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Abstract

I

We describe a numerical method to establish long-term
bounds on nonlinear Hamiltonian motion. By bounding the
change in a nearly constant action variable, uniformly in ini-
tial condition, one can predict stability for N turns by tracking
many orbits for a number of turns No much less than N. In
a first application to a model sextupole lattice in a region of
strong nonlinearity, we predict stability of betatron motion in

two degrees of freedom for 10s turns.
1. Introduction

Tracking of single particles, by symplectic numerical inte-
gration of Hamilton’s equations, provides a direct approach to
the study of orbit stability. Unfortunately, computational ex-
pense usually limits the time interval of tracking to values much
less than the desired storage time of the beam. This means that
the results are difficult to interpret; a doubtful extrapolation to
the time interval of interest is required.

We propose a method to derive definite information on
long-term stability from short-term tracking of many orbits.
The idea derives from the line of argument of the Nekhoroshev
Theorem,’ and depends on determination of an action variable
.I that is invariant to high accuracy in a certain region of phase
space. The residual time variation of J, stronger in some re-
gions than in others, provides a sensitive indicator of unstable
behavior.

In this brief account we describe only the main ideas, re-
ferring the reader to ref. 2 for details of technique. We begin
with the action-angle variables of the underlying linear system,
(I, i&p).  Bold-faced symbols represent d-dimensional vectors,
where d is the number of mechanical degrees of freedom. We
treat an example with d = 2, but the method is general. Our
discussion is based entirely on the time evolution map M for
N,, turns,

M  :  (I,*b=o ++ (L@b=2r,v, , (1.1)

where 9 = s/R represents azimuthal location on a closed refer-
ence orbit. In the present work we evaluate this map through
element-by-element tracking. W’ith sufficient care it should
be possible to represent the map by an explicit formula, and
thereby enhance the speed of calculations.3s4
- A canonical transformation to new action-angle variables

(I, a) -+ (J, e) is induced by a generating function G(J,  @, 0)
that is 2rr-periodic in Q, and 19. The equations relating old and
new variables are

I = J + Go(J,@,o) , (1.2)

* =  @+GJ(J,*,~) , (1.3)

where subscripts denote partial derivatives. It is sufficient for
our purposes to consider the transformation at 8 = 0 only. If
the transformation is ideal, so that J is constant, then eq. (1.2)
gives an explicit representation of an invariant surface (a torus);
that is, it gives I as a Pn-periodic function of a,. The invariant
action J plays the role of a parameter to distinguish different
tori; it is equal to the average of I over @. At B = 0 we adopt
the notation I = J + u(J,@),  where u(J,*)  = G+(J,@,O).

*Work supported by the Department of Energy, contract
DE-AC03-76SF00515.

For the nonintegrable systems of interest, exact invariant
tori exist-if at all-only for values of J on a strange set of
Cantor type. Nevertheless, tori that are approximately invari-
ant exist as smooth functions of J in open regions of phase
space, and they can be computed numerically. A family of ap-
proximate invariant tori defines a canonical transformation (at
9 = 0). If u(J,e) is a smooth function of J in a region R, and

I(e) x J+u(J,8(8)), 0 = 0,2r,4*, . . . , (1.4).

then the equation I = J + u(J,  ch) defines a nearly constant
function J(I,Qi). Integrating u with respect to 9, we obtain
the generator G(J, @, 0) and all the ingredients of a full canon-
ical formalism. Families of approximate invariant tori can be
constructed numerically by the method of sec. 3.

2. A Bound on the Change in J

In a case with d = 2, let R be the interior of a rectangle in
the J = (51, Jz) plane, and let R, be the interior of a smaller,
concentric rectangle so that R, c R. Denote by A.I, the width
of the annulus  between R, and R as crossed in the i-th direction.
Suppose that the change in Ji during N,, turns, for any orbit
with initial J in 0, is less than aJ,. Then any orbit with initial
J in the smaller region R, cannot reach the outer boundary of
62 in fewer than N = qN, turns, where ,w

(2.1)
- -

This observation is useful if q is sufficiently large. Since the
largest tolerable excursion AJi is sharply restricted by design
considerations, a large q is to be achieved by making 65, small
through a good choice of the canonical transformation.

Note that for practical purposes this is an extremely conser-
vative argument, since it comes from contemplating the worst
conceivable case in which the increment of .I, in q,V,, turns is
just q times the largest possible increment in N, turns. In re-
ality, the q increments are not likely to add up linearly, so that
it will probably take much more than qN,, turns to move from
0, to the outer boundary of 0.

3. Numerical Determination of the
CanonicalTkansformation

To determine the canonical transformation, we expand the
function representing a torus in a Fourier series. We write

and determine the coefficients urn so that eq. (3.1) is satisfied
at points (I(9),@(9)), 0 = 0 (mod 2x), all lying on a single
nonresonant orbit. The coefficient u. of the constant term is
identified with the action J, which varies with the choice of
initial condition of the orbit. We repeat the process for various
initial conditions, thereby obtaining u,(J) on a mesh of points
J = J,, i = 1,2, . . . . s. We then define urn(J) as a smooth
function of J by interpolating the values at mesh points with
polynomials. The resulting transformation, I = J + u(J. ip).
is mathematically well defined. even though it was obtained
numerically.
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In determining the urn  to satisfy eq. (3.1),  we face the dif-

ficulty that the o(0) are scattered unpredictably. We therefore
cannot simply take a discrete Fourier transform, which requires
regularly spaced abscissae. Furthermore, a direct solution of
the linear equations for the ur,,  is impractical, since the ma-
trix is dense and too large for comfort. We avoid these prob-
lems by using the values of I on a regular mesh in 9 space as
unknowns, rather than the urn.  The resulting system can be
solved by iteration, provided that we choose to fit only a subset
of the data; namely, a set in which there is one and only one
C iri each cell of the mesh. With this selection the matrix of
the system is close to the unit matrix and an iterative method
(Gauss-Seidel) converges rapidly.

In the case of resonant orbits of sufficiently low order, the
selection process will fail. Not every cell of the mesh will contain
a ip(B),  no matter how long the orbit. This provides a useful
filter against resonances up to some order. We fit only nonreso-
nant orbits (invariant tori) or resonant orbits of extremely high
order (which are not distinguishable numerically from tori).

-..The  polynomial interpolation in J of the tori forms bridges
over resonances. Since there are resonances everywhere, this is
an essential feature of any canonical transformation defined as
a smooth function of J. It is not merely a feature forced upon
us by the use of numerical methods.

4. Computation of 6Ji
To compute a bound it remains to determine 6Ji. Because

of practical limits on computation time, there is some uncer-
tainty in this determination, but with some care the uncertainty
can be made rather small.

We denote the increment in J over No turns as

Jr-J =  D(J,@,N,)  . (4-l)

To compute D, we simply observe the time evolution of J in-
duced-by the map M through the change of variable (J, ‘P) +
(I, a) and its inverse. In the example studied below, the func-
tion ‘D has many oscillations as a function of a, but relatively
few as a function of J on 0. It is impractical to follow every
oscillation in seeking the upper bound 65;  of Di,  but we can do
random sampling with statistical estimates of sampling error to
find a fairly convincing value of 65;.  The reader may consult
ref. 2 for details on this relatively delicate problem.

5. An Example

To illustrate, we derive a bound for twodimensional beta-
tron motion in a lattice consisting of one cell of the Berkeley
Advanced Light Source (ALS). The lattice parameters are given
in ref. 2. This example involves nonlinear phenomena similar
to those in large hadron  colliders, since the sextupoles are so
strong as to drive high-order resonances such as those excited
by high-order multipoles in superconducting magnets. We work
in a region R of substantial nonlinearity, about half way to the
short-term dynamic aperture in the (zmoz,  ymoz)  plane. Orbit
points on a typical invariant surface in this region are plotted in
fig. 1. With actions measured in meters, the region R is given
by

2.51.10V6m  <  51 <  2.82.10m6m, ,-.,
1 .34 .  10m6  m < 52 < 1 .64 .  10m6  m (3.1)

By .using  our canonical formalism to map resonant tune lines
into the J plane, we find that R contains the resonances shown

in fig. 2. This figure shows the images of all resonant lines
rnl~l  + m2v2 = n with Irn;I < 20. The stars mark the mesh
points Ji used to set up the canonical transformation as a
smooth function of J. The transformation as represented in
eq.(3.1)  involves up to 20 Fourier modes in each angle @i.

Figure 1. Plot of 11 (on the vertical axis) versus @I
and @2,  for a torus in the region R defined in eq. (5.1).
The origin is at 11 = 0.
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Figure 2. The image in the (Jl, J2) plane of allts-
onance lines mrul  + rn2u2  = n with ImiI  5 20, for
the region R defined in eq. (5.1). Each line is labeled
by (ml,mg).  The stars indicate the mesh points Ji
used to set up the canonical transform as a smooth
function of J.

The discussion of ref. 2 yields the following values for the
numbers bJi  that bound Di,  for N,,  = 104:

(bJl,bJz)  = (2.8,4.0)  . 10-12m . (5.2)



The corresponding values for No = 101, k = 0,1,2,3,4
have similar magnitudes. Let us choose AJi  of sec. 2 so that
q = AJi/bJi  = 104,  with N, = 10’. Then the subset 0, of R is
defined by

2.54. 1Om6  m < Jl < 2.79. 10s6  m,
1.38.  10m6  m < 52 < 1.60. 10s6  m . (5.3)

Any orbit beginning in R, will stay within the slightly larger
region R for at least qN, = 10’ turns.

6. Effect of a Strong Resonance

All resonances in the region R defined above are weakly ex-
cited and have little effect. The variation of J on the resonance
lines is hardly stronger than elsewhere in the region. In other
regions, at comparable amplitudes, we encounter strong reso-
nances that are associated with larger variations of J. This does
not necessarily imply a degradation of the time for stability,
since oscillations.pn  a well-isolated resonance can be stable and
not associated with fast transport to nearby resonances, even
if the amplitude of oscillation is fairly large. We have studied
one such resonance, with (ml,m2)  = (5,6).  In the vicinity of
this resonance, the variables (J,Q) follow approximately the
pattern expected of action-angle variables in the isolated reso-
nance model.5 That is to say, rn2 51 - ml 52 is nearly constant,
while m . J and m . @ behave as action and angle of a physical
pendulum. The phase portrait of the latter variables is shown
in fig. 3, with rn-. %I!  plotted modulo 27r.
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Figure 3. Pseudopendulum motion of the angle-action
pair (m . J, m . !I’) near a (5,6)  resonance. Here m . Q is
plotted modulo 2a.

To establish long-term stability in this situation, we have
to liti-t  any movement in the center of oscillation of the
pendulum, for any initial condition in the region considered.
That can be done by limiting separately the changes parallel
to m and perpendicular to m. For the latter, one can merely
put a bound on mg 51 - ml J2. For the former, we examine the
pendulum motion beyond the separatrix, where full rotations
of the pendulum, rather than librations, occur. If the appar-
ent rotation curves of fig. 3 behaved like K.A.M. curves of a
system in 1 i degrees of freedom, they would permanently con-
fine the motion of m . J. Actually, the apparent curves are not

really curves, as inspection on a finer scale reveals. The motion
of m . J follows a curve within an accuracy of about lo-“m,
however, for several thousand turns. This is entirely analo-
gous to the situation of the previous section in which I follows
a two-dimensional torus to a certain accuracy. Consequently,
we can proceed in the same way as before, by finding a con-
tinuous family of curves that fit the motion to high accuracy,
then bounding uniformly the deviation from a curve during No
turns. We have not yet carried out such a formal program. On
the basis of informal estimates, we predict stability in a region
R, containing the (5,6)  resonance for at least 10’ turns.

7. Conclusion

We have described a method for theoretical prediction of or-
bit stability over times comparable to storage times in hadron
rings. With further development the method should become
practical for machine design. It uses calculational methods
that are feasible for elaborate models of large machines, pro-
vided that the speed of tracking can be increased substantially.
We think that there are good prospects of achieving the neces-
sary speed through construction of full turn maps. Indeed, the
preliminary work of ref. 3 already indicates that very accurate
maps can be constructed in a straightforward way.
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