made in 2d gravity through
the use of matrix models. These provide a discretisation of the geometry of a
surface that readily lends itself to both numerical and analytical investigation.

The conceptually simplest, and chronologically the first, approach to discretis-

ing (Euclidean) 2d gravity is via the techniques of Regge calculus. This consists of

triangulating the worldsheet in some regular fashion, and then allowing the lengths

of the sides of the triangles to vary. These then become the dynamical degrees of

freedom. Computer simulations indicate, however, that these models do not give
an interesting continuum limit, and in any case it is hard to imagine a practical
way of solving them analytically.

A more useful alternative has been to consider triangulations consisting just

of equilateral triangles of-the same size [3]. In this case there are no lengths

to be specified, so the only way to vary the geometry of the surface is to allow

different numbers of triangles to meet at the different vertices. The curvature

concentrated at a vertex at which more (less) than six triangles meet will then

be negative (positive). A honeycomb lattice in which all vertices are of order six

would correspond to flat space. The area of the surface is proportional to the

number of triangles that it is composed of. It is clearly straightforward to extend
this approach to “tilings” of the surface that consist of many types of polygon. We
then hope that some form of universality makes the behaviour of the continuum

limit insensitive to the details of the tiling.

The sum over geometries in the path integral can now be replaced by a sum

over triangulations. Moreover the model may be generalised to the case of gravity

interacting with matter by allowing a new degree of freedom to reside at the cen-

tre of each tile. Interaction terms are then included between neighbouring tiles.
Throughout the paper we will refer to theories in which all surface configurations

are weighted by a positive quantity in the partition function as being “unitary”.
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Remarkably, many models of this form may be solved analytically [3]. This is

achieved by the observation that any triangulation is dual to some 43 Feynman
diagram, so the sum over surfaces may be replaced by a sum over graphs. The
propagators of the Feynman diagrams are chosen to mimic the matter degrees of
freedom on the surface.

Suppose that we restrict attention for now to the case in which the gravity is
. not coupled to any matter degrees of freedom. Then the path integral only requires

. us to sum over the geometry of the surface. In this case the propagators of the dual

Feynman diagrams are trivial, and the diagrams correspond to the perturbative

expansion of some 0 + 0 dimensional “field theory”.

It has been shown by Brezin, Itsykson, Parisi  and Zuber [l] that the field theory
that generates these graphs is a model whose variables are Hermitian matrices in

0+0 dimensions. If these matrices are N x N then the 6 expansion is equivalent to
an expansion in the genus of the surface. Happily this theory may be solved exactly

- by transforming the integral over the matrix to an integral over its eigenvalues [1,2]..D
The Jacobian of this change of variables leads to an additional term in the action,

and then the partition function for connected random surfaces reduces to the free
energy of a gas of particles with logarithmic interactions, called the “Dyson sea”.
We thus have a means of explicitly performing the path integral of 2d gravity.

Our main goal in the present paper is to extend this method to sums over
triangulations with boundaries. We restrict attention throughout to the case of

genus zero, for which we are only concerned with the classical properties of the

Dyson sea [1,6,7]. In general, as long as we are not attempting to go beyond the

genus expansion, we do not have to worry about the fact that the Dyson sea may

reside away from the absolute minimum of the potential. Indeed, many cases of

interest have potentials that are unbounded from below. To include nonperturba-
tive effects in the string expansion we must take into account tunneling from the
false to the true vacua, but these matters will not concern us here.

The layout of the paper is as follows. In Chapter 2 we argue that the operators
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Tr@ employed by other authors [9,7] do not in fact generate the correct bound-

aries. Instead they correspond to pathological boundaries which may collapse in
on themselves or split into smaller parts. We believe that the correct operators are
given by the connected Green’s functions Gi of the matrix models.

In addition to allowing us to discretise open string worldsheets, these operators
can be used to calculate the expected number of non-intersecting loops on a random

. surface. This is done by considering a worldsheet with a marked path to consist of

two bounded surfaces sewn together.

The statistical distribution of the lengths of these loops uncovers a new phase
transition, at which the characteristic loop length becomes infinite. We first in-
vestigate this phase transition for the simplest case, in which the surface is tiled
with squares, and introduce the formalism that we later extend to more intricate

tilings.

In Chapter 3 we extend the method of chapter 2 to the case of Kazakov’s multi-
critical models [10,6,7]. This is done with a construction based upon the Coulomb
forces of the Dyson sea [1,2], and leads to an extremely rich pha,se structure. We
also find that in cases in which the density of the Dyson sea is monotonically de-
creasing from its centre to the edge, the asymptotic behaviour of the full Green’s
functions G, is qualitatively similar to that of the connected Green’s functions Gi.

In Chapter 4 we consider non-critical open strings. We start by arguing that
Kazakov’s solution [II] to this problem overlooks certain pathologies in the trian-

gulation. Though we are unable to provide the correct solution for a worldsheet

with an arbitrary number of boundaries, we can perform an analysis for a surface
with a single boundary. We find that for unitary models the qualitative behaviour
of the surface is the same whether it is generated by full or connected Green’s
functions. This indicates that Kazakov’s pathologies do not affect the universality
class of the triangulation.

In Chapter 5 we apply the same techniques to non-critical string theory in

one embedding dimension. Lack of understanding of the angular variables [1,3]
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restricts our considerations to boundaries lying at a single value of the external

dimension. The sewing construction mentioned above then enables us to calculate

properties of non-intersecting loops at a fixed slice of embedding space. We find

the same phase transition as in the d = 0 case, which appears to imply the absence

of a branched polymer phase for d = 1.

2. Loops in 2d Gravity

To fix our notation we briefly review the matrix model approach to 2d gravity,

concentrating for now on the case in which the embedding dimension d = 0 [1,2,3].

As discussed in the introduction, the sum over worldsheets may be discretised

as a sum over triangulations of various topologies, where we consider the side

lengths to be fixed, so that the dynamics is solely reflected by differing numbers of

- triangles meeting at the vertices. .w

Now, duality between graphs gives a bijection between triangulations and the

Feynman diagrams of $3 theories, so the path integral may equivalently be ex-

pressed as the sum over $3 Feynman diagrams [3].

In fact we can generalise this construction by considering the surface to be

composed not just of triangles, but of many different types of polygon whose sides

have a common length. We are then free to give different polygons different weights

in the partition function, which may equivalently be viewed as changing their

intrinsic areas whilst keeping the lengths of their sides fixed.

The diagrams dual to these “tilings” of the surface will now contain not just $J~

vertices, corresponding to triangles, but also $4 vertices, corresponding to squares,

c$~ vertices corresponding to hexagons, etc.

For the simplest case in which all polygons are squares, we can generate the

sum over dual qS4 graphs by considering a Hermitian matrix model with partition
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function

J dN2q5 e -Tr($52+%44) (24

The perturbative expansion of (2.1) in the coupling constant g yields a sum over

d4 Feynman diagrams with a trivial propagator. Each vertex contributes a factor
-9, and a graph with Euler character x contains a factor of NX, as explained very
clearly in [2].

If we allow each square in the dual tiling to have unit area, then a surface with

area A and Euler character x is weighted by a factor of (-g)ANX. Thus -Zn(-g)

plays the role of a cosmological constant.

As we take the limit N t 00, the genus zero contribution will clearly dominate,

so we can write the partition function for the sum over squarings of connected genus

zero surfaces as

where as usual the logarithm subtracts out disconnected graphs. k
.w

nice the inte-

grand depends only upon the eigenvalues CY; of 4, we may write (2.2) as an integral

over the CYI’S. This change of variables gives us an additional Jacobian and leads
to the expression

Z = In
dai e-N (ci ~mf-+-g(Yf-~ c;+j ln(aimu,))

Now in the limit N + 00 the integral is dominated by the saddle point, and 2
may be found exactly, as discussed in [1,2].  Expanding this solution perturbatively
in g gives

2 = x(-9)AZA (2.4)
A

where ZA is the partition function for surfaces of fixed area A. We can show that

ZA N 4&4-W as A + 00 [l], so this series is convergent for g > gC - - -&.
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Taking g + gC leads to a continuum limit with the characteristic area diverging

as ln(g - gC). Recently it was observed [6,7,8]  that by taking g + gC and N + 0;)

-. - simultaneously, we obtain contributions to all orders in the genus expansion,

The preceeding discussion corresponds to the theory of 2d gravity with no
boundaries. A natural generalisation of this is clearly to allow an arbitrary number
of boundaries of arbitrary intrinsic length. In addition to providing a model for non-
critical open string theory, consideration of worldsheets with boundaries enables

us to calculate properties of closed non-intersecting paths on the random surface.

Figure 1. A triangulation with boundaries and its dual $3 diagram.

To integrate over surfaces with a boundary requires us to sum over triangu-

lations (or more general tilings) with an edge, of the form shown in dotted lines
in Figure 1. The dual diagram to this is drawn in solid lines. Thus we want to
consider Feynman diagrams with some number of external legs. The matrix model
Green’s functions

G, - Nq;24 (Tr 4”) (2.5)
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generate in perturbation theory precisely diagrams of this form, and the depen-

dence on N ensures that surfaces of Euler character x are correctly weighted by NX.
We may be tempted to identify these Green’s functions as the partition function of
a random surface with a single boundary of length q, with the normalisation cor-
responding to the subtraction of vacuum bubbles. However, more careful analysis
reveals this reasoning to be incomplete. There are various diagrammatic contribu-

tions to G, whose dual graphs correspond to pathological triangulations of bounded

surfaces. Consider first contributions to G, of the form shown in Figure 2. These

graphs obviously correspond to two distinct surfaces with two distinct boundaries.
Even worse, graphs of the form shown in Figure 3 correspond to surfaces with

boundaries of length shorter than q.

Figures 2 and 3. Some contributions to G, with pathological dual triangulations.

In order to perform the correct sum we must subtract these contributions from

G,, leaving only the diagrams dual to genuine triangulations with boundaries. This
subtraction corresponds precisely to removing all disconnected Green’s functions
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from G,, which just leaves us with Gi, the connected Green’s function with Q

external particles. So we conclude that the partition function for the sum over all
triangulations with a single boundary of length Q is given by GG.

In Chapter 4 we briefly describe how a physical interpretation may be given to
surfaces with a boundary generated by the full Green’s function G,.

.

David [5] has claimed that different types of boundary, generated by full Green’s

functions, connected Green’s functions, or one-particle-irreducible Green’s func-

tions just lead to an excluded volume effect and do not change the continuum
behaviour. His argument was based on considering a surface with a single bound-
ary of fixed length, and calculating the statistical distribution of the area. However,
we will see that when the length of the boundary too is allowed to vary, different
types of Green’s function lead to different macroscopic behaviours, at least in the

case of non-unitary models.

We now turn to the actual calculation of GF. It is important to realise that in
planar theories the relationship between the-Green’s functions and. the connected
Green’s functions is not simply exponentiation of the generating functionals. As
described in [l], following equation (31), for even potentials the correct relation is

given by solving the combinatoric  problem of clustering 2q points on a circle into
rl pairs, r2 quadruplets, . . . in all possible ways. This gives Gz9 in terms of G!$

G2q = c
cw (G;)” (G;)‘” (G&J,

T >. (2q $ 1  - C&J! ?-I! x *** r,! ***P-6)

c, 2”ns,=2q

This relationship holds for any even potential. As discussed in [l] we may express
(2.6) by the algebraic relation

4j> = +b(4d> P-7)

where 4i) = h%>, and 4(j), and $(j)  are the generating functionals of Green’s
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functions and connected Green’s functions respectively.

4(j) = g Gaq.i2q $(j)  = 1 t 2 Gfjqj2! (2.8)
0 1

The algorithm for finding Gi is then straightforward. Once we know the Gq’s or
equivalently the generating functional 4(j), we know z(j) explicitly in terms of j.

Write this as.

4j) = W(j) (2.9)

where W is some known function. Then from (2.7) we substitute j = $ into (2.9)

to give

2 = Iv(;) (2.10)

This equation may then be solved to yield 4(z)  explicitly in terms<of  z. We thee

have the generating functional for the Gi’s.

Now we show how to calculate the expectation value of the number of closed
non-intersecting paths on a random surface. Imagine taking two triangulated sur-

faces, each with a (non-pathological) boundary of length q, and sewing them to-

gether along their boundaries. This yields a closed surface with a labelled  non-

intersecting path of length q. The path is drawn around the edges of the plaquettes

since each external leg of a Feynman graph is dual to an edge of the corresponding

tiling.

The partition function for the sum over surfaces of area A with a labelled
q-cycle is

c #q--cycles  on S = ZA (#q-cycks)A (2.11)
Surfaces  S

where the subscript A denotes ,a restriction to graphs of area A. But by considering
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the sewing construction above, this partition function may also be written

1 1z x ; x c G”,(B)G;(A  - B)
O<B<A

(2.12)

where the symmetry factors of 3 and i correspond to swapping the two sewed
surfaces and rotating around the seam respectively. G:(A) refers to the connected

- Green’s function with A vertices and no factor of (-g)A, so we have for example
.

.G; = x(-9)AG;(A)
A

(2.13)

Now, for any observable of a random surface, the expectation values at fixed area

and fixed cosmological constant are related by

so for fixed cosmological constant,

(#q-cycles > = & c c (-g)AG;(B)G;(A-  B)

A o<B<A

= LGCGC
2qz q q

(2.14)

(2.15)

To compute fixed area quantities such as (#q-cycles)A  we can simply extract the
coefficient of (-g)A from this expression.

It is crucial to the above arguments that we use the connected Green’s functions
Gi since sewing together two Gq’s may lead to disconnected surfaces. We may

wonder what the effect would be if we replaced the Gi’s with a more restricted

set of Green’s functions. An obvious class to consider would be the one particle

irreducible functions. These would actually lead to smoother non-intersecting paths

on the surface, as will be discussed later.
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Since our interest is primarily in the continuum limits of these tilings, we must

obviously consider the asymptotic behaviour of Gi as q + 00. In principle, this
behaviour could be extracted by solving the implicit equation (2.7) for $(z)  and

then performing a Taylor expansion. However, even in the simplest case of a purely
quartic potential in d = 0, the implicit equation is cubic and in general this method
is impractical.

.
Instead we take as an ansatz the behaviour Gi N $ as q + oo where cy and ,6’

are some constants. Then from (2.8) we will have

(2.16)

and so, for ,B non-integral,

t) G (2 - 1/c+?-1 as z -4 l/o (2.17)
.e.

where here and throughout the paper we suppress irrelevant analytic terms when

writing asymptotic relationships. When p is an integer, this behaviour contains

logarithmic corrections.

We see that the singularity structure of 1c, thus determines the asymptotic
behaviour of Gi, and so to determine the latter we look for the singularity of II,

nearest to the origin. This corresponds to finding the smallest value of z for which
$(z) or one of its derivatives becomes infinite.

_
Following the procedure described below (2.8) leads to an implicit equation

defining $ in terms of z. We can write this equation as

fw,4 = 0 (2.18)

where H is some function of two variables. The partial derivatives of 1c, with respect
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to z can then be expressed as

w- = -Hz/H@
az
- = Hz(H@+, - HA%& - H#f@Lz - HJQ,)a21C,
dz2 H+3

etc.
(2.19)

_ Typically there will be no solution of H = 0 with finite z and infinite $. Also, the

partial derivatives of H will generally be finite for finite ($, z). Hence our tactic

will be to search for points in the (T/J, z) plane at which H$ = 0, and simultaneously

H = 0. These are potentially singular points. It must then be checked that they

do indeed yield an infinite value for a derivative of $J.

The solution of (2.18) generally leads to $(z) being defined on a many-sheeted

Riemann surface. It is only one of these sheets that satisfies (2.8). However, the
procedure outlined above indiscriminately yields the singular points on all of the

sheets, and so in general care must be taken to include contributions only from the.w
physical sheet. This will be discussed in detail in the next chapter.

To illustrate our procedure we apply it to d4 theory in d = 0 defined by (2.2).

In this case we have from [l]

WI4 4 = 3(1 - u2bh2($  - 1) t 9Cz4z2+  - aV[9aV + (2 + cJ2)2] (2.20)

where a and g are related by 12gu4  + u2 - 1 = 0, so the critical point corresponding

t o g = - &  h a s u2 = 2. From (2.20)

H+ = 3(1 - ~~)(3$~ - 2+) + 9u4z2 (2.21)

We see that H = 0 indeed allows no solutions with z finite and II, infinite, and
further that all partial derivatives of H remain finite for finite (+,z). Solving

13



H$ = 0 and H = 0 simultaneously yields

2u2 4
@= 3( u2 - 1) 22 = gu2(u2 - 1) (2.22)

or

2 + u2
+=, z2 = (a2 - 1)(2 + u2)

9u2
(2.23)

.

However, solution (2.23) also has Hz = 0, and in fact gives finite values for 2 and

all higher derivatives.

Since we have found just one pair of branch points for G(z), which is even,

these must occur on every sheet of the Riemann surface on which $(z) is defined.
In particular they occur on the “physical” sheet defined by (2.8) and so contribute

to the asymptotic behaviour of GG.

Away from criticality, ie for u2 # 2, solution (2.22) has H, # Q, and so $$ is

infinite. At the critical point a 2 = 2 solution (2.22) also has Hz = 0. This means

that 3 is finite buta.2 $$ is still infinite. Thus the value of ,B changes at this point.

We have then, from the value of z in (2.22)

-

a2 = 9u2(u2 - 1)
4

(2.24)

and so

G;q~-$[gu2(u~-I)]q  asq--+m (2.25)

where 1 < p < 2 for u2 # 2 and 2 < ,f3 < 3 for u2 = 2. Closer analysis of the
behaviour of H around the critical point shows that ,B = 9 away from criticality

and ,B = % at criticality. This result will be derived in a more transparent way in

the next chapter.
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We may check (2.25) by using a saddle point approximation to sum the exact

expression given by [l]

(3q - 1)!31-9
Gsq = (q - 1)!(2q - l)!

2 (-12g)L(2lc  + q - l)!
Iczo  (k - Q + w + al)!

(2.26)

this yields, away from criticality,

Giq N ! 3 2- u2
9J

1 [9.2@; - l)]Y
!G cl2 - 1 qw

asq+oo (2.27)

which also shows /3 = $. At criticality, the saddle point moves off to infinity and
(2.27) becomes invalid. However, the equation following (37) in [l]

U2q
G;q = -+u2 - 1)q-1Aq[3q(u2 - 2) - 2(u2 - 1)] (2.28)

:
tells us that p = 5. This verifies our result.

Substituting the asymptotic behaviour of G!jq into our previous expression for

(#q--cycles)  we have
.*

(#q--cycles)  - $ asq+00 (2.29) -

Apparently this implies some sort of phase transition at LY = 1. For LY < 1,

(#q-cycles ) is finite as q --f CO and in fact (Cr q’#q--cycles) is finite for any
power r. For Q > 1 though, these quantities are all infinite. We may thus take

(#cycles) = (CT #q-cycles) for example to be the order parameter.

Where does this phase transition occur? We might expect it to occur at the

usual critical point, but this is not the case. Considering the d4 example, cy 2--

’ 2 2p (a - ,1) so the new phase transition occurs at a 2 = 413, ie at g = -l/64  - glOOP.

We therefore conclude that there is a new “long loop” phase in this model in
which the typical length of a non-intersecting path on the surface is infinite, but
the characteristic area is still finite. The phase diagram for 44 theory is shown in
Figure 4.
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I
0 ‘g

. Figure 4. The phase diagram for the $4 model.

We will see in the next chapter that, for unitary theories, the existence of the

long loop phase is independent of the nature of the tiling. So, for example, if we

had chosen to tile the surface with octagons and dodecagons instead of squares,

we would have found the same qualitative behaviour. It is gratifying that our
intuitions about universality are thus far respected.

As mentioned before we may try replacing Gi in (#q--cycles)  by some more
.*

restricted type of Green’s function. The first natural candidate for this is the one-
particle-irreducible function. What does this replacement mean in terms of the
boundary of a triangulation? Well, since every propagator in the matrix model is

dual to the edge of a triangle, a 1PI graph corresponds to a bounded triangulation

that cannot be split into two parts by unsewing a single edge.

This means that the boundary can never come within one lattice separation of
another part of itself, and so the restriction corresponds to a smoothing of jagged
paths.

To calculate the effect of this smoothing on the long loop phase transition,
write the generating functional of 1PI vertex functions as

l?(z) = r22 + 2 r2,&
q=2

(2.30)

As shown in [l], I’(X) may be d te ermined for +4 theory from the condition H = 0
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where

Solving H = 0 and Hr = 0 simultaneously shows that the phase transition occurs
at

u2
1

x 1 . 7 3 2 i e  gx--49.2
(2.32)

So the effect of smoothing paths is to shift the long loop phase transition toward

the usual critical point, as we might have expected.

A natural extension to this might appear to be to calculate the n-particle
irreducible graphs, corresponding to successively smoother boundaries. Sadly this
is not possible since by considering the edgemost vertices of a graph, we see that
no 4” graph with external legs can be (n - 1)-particle-irreducible. Any further

-- smoothing of the boundary thus requires more subtle techniques. .D

3. Multicritical Models

So far we have dealt explicitly only with the simplest tiling of surfaces, ie a
squaring, corresponding to a 44 potential. Now we extend our considerations to

more complicated potentials [6,7,10]  which will lead to a direct connection between
the long loop phase transition and Coulomb forces of the Dyson sea,.

For simplicity, we restrict attention to even potentials, so that the relationships
between Gi and G, derived before are valid. This restriction of course implies that
GG = 0 for odd q, so when we write Gg N aQ/qP we really mean Gsq - a2’J/qp.

This shows that the sign of cr is irrelevant.

Consider the random surface partition function given by

2 =  l i m Lln
N+m  N2 J

dN2 $e-NTrV(4/fi) (3.1)
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where we let the potential V(d) have the form

V(4) = $2 + 9([4d4 t ts@ t * * * t 52rd2’) (3.2)

When we perform the Feynman diagram expansion of this we can again interpret
-In(-g) as the cosmological constant, and now tiled surfaces are weighted by an
additional factor of

(# <#hexagonssquares
4 6 . . . (3.3)

The powers of N are chosen to’ensure that a surface of Euler character x contributes

with a factor of NX.

Now introduce the function [1,2]

w = (T+J)

By Taylor expanding this and comparing with (2.8) we see that I

4(j) = ;F(;) (3.5) -

(34

and hence from the definition z(j) = j4(j) we have

z ( j ) =  F(i) (3.6)

From (2.7) we substitute j = z/lc, into this to give the implicit equation z =

F($/z). In our previous notation we write this as H = 0 where we may choose H

to have the form

H($,z)=F $ --z
0

(3.7)

Now, in the large N limit, as shown by [a], F(X) can be found by considering
the Schwinger-Dyson equations derived from translation of 4 in the integral in
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(3.1). These give us

F(X)2 = V’(X)F(X) - v’(A; I;‘(‘)
>

W-9

The last term is a polynomial in X of degree 2(r - 1) whose coefficients are combi-
nations of (Trq52),  (Trq54) etc. In principle  these can be determined as explained

in [2]. From (3.8) we see that the function F(X) is generally of the form

. W) = f {V'(X) t j/E(T)} P-9)

where R(X) is a polynomial.

The properties of F(X) may b ge iven a statistical mechanical interpretation in

the following way. Recall that the method used in [l] to solve the model (3.1) is to
reduce the integral over q5 to an integral over a;, the eigenvalues of 4, by writing

d$ = n da; n(ai - aJ2dU (3.10)
i i<j .w

where U is the unitary matrix diagonalising 4. Since the integrand of (3.1) depends

only upon the eigenvalues of C$ we have, up to a constant,

z = In
J

JJdaie
-N (xi V((Yi)-& Cifj ln(@i-aj))

i
(3.11)

But this is just the free energy of N bosonic particles at temperature k in a one
dimensional potential V [2,6,7]. Each has charge -L- giving rise to logarithmicxm
repulsions.

In the limit N + 00, the number of particles increases, the charge on each
decreases, and the system “freezes” as the temperature drops and statistical fluc-

tuations are suppressed. Then 2 is just the classical energy of a gas of logarith-
mically interacting particles in the potential V. We refer to this as the “Dyson
sea”. Generally the particles, or eigenvalues, inhabit the region in which F has a
discontinuity across the real axis [l].
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Assuming that the Dyson sea is confined to a single interval [-2u,2u],  (3.8)
gives

F(X) = f {V’(X) - P(X)dm} - (3.12)

where P(X) is an even polynomial of degree 2(r - 1). We see from this that the

domain of F is actually a 2-sheeted Riemann surface, with the sheets sewn together

- a l o n g  [-au, 2~1.

Now, as X + 00, F + 0 or 00 depending upon the sheet. So from H = 0 we

see that there can be no nonzero  finite values of z at which II, + 00.

Also, all derivatives of F(X) are finite except at X2 = 4u2, so away from the

points $J/Z = f2u the partial derivatives of H($, z) are finite. There are thus just

two possible types of contribution to the asymptotic behaviour of Gi. The first of

these is from the zeros of H+, and the second from the critical points $/z = f2u.

As mentioned before, the equation H(t,b,-z)  = 0 defines $J(z) as a function on

a non-trivial Riemann surface. We are only concerned with the “physical” sheet

that satisfies (2.8), ie $(z) - 1 + O(z). It is the branch points on this sheet that

determine the asymptotic behaviour of G”,. Searching for the zeros of H$, however,

locates the branch points of V/J(Z) on every sheet of the surface. We will show later

that all types of branch point can actually be made to occur on the physical sheet

of v,!J,  but first we discuss in detail their contributions to the asymptotic behaviour

of G;.

_ Proceeding via the method described in the last chapter, we seek points with

H$ = 0. But H+ = +F’ ($), so these are just stationary points of F. Further,

where H,J = 0 we have Hz = - f F’ $0
- 1 = -1 # 0, so at these points

d$/dz N 00 and hence 1 < p < 2.

In fact we can calculate p exactly at an nth order stationary point of F(X).

Suppose that F(X) N (A- X)” + B as X + A where A and B are constants. Then
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since z = F(X) we have

dX
dz - (A -$-I

(3.13)

and so

X N (z - B)l/” (3.14)

upto irrelevant analytic terms in z. So we see that at a stationary point of F(X)

with F’ = F” = . . . = F(“-l) = 0 and Fen) # 0 the contribution to the asymptotic

behaviour of Gi (for q even) is given by

1 ntl
cv = F(X)

pY-----
n

(3.15)

This reproduces ,8 = 3/2 for the simplest stationary points, agreeing with our
. -

previous result for a d4 potential.

We may be concerned that it can be arranged for F(X) = 0 at a stationary

point. However, this can not occur for a branch point on the physical sheet of $(z)
and hence will not determine the behaviour of Gi.

Now we turn to the second type of contribution, that from the points X = $ =

f2u. The case of F’(2u)  = 0 will not correspond to a branch point on the physical

sheet of+(z). We thus assume in the following that F’( 2~) # 0.

Let the behaviour of F near the edge of the Dyson sea be given by

F(X) - (X - 2u)+P(X) $ Q(X) (3.16)

where P and & are polynomials in X and P(2u) # 0. In general, m = 1,2,3,. . .

with m = 1 corresponding to a non-critical theory, m = 2 to pure gravity at

criticality, and higher values of m to the multicritical models. This definition of m
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agrees with that used in [6]. From (3.16) we have that

F’(X), F”(X), . . . dm-l)(X) (3.17)

are finite as X + 2~2, and

F(“)P) N & as X + 2a
a

(3.18)

Since z = F(X) this means that

dz d2z dm-lz- -  -
dX’dX2”“dXm-l (3.19)

are finite as X + 2a while
dmz
dXmN

(3.20)

._ The asymptotic behaviour of Gi is determined by the singularities of G(z), or
equivalently the singularities of X(z), and to determine the nature of these we need

to know the derivatives 2,s etc. These can be derived by using the relationship

(3.21)

or equivalently

dX 1-=-
dz dz/dX

d2X d2z/dX2-=-
dz2 (dz/dX)3
d3X 3(d2z/dX2)2 - (dz/dX)(d3z/dX3)- =
dz3 ( dz/dX)5

etc.

(3.22)

Using (3.21) recursively we see from (3.20) that for m = 1 all derivatives of X are
finite at X = 2a, so this point does not contribute to the asymptotic behaviour of

G;.
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For m > 1, we see from (3.22) that the first non-regular derivative is

d”X-r-u
dzm

as X --+ 2a

since F’(2a) # 0
(3.23)

- So up to analytic terms, X(z) - (z - F(2a))m-3.  This shows that the contribution

to the asymptotic behaviour of Gi (for even a) is

1
“=E’o

(3.24)

agreeing with the behaviour at g = gc for the 4* potential considered before.

: We now turn to the question of which of the branch points of Y/J(Z) actually
-- occur on the physical sheet. For this it is useful to recall the physical interpretation

.*
of F(X) in terms of the Dyson sea.

First rewrite the integral over 4 in (3.4) as an integral over the eigenvalues cx;

of 4 as shown in (3.10). Then p fer orming the integral over cur gives

u(X) = -iImF(X + k) for X E R (3.25)

where U(X)  is the density of eigenvalues, or the charge density of the Dyson sea.

The Coulomb potential C(X) due to the sea is given by

2a

C’(X) =
J

dp ;2$’
-2a

O”=-ZImP dp
J

q/J + iE)
P--X-00

(3.26)

(3.27)

23



where P denotes the principle valued part of the integral. Because F(X) is analytic

in the upper-half plane, we have

Im P
J

dp F(p + “1 = rReF(X)
P-X-03

- Substituting this into (3.27) gives with (3.25)

F(X) = +‘(A) - inu(A) (3.29)

on the branch in which the root in (3.12) is taken to have the same sign as X, and

F(X) = ;[Pv’(x) + C’(X)]  + i7ru(X) (3.30)

on the other branch. Henceforth we refer to (3.29) as the “physical” and to (3.3O.j

as the “unphysical” branch of F(X).

Outside the Dyson sea, ie in the region X E R\[-2a,2a],  the density of eigen-

values will be zero, so U(X)  = 0. The Cou omb force will be monotonic decreasing1
in this region and will have the form shown in Figure 5. This shows that the
physical branch (3.29) will have no stationary points on the real axis outside the

support of U(X). It may, however, have stationary points off the real axis.

Now consider the unphysical branch (3.30). For some range of the parameters

in the potential, V’(X) and 2V’(A) + C’(X) will be as shown in Figure 6. This

shows that for a potential of order 2r, for some range of {g, &} there will be 2r - 2

stationary points of F(X) with X E R\[-2u,2u].  But as shown in the appendix,
there are precisely 2r - 2 solutions of F’(X) = 0 in the complex plane. So in some
region of the space of potentials, all stationary points of F(X) will be given by this
construction.
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Figure 5. The Coulomb force C’(X) outside the Dyson sea.

As explained before we are interested in the values of F(X) at these points. Wz
may interpret these physically as being the (locally) extremal values of the force
felt by a test particle with the same mass as the particles in the Dyson sea and
half their electric charge. Note that these values of F(X) are real.

The physical sheet of $(z) is defined by $(z) N 1 + O(z) as z + 0. This

corresponds to X(z) N i as z + 0. Hence for small z, the physical branch of X(z)

is given by inverting the physical branch of F.

As we increase 121 this branch defines X(z) in a continuous and single-valued
way until a singularity is reached. This “first” singularity gives the largest value

of ICYI and hence dominates the asymptotic behaviour of Gi.

There are three possibilities for the location of this dominant singularity. Firstly,
if g is not at criticality, it may be a stationary point on the unphysical sheet of F.
Secondly, if the theory is critical, it may lie at the singular point of F at the edge

of the Dyson sea. Thirdly, it can be a stationary point on the physical sheet of F.
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A

Figure 6. V’(X), shown dotted, and 2V’(X) + C’(X), shown solid.

We now show by construction that each of these cases is possible. The first

case can be achieved by choosing the parameter space {g, &} so that 2V’(A) + C’( A)

has the form shown in Figure 6. Then as argued before, all the stationary points

of F lie on the real axis of the unphysical branch and it is the pair lying closest to

the Dyson sea that determine the behaviour of Gi.

The second case is obtained from the first case by varying {g, &} in such a way

that some stationary points of F on the unphysical branch (3.30) move to the edge
of the Dyson sea.

The third case can be achieved by considering a limiting potential V such that

the distribution of eigenvalues is given by

u(p) = ;{s(p - 24 + S(p + au>}
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Using the expression
00

F(X) = dp$
P

(3.31)

this gives

F(X) = x
x2 - 4cl2

. Solving z = F(X) then yields

where we’ve used $(O) = 1. We see from this that the contributing branch points

are at z = &&.

_- We can change the potential a little from this limiting value to give one of the
form (3.2) with the Dyson sea confined to $ single interval. The ljehaviour  of F
away from the sea will then change only slightly, and in particular the dominant

singularities of X(z) will still be stationary points of F on the physical branch

(3.29).

Note that this construction leads to a distribution u(p) that is non-monotonic

from the centre to the edge of the Dyson sea. In general, by considering (3.31) to

define a Coulomb force in the complex plane, we can see that stationary points of
F can occur on the physical branch (3.29) only for non-monotonic distributions

U(P).

We now discuss the physical interpretation of a complex a. Writing (Y = Reie
we have

R4
G; w -cos Bq

qp
asq-+co
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or more precisely since we’re dealing with an even potential

Gq,, = 0

G;, - %zos 2Oq
CID

asq*oo
(3.33)

For R > 1 this signals some sort of “non-unitary-long-loop” phase, in which
q - c y c l e s  o f quantised length na/O are dominant. For want of a better name we

may call the case with R < 1 a “non-unitary-short-loop” phase.

For unitary theories we can say much more about the dominant singularity of

$(z). For any theory with real weights, the Gi’s will be real. But recall that the
generating functional $(z) is defined as

$J(z) = 1 + 2 G",,z~~ (3.34)
1

so for z E R we must have $(z)  E R. -

Now restrict attention to unitary theories. For these the asymptotic behaviour

G; N 5 clearly requires that o E R. The dominant singularity of II, will then be

?j(z) - (z - q-1 1asz+-
Q a! (3.35)

and so the dominant singularity of $J( )z must lie on the real line. The reality of
Gi then implies that +(z) E R at this point, and so $ E R.

This shows that for unitary theories in d = 0 the stationary value of F(X)

determining (Y must occur for X E R and must have F(X) E R. Considering the

behaviour of F on the real line, as shown in Figures 5 and 6, we see that for a

unitary theory there will be just one such stationary point.

Since we expect that all unitary tilings of the surface will lie in the same
universality class, it is wise to check that they all have a long loop phase, and
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that by choosing to tile the surface with, say, octagons instead of squares, the long
loop phase does not vanish. This is easily done by considering the unitary theory
at criticality. Then (Y = l/F(2u) = 2/V’(2u). Now, the limiting critical unitary

potential giving the greatest value of V’(2u) will be the one behaving as $42 for

141 < 2u and dropping off steeply outside this region. This will have a = 1, so

V’(2u)  = 2. A y t 1n ac ua critical unitary potential will thus have V’(2u)  < 2, and

hence the theory will have cy > 1 at criticality. This shows that the long loop phase

transition, at which cy = 1 will indeed occur in the region in which perturbation
theory converges.

This argument shows that loop considerations do not break down the univer-
sality class of unitary theories, ie all unitary theories have a long loop phase with
/3 as given in Chapter 2.

To conclude this section we note that the asymptotic behaviour of the full

Green’s functions G, can be obtained even more simply from F(X). Recall that

4(j) = 2 G,jq

q=o

.w

(3.36) -

so that if

then

G, - c
qp

asq+oo

qqj) N (j - 1)8-l 1
iTi

asj-+TCY

(3.37)

(3.38)

But since F(X) E $j (i) this will mean F(X) N (X - &)fi-’ as X + &. So to

determine the asymptotic behaviour of G, we examine the singularities of F(X).
The location of the singularity closest to the origin gives & and the order of the
singularity gives ,8. But from (3.16) we see that the only singularity occurs at

X = 2u and near this point F has behaviour F(X) N (X-~U)“-‘/~  for a multicritical
model. Hence we always have & = 2u and ,8 = m + 3.
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We can easily see that both at and away from criticality this agrees with the
exact expression for c$* theory

G2q = Gw
q!(q + 2)!

u2q [2q + 2 - qa2] (3.39)

derived in [l].

.
For (multi) critical theories with monotonic eigenvalue distribution, since the

dominant singularity is at the edge of the Dyson sea we see that ,B = ,8 and so the
asymptotic behaviour of Gi is similar to that of G, up to a redefinition of cy. In
particular this holds for unitary theories, which correspond to pure gravity.

The dubious reader may be concerned that we can arrange for cx > 6~ by
choosing the potential V(X) appropriately. This corresponds to Gi growing faster

with q than G,. We must remember though that this only occurs in non-unitary

theories, so some diagrams-contribute a negative weight and there is no objection

to the connected Green’s functions being larger in magnitude than the full Green’s,

functions.

4. Non-critical Open Strings

Now that we have an understanding of the correct boundary operators in the
matrix models, we can attempt to use them to construct an open string theory.
Kazakov [ll] has claimed to have discovered an exactly soluble open string theory

in d = 0 by choosing a particular potential for the one-matrix model. His sum over

tilings is generated by the partition function

J dN24 eTr[-fri2+P~4-~ln(,2-gQZ)] (4-l)

Expansion of the logarithm in powers of IC yields vertices of arbitrarily high order.

Kazakov interprets these as being dual to boundaries of the worldsheet.
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However, his discussion fails to mention three undesirable types of graph that
may be generated by (4.1). Firstly, as described before, the “hole” vertices may

be self-contracted. This situation corresponds to non-connected Green’s functions
and leads to “collapsed” boundaries. Secondly, two of the hole vertices may be

directly contracted, implying that boundaries can touch each other along an edge

with no intervening worldsheet. Thirdly the surface may separate into many parts

as a result of the dual diagram being composed of sub-diagrams connected only

. through hole vertices.

A rather convoluted interpretation of the triangulation may be dreamt up to

redeem Kazakov’s model. This involves considering the surface to be composed
not just of the conventional tiles (triangles, squares etc), but also of thin “rods”

carrying no area, but just boundary length. Then when a hole-vertex contracts

with any other hole-vertex, including itself, we insert a rod in the tiling dual to

the offending propagator. This means that two holes touching with no intervening

-* worldsheet are really separated by a line of rods. Similarly a hole-vertex with q

legs that has s self-contractions is to be interpreted as a bona fide’hole of length
q - 2s in the worldsheet, with s rods protruding into its interior. The problem of
surface fragmentation could be interpreted away by allowing tiles to be joined not

only along edges, but also by being “hinged” together at vertices.

_

At this point we may be tempted to appeal to universality and claim that
the continuum limit will be insensitive to the details of the tiling. In order to

test this claim we would like to be able to solve a model that explicitly excludes

the unwanted contractions. Comparison of this with Kazakov’s model would then
establish whether the universality classes are in fact the same.

Unfortunately, we do not have such a model at our disposal. However, we may
check the universality in a more restricted context. Consider worldsheets with a
single hole. As discussed before, these should properly be generated by the con-

nected Green’s functions Gi. If instead we used the full Green’s functions G,, then

we would obtain contributions to the partition function that are analogous to the
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unwanted graphs of (4.1). Hence comparing these two models will give an indi-

cation as to whether the presence of Kazakov’s pathologies alters the universality
class.

We thus consider a surface with just one boundary, whose length is allowed to
vary dynamically. The partition function will be

.

2 = c (-slAt’
Surfaces

(4.2)

where the sum is over surfaces with (varying) area A and perimeter q. We give g

the usual interpretation in terms of the cosmological constant, and take - In t to

be the energy density of the boundary (corresponding to a mass at the end of an
open string).

As explained in Chapter 2, the sum over triangulations with a well-behaved
boundary is equivalent to the sum over connected Green’s functions. We can thus
write

Z = c G;t$
!l

(4.3) -

where the symmetry factor i corresponds to rotations of the surface with respect

to the boundary. Now, as q + oo we have Gz N $, so the contribution to the

partition function from large perimeters will be

btJqz-cpTi-Q q
c bh*)Q=

q
q/3+1

(4.4)

where cr* is the critical value of cy, given by (u+ = i. Let g* be the value of the

cosmological constant corresponding to (Y*. Then for a given value of t a phase

transition will occur at g = g*. We now investigate the behaviour of the surface in
the vicinity of this point.
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It is tempting to do this simply by inserting the asymptotic behaviour of Gi

into (4.3). In doing this, though, care must be taken since as we alter g, the range
of validity of the asymptotic series will change. Instead we notice that

82 lco
cdt = t q=l G&qt2q

(4.5)

where as before X(z) E *, so the partition function is simply determined from

the generating functional $.

To determine the behaviour of the random surface for g near g+ there are two

cases to consider, these being g+ > gc and g* = gc where gc is the critical point for
a surface with no holes.

We treat first the case of g* > gc. For this the asymptotic behaviour of Gsq

-* will be determined by a stationary point of F as described in Chapter 3. At g = g+.D
let the behaviour of F be given by

W) N 2 - A(X - B)” asX+B W) -.

where A and B are constants and we have used the fact that F(B) = l/a,. At
g = g* + E this will become

W) - ; - A(X - B)n + Cc(X - B) + De + O(E) asX+B (4.7)

where C and D are constants. To determine X(z) we solve the implicit equation

z = F(X). This yields from (4.7)

A(‘) 1( > N eiPT + finite asc+O W)a*

We have then from (4.5) that the divergent statistical moments of the length and
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perimeter are given by
(qT)  ‘-T

- fz”

( A ’ )  w cl+i-T
(4.9)

where we have used the fact that since ,B > 0 for cases of interest, (4.4) implies
that 2 is finite at g = g*. Surfaces are thus dominated by large perimeter length
and small area.

. Now we turn to the case of q* = qc. For this the asymptotic behaviour of Gi

may be determined by either a stationary point of F or the behaviour of F at the
edge of the Dyson sea, as explained in Chapter 3. The first possibility leads to the
same types of behaviour as for qt > qc. We restrict attention in the following to
the second case.

Suppose that the model is multicritical of order m as defined by (3.16). At
q = qc we have

F(h + 7) - A + Cq + O($) asq+O (4.10).v

where A and C are some constants. We begin by showing that at q = qc + E this

becomes

J’(2a + 7) N A + BEA + (C + De+ + EC’-++ o($) (4.11)

where A, B, C, D, E are constants.

For this recall that as shown in [2], we may express the density of eigenvalues

4-4 as
a2

(4.12)

with W(r) given by

(4.13)
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where the coefficients & are defined by (3.2). At multicriticality we have [6,7]

W(r) N 1 - rC(uz - r)m as r + u: (4.14)

where K is a constant. Hence from (4.13) we have at q = qc + E

W(r) N 1 + E - K(1 - c)(uz - r)m as r + uz (4.15)

We can now determine a from the condition W(u2) = 1, yielding

.2 i $ - L& ased (4.16)

where L is a constant. We can then write, for q = qc + E,

/.

W(r) - 1 + E - K(1 - c)(u2  + Lck - r)m as r + u2

= 1 + [(a2  - rjm + fzk(u2 - r)m-l + . . . + c1-h(u2  - r)]
(4.17)

where in the last line we have suppressed irrelevant constant coefficients. Now;
from (4.12) we can see that a term of the form (a2 - r)P in W(r) leads to a term
in u(p) of the form u(2u - S) N P-i. We thus have from (4.17)

u(2u - S) - 2 - M  +  O ( 6 ) (4.18)

From this we can calculate the Coulomb force just outside the sea for q = qc + E,

giving

C’(2u + 7)) N cl-“;J;i + O(q) (4.19)

We also have, from (4.16) that at q = qc + E

V’(2u + 7) N A + BE& + (C + De&), + O(q2) (4.20)

Using (3.30) , the expression for F in terms of V’ and C’, we thus obtain (4.11) as
required.
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We now use (4.11) to find X(z) by solving the equation z = F(X). This gives

X(T) 2-( ) - 2--Pm + finite
a*

(4.21)

From this we obtain the divergent statistical moments of the length and perimeter

as

((I’> N 61+&-k

(AT) w E1+&-T
(4.22)

These show that for pure gravity, with m = 2, the area is the square of the

perimeter, leading to “nice” surfaces. For higher multicritical models, the area is

large and the perimeter is small, so the boundaries shrink to punctures.

We now compare these results to those obtained by using the full Green’s

functions G,. For these we will have

Using 4(j) = $F($) and the expression (4.11) we can obtain for a multicritical

point of order m that at q = qc + 6

q$CT) 1 N ~l-%F + finite
( 12%

The case of non-critical surfaces is obtained by using this with m = 1.

(4.24)

Now, in the case of unitary theories, the dominant stationary point of F away
from criticality is always quadratic, so since (4.9) with n = 2 yields the same

behaviour as (4.24) with m = 1, the behaviour of the surface is independent of

whether it is constructed from full or connected Green’s functions.
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Further, for (multi) critical theories with a monotonic density of the Dyson
sea the asymptotic behaviour of the Gz’s is determined by the critical point of F

at the edge of the sea, so again the behaviour of the surface is insensitive to the
presence of the pathological contractions. Models with a non-monotonic Dyson sea,
however, can give different behaviours depending on whether Kazakov’s pathologies
are present.

5. The Branched Polymer Phase for d=l

So far we have dealt exclusively with discretisations of a surface with no em-

bedding dimension. As has been shown in [3] the method of matrix models may be

extended to describe triangulations of surfaces embedded in one external dimen-

sion. To do this we write the partition function as

u(4) = 42 + q(&$* + ‘$6@ + . . - + t2T42T) (5.2) -

where now the integral over the matrix q5 has become a functional integral, with ~+4

depending on the extrinsic coordinate t.

Note that the coefficients of 4” and q52 are chosen to be 1, not 3 as in [l].
Our choice gives the propagator the desired normalisation, theirs leads to an extra
factor of 2.

This partition function may be expanded in terms of Feynman diagrams as
in the case of d = 0. The difference now is that to each vertex is associated
a value of the embedding dimension, t = t;, and for each pair of neighbouring
vertices with t = ti and t = tj the partition function contains an additional factor
of e-lti--t~I.  The belief is that this propagator should yield the same continuum

results as the Polyakov propagator e -(1*-t~)2,  and so, by considering the tiling dual
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to the Feynman diagram expansion, (5.1) should provide a discretisation of strings
in one dimension.

The continuum theory of 2d gravity gives us hints that for embedding dimen-
sion d > 1 the intrinsic geometry of the worldsheet enters a “branched polymer
phase” in which “spikes” in the internal metric are energetically favoured [12].  It is
therefore of great interest to study the geometry of the surface at the critical value
of the dimension d = 1, and in particular to investigate whether at this critical

. point there are any indications of the pathologies that lie beyond the branched
polymer phase transition.

To do this we will first extend our previous discussion of loops on surfaces and

describe how it may be used to test for the presence of a branched polymer phase.

We first need to generalise the full Green’s function (Tr 49) of d = 0 to the case of
d = 1. The natural generalisation of this is the correlation function

(Tr d(tl>$(ta). :- 4(h)> (5.3.).

which generates a surface with a (pathological) boundary of length Q whose seg-

ments lie at positions t = tl, t = t2,. . . t = t, in the embedding space. Unhappily,

the calculation of this quantity requires an understanding of the angular variables

[l] of the d = 1 theory, which is currently lacking.

-

For our purposes it will be sufficient to consider the specialised form of these
correlation functions (Tr qS(to)Q). This corresponds to a surface with a pathological

boundary of length q, where the entire boundary lies at the same value of the ex-
trinsic coordinate t = to. We may use exactly the procedure described in Chapters

2 and 3 to convert these full equal time Green’s functions to the connected equal

time Green’s functions Gi(to). These correspond to surfaces with nice boundaries
of length q lying at a single value of the extrinsic coordinate, t = to.

It should be noted that strictly speaking it is the centres of the tiles that carry

embedding coordinates. The quantities computed here will correspond to bounded
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surfaces in which the centres of the edgemost tiles lie close to the specified value
of the embedding dimension.

As shown in Chapter 2, we can use G:(h) to calculate (#q-cycles(to)), the
expected number of non-intersecting paths on the surface lying at t = to. This may
be interpreted as giving the spectrum of intrinsic string lengths if the worldsheet
is sliced at t = to. We hope that some indications of the intrinsic geometry of the
surface may be obtained from this spectrum.

. It is remarkable that the model (5.1) can be solved exactly. This is done by

reformulating it as an N-body fermion problem as first illustrated by [l]. We may
use the procedure of [13]  to calculate any U(N) invariant quantity by reducing the

integral over the matrix 4 to an integral over its eigenvalues X;. This enables us to
rewrite the partition function (5.1) as

where A is a Vandermonde determinant -

A{xi} = n(Xi - Xj) (5.5) -
i<j

If these determinants were not present, the functional integral would describe the
quantum mechanics of N bosons moving in a potential U. The determinants have
the effect of giving the particles Fermi statistics. We can use this correspondence

to calculate the equal time correlation functions in terms of fermion many body
operators

(Tr $(to)“) = f J ~DX;(t)A2(0)A2(T)e-SOTdtCiit’N~‘Xi’~’ C X;(to)q
i i

(5.6).
where 1x0) is the N-fermion ground-state, and Xi are the one body fermion opera-
tors. Note though that our choice of propagator means that the kinetic energy of
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the fermions is A2 rather than the usual ii”.

For surfaces of spherical topology we take the large N limit of the Green’s
functions. This can be done by using the WKB approximation [!,3], yielding

x'F

G,(to)  = $
J

dX Xq,/m (5.7)

where EF is the Fermi-level and X,, is the position of the edge of the Fermi sea,

so U(&,) = EF. The Fermi-level 6~ can be obtained in terms of g from the
normalisation condition

x'F

J
dXd= (5-S)

-xc,

We may check (5.7) by substituting g = 0. This will correspond to the external legs

-_ being joined just by propagators. The absence of vertices means that the Green’s

functions are insensitive to the number of embedding dimensions: Comparison
with the solution of qS4  theory in d = 0 given by [l] shows that this is indeed the
case.

To calculate the properties of loops on the surface we are really interested in
the connected Green’s functions G”,(to). We find the asymptotic behaviour of these
as was done for the case of d = 0 by defining

_ 1=-
s
xcF dx&xvi

27r P-X
-xq?

(5.9)

We then search for the stationary points and singularities of F as described before.
For simplicity we will restrict attention to the critical point, at which the Fermi sea
almost spills over the potential and the characteristic area of the surface becomes
infinite. At this point we will write cF -+ cc and A,, + A,.
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Consider first the case of unitary theories. For these, as described below (3.34)
the only stationary points that can determine the asymptotic behaviour of Gi(to)

are the ones on the real line at which F takes real values.

At criticality, a unitary theory will have a potential U(X) of the form shown in

Figure 7. Now, since F(p) --+ 0 or 00 as ~1 + 00 depending on the branch, there

can be no nonzero finite values of z at which 4(z) - 00, exactly as we found in
the case of d = 0.

A

Figure 7. U(X) and the Fermi sea at criticality.

We consider now the stationary points of F that may contribute to cy. Observe
that F(p) has a domain consisting of infinitely many sheets sewn together along
the interval [-X,,X,]. As we move p around a closed path in the complex plane,
with the path crossing [-X,,X,] in the direction of decreasing imaginary part a

total of n times, we can easily see from (5.9) that

F(P) + F(P) + GxGi (5.10)
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The important observation that distinguishes this from the case of d = 0 is that

for ~1 E R, dm E R. Hence F(p) is only real on the real axis for the first

branch. But on this branch F is just the Coulomb force due to a charged sea of

density dm. Th’1s force clearly has no stationary points away from the

origin.

The only points that can contribute to (Y are thus the critical points 1-1 = fX,,
and these give o = l/F(&). Since

.

F(X) N (A - X,)ln(X - X,,>

we have from (3.21) that 2 < ,Lj’ < 3.

as X + X, (5.11)

We now establish a lower bound of unity on cr. This is done by the same

argument as in the d = 0 case. The limiting critical unitary potential giving the

greatest value of F( A,) will be the one behaving as d2 for 141 < X, and dropping

-- off steeply outside this region. The normalisation condition (5.8) shows that this

has E~ = 4, and then from (5.9) we have k(X,)=l. Any actual critical unitar’i
potential will then have F( X,) < 1 and hence Q > 1.

This shows that any unitary d = 1 matrix model will have a long loop phase in

which  ( #q-cycles(to)) grows exponentially with q. This was not a priori clear from

the d = 0 result, since one might imagine that the restriction that loops lie on a

given slice of the embedding dimension would significantly decrease their number.

We may imagine that if the worldsheet lay in a branched polymer phase for
this d = 1 case, then the characteristic size of non-intersecting loops at a single
value of t would be small. More precisely there would be many loops of length
on the order of the circumference of the polymers, but very few of greater length.
Since we have established the existence of a long loop phase, this would seem to

imply that at d = 1 there is no branched polymer phase.
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6. Conclusions

-
We have pointed out a flaw in the usual boundary operators of the matrix

models of 2d gravity, and shown how to correct this defect. This has led to a means
of calculating the statistical distributions of lengths of non-intersecting paths on
a triangulation. By investigating the point at which the expected length of these
paths diverges, we have established the existence of a new “long loop” phase in

- which the characteristic loop length is infinite, but the characteristic area is still
. finite.

This analysis has been carried out not only for unitary models, but also for

Kazakov’s multicritical models [lo]. We find tha wt hen we consider perturbations

of the potential in non-unitary directions, the phase diagram becomes substantially
richer. If we restrict attention to potentials yielding a Dyson sea whose density
decreases monotonically from the centre to the edge, then the asymptotic behaviour
of the full Green’s functions is qualitatively similar to that of the connected Green’s
functions. .w

Our objections to the conventional boundary operators also hold for Kazakov’s

proposed solution to non-critical open string theory, which we believe leads to
pathological behaviour of the worldsheet boundaries. Though we have been unable
to solve the correct version of this theory in its full glory, we have considered the
simplest case in which the worldsheet has just one boundary. The presence of
Kazakov’s pathologies is shown to change the continuum behaviour for general
potentials, though not for unitary models.

- Because non-critical strings with d = 1 lie at the boundary of the branched

polymer phase, it is of particular interest to investigate the intrinsic geometry of
the worldsheet for these models. This is done by extending the above discussions
to a model with an infinite chain of matrices. We have thus been able to calculate

the properties of loops on the surface of a string in one embedding dimension.

Because of a lack of understanding of the angular variables, we needed to restrict
these loops to lie at a single value of the external coordinate. The presence of the
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long loop phase even for paths restricted in this way hints that these d = 1 models
are probably not in a branched polymer phase.

We may imagine generalising these constructions in various ways. Firstly it
should be relatively straightforward to find the properties of loops on a random
surface coupled to an O(n) model or a Q-state Potts model [14]. Similarly the
(p, q) matrix chain models of Douglas [15] should lend themselves to this analysis.
In these cases there are two main possibilities for the boundary conditions. Either

. we may consider boundaries consisting of just one type of spin, or we may sum
over their spin structures. In the case of the O(n) model this translates into the

choice of whether to allow the self-avoiding-walks to cross the boundary [14].  For

matrix chains it corresponds to the choice of allowing one or many types of matrix
to reside on the boundary.

We have only applied our methods to the case of genus zero surfaces with a
single boundary. To extend them to higher genera would require a generalisation

-- of (2.6). Extension to higher numbers of holes requires subtractions from the dual.w
Feynman diagrams corresponding to boundaries touching, as described in Chapter
4. With some effort both of these extensions should be possible, at least in the

cases in which the genus and number of boundaries is fairly small.

-

Finally, it would be of great interest to reproduce these results from a con-
tinuum model. For the case of unitary models this could be attempted directly
from the Liouville theory of David, Distler and Kawai [16].  Recently, Witten  has
connected 2d gravities at multicritical points with topological gravity [17].  If these
models can be generalised to allow the presence of a boundary, their results should

be directly comparable to the ones presented here.

Acknowledgements: I would like to thank Shahar Ben-Menahem for numerous

valuable discussions. I also thank L&us Thorlacius and Michael Peskin for com-
ments on the manuscript.
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APPENDIX

In this appendix we calculate the number of zeros of F’(X) in the complex
plane for d = 0. Suppose that we start with an even potential of order 2r

V(d) = $15~  + . . . + kqb2’ (A4

T h e n  F ( X )  fis ound from the Schwinger-Dyson equations as described in the text
and takes the form

.

Jv) = f {y&w - q,T-,,(N=3} (A-2)

where P is some polynomial in X and we use bracketed subscripts to denote the
order of polynomials. From this we get

F’(X) = ’
2l/P=u

{ y;r-2j(A)6=7 - Q(2,4(3} (A-3)

where Q is a polynomial given by Q(X) = P’(X)[X2  - 4a2] - PX. Now recall that
if we take the positive branch in (A.2) then- F(X) N 0(1/X)  as X,+ 00. Hence

F’(X) - 0(1/X2) as X + co. Substituting this requirement into (A.3) we have

and squaring this,

(v”(9f4,_,,(A2 - 4u2) = (&(‘))f4,-2,  + R(2r-2)(X) (A-5)

where R is another polynomial in X.

From this it is clear that solutions of F’(X) = 0 are given by roots of Rc2,-2) (A).

By the fundamental theorem of algebra, there are generically 2r - 2 of these roots

in the complex plane. Since we are allowing both branches of F, all of these will
be realised as solutions of F’ = 0.

So in general, F(X) has 2r - 2 stationary points in the complex plane, and
these come in pairs of opposite sign, since the potential V(4) was chosen to be
even.
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