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ABSTRACT
In this paper, we describe a new trajectory correction tech-

nique for high energy linear accelerators. Current correction
techniques force the beam trajectory to follow misalignments of
the Beam Position Monitors (BPMs).  Since the particle bunch
has a finite energy spread and particles with different energies
are deflected differently, this causes “chromatic” dilution of the
transveise  beam emittance. The algorithm, which we describe in
thii paper, reducesthe  chromatic error by minimizing the energy
dependence of the trajectory. To test the method we compare the
effectiveness of our algorithm with a standard correction tech-
nique in simulations on a design linac for a Next Lin,ear  Collider
(NLC).’ The simulations indicate that chromatic dilution would
be debilitating in a future linear collider because of the very
small beam sizes required to achieve the necessary luminosity.
Thus, we feel that this technique will prove essentig  for future
linear colliders.

INTRODUCTION
In a linear collider there are many effects which dilute the

beam emittance. This dilution then causes a reduction in the
collider’s luminosity. In this paper, we describe a new trajectory
correction technique for linear accelerators which reduces the
“chromatic” emittance dilution. This techniqud  is described in
greater detail in Ref. 2.

The  trajectory in a linac is corrected with dipole correctors.
Usually, the correction algorithms attempt to zero the Beam
Position Monitors (BPMs) which measure the trajectory in the
linac. For example, in the Stanford Linear Collider (SLC) linac,
a “one-to-one” algorithm is used to implement the correction.
Here, a single dipole corrector is used to zero a single (down-
stream) BPM. Using this agorithm, each of the matched BPMs
can be zeroed within the limitations of the corrector strength and
the BPM precision, i.e., the intrinsic noise in the BPM measure-
m e n t s .

The problem with this technique is that the BPMs are typ-
ically misaligned, both electronically and mechanically. Thus,
the corrected trajectory is kicked from side to side, following the
BPM misalignments. Chromatic errors occur when the beam
trajectory is deflected since the deflections differ for particles
with different energies. With one-t-one  correction, the chro-
matic dilution tends to grow with the square root of the number
of’BPMs.3  For example, we have found that in the NLC’using
-the one-to-one correction technique with 10 pm BPM misalign-
ments leads to a 25% vertical emittance dilution. The 10pm
alignment is about one order-of-magnitude better than can be
achieved with techniques now in practice.

In this paper, we discuss an algorithm which is less depen-
dent on the BPM misalignment errors than is the one-teone
algorithm. Our approach is to measure two trajectories where
we change the linac focusing structure between measurements.
By subtracting the two trajectories, the resulting difference or-
bit is independent of the BPM alignment errors. In theory, the
quadrupole misalignments could now be found. Unfortunately,
the difference orbit still has errors due to the finite BPM preci-
sion and additional unknown deflections. Rather than trying to
solve for the individual misalignments, we simply correct the tra-
jectory to minimize the difference orbit; this will then minimize
the chromatic error.
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THEORY
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In this paper, we use the term chromatic error to describe
the variation of the central trajectory with energy; it is a sin-
gle particle effect. Chromatic errors arise because particles with
different energies are deflected differently. We define the %hro-
matic  error”  of a particle with an energy (1 + C(s))E(s)  as the
difference between its trajectory and the trajectory of a particle
with the design energy E(s). Thus, the chromatic error for this,
particle, at the end of a linac, is

Az(s~)  = C ei [Rlz(ai,  3,) - +R~Z(J;  siy s,)] 7 (1)
i

where we have set the initial conditions zo and 2’0 to zero. The
parameter Bi is the deflection at longitudinal position si and
includes kicks from both correctors and errors, 6i  is the relative
energy deviation from the design energy: 6i E AE(si)/E(si),
and the matrix element Rlz(si,  sf)  transforms a deflection at si
to a transverse position at sf; the coefficient R12(6)  is the R12
matrix element for a particle with energy deviation 6(s).

A particle beam consists of particles distributed in six-dimen-
sional phase-space. Chromatic dilution of the transverse phase-
spaces occurs for two reasons: first, the chromatic errors will
cause each constant energy slice of the beam distribution to have
a drfferent  centroid; they will follo&  different central ‘i;ajectories.
Second, the beam ellipses, i.e., the second-order moments, of-
the constant energy slices will differ since particles with different
energy experience different focusing.

In this paper, we discuss correcting only the first contribu-
tion to the chromatic dilution. If the focusing structure of the
accelerator is properly “matched,” the second effect will typi-
cally be small. For example, in NLC linac this effect dilutes
the emittance by less than 0.1%. Of course, when the linac is
not properly matched this second effect can become large, but
matching the linac is a separate issue and is beyond the scope of
this report.
Trajectory Correction

To reduce the chromatic emittance dilution, we correct the
energy dependence of the central trajectory. To do this, we vary
the eflectiue  beam energy and then correct the diflerence  of the
resulting trajectory and the original trajectory. In a linac, there
are two methods of changing the effective energy: changing the
beam energy or, equivalently, changing the magnet strengths.

In principle, we could use the difference orbit to solve for the
quadrupole misalignments and the initial conditions exactly, pro-
uided that there are (Np + 2) BPMs which do not have precision
errors and all the additional deflections are negligible. Obviously,
this is not realistic. When the additional errors are included,
the difference orbit is not a function of just (Ng + 2) unknowns.
Thus, we cannot estimate the individual quadrupole misalign-
ments and the initial conditions accurately. We have found that
the best approach is to perform a least-squares solution for the
unknowns using both the original trajectory and the difference
orbit with the appropriate weighting. Thus, we solve for the
dipole corrector strengths which minimize the sum

2 (mj + Xj)2  + (Amj  + AXj)2
j-1 &c + &hi 2u&c ’

(2)

Here, oprec is the RMS of the BPM precision errors and ogp~  is
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an estimate of the RMS of the BPM misalignments relative to the
linac centerline. In addition, mj and Xj  are the measured and
predicted trajectories at the jth BPM, and Amj  and AXj  are the
measured and predicted difference orbits. We will subsequently
refer tcj this algorithm as Dispersion-Free (DF) correction.

Error Effects
The algorithm corrects the chromatic errors by correcting a

measured difference orbit which is created by changing the ef-
fective beam energy. Thus, the algorithm relies upon the rcsem-
blatice-between  this measured difference orbit and the chromatic
error. We can divide any errors into two categories: errors which
cause the measured difference orbit to differ from the actual dif-
ference orbit (measurement errors) and errors which cause the
difference orbit to differ from the chromatic error of a particle
within the beam. Errors in neither category will not degrade the
correction of the chromatic dilution and thus can be ignored.

In contrast, errors in either of the two categories will cause
the algorithm to converge to an incorrect solution. BPM preci-
sion and beam jitter errors are examples of errors from the first
category. RF deflections, magnet scaling errors, and effects due
to the nonlinearity of the chromatic error are examples of errors
in the second category. These effects are estimated in ref. 2 and
are found not to cause serious degradation in the performance
of the DF algorithm.

EXAMPLES
We have written a computer program to test the DF cor-

rection technique against the one-to-one correction algorithm on
a preliminary design of the NLC linac. The program simulates
random transverse misalignments of the quadrupoles and BPMs,
and BPM precision errors.

The NLC main linac will accelerate bunches from 16.5 GeV
to 250 GeV.  Our lattice is composed of 210 simple FODO cells
with phase advances of 90 degrees.3 The bunch is assumed to
have an RMS relative energy spread uc of 1.0% at the beginning
of the linac; this then decreases inversely with the beam energy
as the bunch is accelerated. We have not included the energy
spread induced by the longitudinal wakefields or BNS damping
since wakefields will be small in the NLC by design. Finally,
the beam emittances  in the NLC are ycZ = 3 x 10m6  m-rad and
-year  = 3 x 10s8  m-rad, and the beam size at the end of the linac
is roughly 10 pm x 1 pm.

To simulate correcting the orbit in the NLC, we use twenty
different sets of random errors. The errors are found from gaus-
Sian distributions which have been cut off at two sigma. The
quadrupoles are misaligned with an RMS of 70pm relative to
the linac centerline and the BPMs are misaligned 70 pm relative
to the quadrupoles. Furthermore, we have included BPM preci-
sion errors of 2pm,  assuming that a measurement precision the
order of the beam size will be achieved in the NLC.

Magnification of Q, 7.20 f 3.2 cys 1.02 f 0.02 cys

Results from correcting the twenty sets of errors with the two
correction schemes are listed in Table 1; the error on the data
is equal to one standard deviation. The Orbit RMS data is the
RMS of the trajectory relative to the linac centerline, while the
BPM RMS data is the RMS of the BPM measurements. Notice
that the one-to-one algorithm zeros the BPM readings (within
the BPM precision) while the actual trajectory is relatively large.
In contrast, our method corrects both the actual trajectory and
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Figure 1: Trajectory after correction in the NLC.
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Figure 2: Difference orbit after correction in the NLC.

the measured BPM readings. In fact, the DF correction algo-
rithm does better at correcting the actual trajectory than does
the one-to-one method.

Of course, we are not only interested in correction of the
trajectory. The dilution of the vertical emittance due to the
chromaticerror is listed in the bottom row of Table l.@bviously,
the one-to-one correction technique leads to a large (factor of _
seven) increase in the vertical emittance. In contrast, the new
technique performs very well, virtually eliminating the chromatic
dilution.

The difference between correction techniques is illustrated
in Figs. 14. Figure 1 compares the trajectory after DF correc-
tion (upper plot) with the result of one-to-one correction (lower
plot) and Fig. 2 compares, in the same manner, the diflerence
between the trajectory of an on-energy particle and a particle
whose energy differs from the design, the energy difference being
equal to the RMS energy spread. One can see that both tech-
niques are comparable when correcting the trajectory, but the
chromatic error, i.e., the difference orbit, is much smaller after
DF correction.

Figure 3 is a plot of the Y-Y’ phase-space at the end of the
NLC linac after correction with the one-to-one algorithm. The
curve plots the endpoints of particle trajectories having energies
between +a, and -Us.  Also, for reference, the RMS beam size,
excluding the chromatic errors, is plotted about the design en-
ergy trajectory. Obviously, there is a large chromatic dilution
in Fig. 3; the emittance magnification is roughly 9.1. For com-
parison, we plot, in Fig. 4, the Y-Y’ phase-space at the end of
the NLC after DF correction. This is the same phase-space, al-
though with different scales, as Fig. 3. After DF correction, the
emittance magnification is quite small, roughly a factor of 1.011.

It is evident from Table 1 and Figs. 14 that the DF correc-
tion technique performs substantially better that the one-to-one
method. In all of the data shown, the effective energy change
used by the DF algorithm was AE/E = 10%. In Fig. 5 we plot
results of the DF correction technique, again found from the
correction of twenty sets of random errors, versus the change in
effective energy AE/E. There are three curves: the dotted is the
emittance magnification which has a scale on the right, the solid
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Figure 3: Y-Y’ phase-space at the end of the NLC
after l-to-l correction.

Figure 4: Y-Y’ phase-space at the end of the NLC
after DF correction.

!“I is the RMS of the trajectory, and the dashed curveis  the RMS
of the BPM measurement of the trajectory. Notice that both
the emittance magnification and the RMS of the trajectory have
broad minimums. The increase which occurs as AE/E  increases
is due to the nonlinearity of the chromatic error. In contrast, as
AEIE decreases, the effectiveness of the algorithm is reduced
since the difference orbit becomes lost in the noise of the BPM
precision errors.

Finally, the dependence of the trajectory correction tech-
niques on the misalignment amplitude is illustrated in Fig. 6.
Here, we have varied the RMS magnitude of the vertical BPM
and quadrupole misalignments. The points plotted were found
from the average of correcting twenty sets of random errors. The
solid and dashed lines, at the top of the plot, are the RMSs of
the actual trajectory after correction with the one-toone  and
DF techniques, respectively; these curves have scales on the left
side of the figure. Although the DF technique is slightly better
at correcting the actual trajectory, the two are very similar.

The two other curves, the dotted and the dot-dash lines,
are the.emittance  dilution after correction with the one-to-one
and DF techniques. The dilution after one-to-one correction is
strongly dependent upon the misalignment magnitude. Here,
the dilution varies from roughly 25% to 4000% as the misalign-
ments increase. In contrast, the dilution after DF correction is
only weakly dependent upon the misalignment magnitude; it in-
creases slowly from roughly 1% to 6% of the emittance. Thus,
when using DF correction, the chromatic dilution is effectively
uncoupled from the magnitude of the misalignments.

SUMMARY
In this paper, we have described a new trajectory correction

algorithm for linear accelerators that reduces the chromatic dilu-
tion of the transverse emittance while correcting the trajectory.
The chromatic dilution arises because the beam is deflected due
to stray fields and misalignments and it scales, roughly, with the
size of the misalignments relative to the beam size. Future lin-
ear collider designs tend to have very small beams to achieve the
necessary luminosity, and thus, if uncorrected, chromatic dilu-
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Figure 5: DF correction vs. the energy change AE/E.
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Figure 6: l-to-l and DF correction vs. the misalignments.

tion would impose eztremely  tight alignment tolerances in these
future machines.

We have demonstrated the effectiveness of our aliorithm  in
simulations of the NLC linac while comparing with a standard -
technique, the one-to-one algorithm. In all cases, the DF correc-
tion algorithm reduced the chromatic dilution substantially while -
correcting the trajectory as well as the one-to-one algorithm.
From simulation, we found that with 70pm misalignments in
the NLC, the one-to-one algorithm causes roughly a 700% in-
crease in the vertical emittance. In contrast, the DF correction
algorithm reduced the chromatic dilution to a few percent.

To conclude, we believe that our algorithm can effectively
control the chromatic dilution in a linear accelerator while cor-
recting the trajectory. It is important to note that with our
method the chromatic dilution is roughly independent of the
magnitude of the misalignments; the dilution depends upon the
BPM precision and the magnitude of the scaling and RF errors
(not discussed in this paper). This will be especially important
for future linear colliders where it will be difficult to achieve ex-
tremely tight transverse alignment tolerances in a multikilometer
linac.
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