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ABSTRACT

Large CP violation effects can occur for time evolved B” decays into definite

CP eigenstates. The rates into these unique CP eigenmodes are tiny. This report

advocates the use of many additional modes that are not CP eigenstates because

of mixtures of angular momenta. Naively, for those modes a partial and sometimes

a large cancellation of the CP asymmetry occurs. However, a detailed study of

their angular correlations enables the projection onto definite CP eigenstates, and

thus recovers the full CP asymmetry.
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INTRODUCTION

The focus of the study of CP violation in neutral B-decays1 is considerably

broadened if we study modes where different partial waves contribute with different

2-6CP parities. Many such modes exist; for example, those where the B” decays

to two particles with spin, such as QK*’ or D*+D*-.  The asymmetry in the

total rate from such a channel suffers from a partial cancellation or dilution of the
-- _

asymmetry from the two different CP contributions. Hence such modes require

an angular analysis of the decays of the spinning particles to separate out definite

CP contributions and thus obtain asymmetry measurements that probe the basic

Standard Model predictions.’ Of course, if nature is kind and a single CP channel

dominates the decay, then the CP asymmetry may be approximately measured

without any angular analysis. However in these cases an angular analysis can be

performed without any loss in statistical accuracy and without any.error  from thg,

small opposite CP contribution to yield a more precise measurement of the CP

asymmetry.

The particle content of all the modes discussed here is such that one can con-

struct CP eigenstates from a superposition of helicity states, without invoking a

different particle content. Thus, for example, the modes $I(,r” and D*+D*-

are considered here, but not modes such as D*+p-. This report presents several

different approaches to the angular analysis. All are based on standard helicity for-

8-1omalism. The merits of the various approaches depend on a number of factors,

many of which are not yet known, such as the relative strengths of the different

helicity amplitudes. By the time sufficient data is accumulated to attempt any of

these analyses, a great deal more will be known about these factors. For any given

channel the preferred method will be clear. We present here four approaches and
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briefly discuss the merits of each.

The first approach analyzes events in terms of a quantity we call transversity,

which characterizes the spin projections of a three body intermediate state in a

direction transverse to the plane of the three body system.’ This approach requires

the minimum amount of angular analysis to arrive at definite CP quantities. We

show that, in certain cases, moments of the data with respect to a single polar angle

can achieve the required separation. This method has the advantage that it allows

us to sum resonant and non-resonant contributions to certain final states, whereas

the more detailed angular analysis requires reconstruction of a specific two-body

parent system for the three-body state. For another simple method applicable for

some modes, see Ref. 4.

The second method uses a more complete angular analysis and forms all possi-

ble independent angular moments of the data. This allows the study of additional.w
channels not amenable to the transversity treatment. Like the transversity moment

analysis it has the advantage that it allows asymmetries to be extracted without

a priori knowledge of the relative strengths of the different helicity contributions.

In both cases this can be done by combining results from both B” and B” decays.

The remaining two methods use a maximum-likelihood fit to the angular struc-

ture of the CP-violating decay and to a set of isospin-related channels that are

not influenced by CP violating effects. This can be done either using only the

transversity polar angle distributions or using the full angular distributions. For

a transversity analysis of this type one needs to know the relative strengths of

the contributions for each possible absolute value of the transversity. This can

frequently be determined from isospin-related l1channels. For the full angular

analysis one needs to determine the full set of helicity amplitudes and their rel-
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ative strong-interaction phases. Again data from isospin-related channels may

make this possible. This method will provide the most accurate measure of the

asymmetry for those modes where sufficient data is available to determine all the

necessary quantities well.

The plan of this report is as follows. In Section 2 we introduce some gen-

eral notation and review the dilution of asymmetry that occurs when two different

CP channels contribute to a given final state. Section 3 presents a discussion

of transversity analysis, Section 4 reviews the many channels for which it can

be used, and Section 5 presents as an example the transversity analysis for the

case of two spin one particles. Results from more complete angular analyses are

discussed in Section 6. Section 7 reviews the accuracy of the asymmetry measure-

ments obtained by each of the methods and discusses the relative advantage of

maximum-likelihood methods compared to moment analyses. Section 8 contains.w
some concluding observations. Appendix A contains a proof that transversity is

a projector for definite CP, Appendix B contains the details of the full angular

analysis, and Appendix C presents a summary of an analysis of the sensitivity of

results to various measurement errors.

PRELIMINARIES-DILUTION  OF CP VIOLATION

This section introduces some notation and discusses the dilution in the CP vi-

olating asymmetry when the final state is a mixture of different angular momenta

which contribute with different parity and hence different CP. One can most readily

treat these processes using the helicity formalism, which gives a correct relativistic

analysis of the angular momentum in the decay process. This is a well estab-

lished formalism which provides the basis for analysis of angular structure in the
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subsequent decays of the two spinning 2,8,10particles.

We begin by discussing the results obtained for such processes without any

angular analysis. We show that the asymmetries thus measured depend on the ratio

of CPeven to CP-odd contributions and are diluted, that is, reduced in magnitude,

relative to the asymmetry of a pure CP state. We denote a time-evolved,initially

pure B” as BihyS. Any rate difference between the process, Bihys + f, and the CP
-- _

conjugated process, $& + 7, signals CP violation. The rate difference comes

about because the processes have each two interfering contributions to each partial

wave or helicity amplitude, see Fig. 1. The CP violating interference term is

denoted by Im X. The rate of a B” to f is

r(Bihys + f) = r+(l + a) + r-(1 - a) ,

and for the B” to f is

r@,,, + 7) = r+(i - a) + r-p + a) .

(1)

(2)

The CP-even and CP-odd rates are parametrized by the widths I?+ and I?-, re-

spectively. The parameter a is proportional to Im X, and would be the asymmetry

if the CP-even state dominated. The rates of Eqs. (l)-(2) could be time dependent

or time integrated. In the former case’

a = -1m X sin(Am t) , (3)

and I+ and I- contain a factor e-rt, where I’ is the width of the B0.12  In this case

the analysis of angular distributions must be made for each time-bin separately,

5



since the asymmetry is different at different times. Because the angular dependence

and the time dependence factorize this introduces no particular complication for

the extraction of the CP asymmetry from the angular information; the method

is the same for every time-bin data set. For an experiment which measures a

time-integrated asymmetry the prediction is

-zImX-- _
a= 1+x2 '

where x E Am/I’, and I& denote time-integrated quantities.

The measured asymmetry is

Asym =
w$& + f > - W& + 7) r+ -r-

r(B;h,S --+ f > + @phys + 7, =‘r++r- *

(4)

(5)

The last factor gives a dilution when the final state f is an admixture of CP-even

and CP-odd parities. Presently no information exists on the ratio I’+/I’- and

large dilutions could occur. Study of angular distributions allows us to avoid such

dilutions regardless of the I’+/I’- ratio.

TRANSVERSE PROJECTION AS AN ANALYZEROF  CP PARITIES

Consider the decay of a spinless neutral particle B” into unstable particles

A and C. (We require A and C to be unstable so that spin information can be

learned from their subsequent decay.) All the subsequent discussion holds equally

for decays of any neutral spin zero particle, in particular for B, and Do which we

will discuss later. Let the particles A and C have spins sa, sc, helicities Xa, X,,

and intrinsic (reflection) parities 7rTa,  7rc, respectively. We consider cases where C
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is seen in a two body mode C + ClC2,  with spins s1 and ~2.

B”+AC

I GC2
(6)

A simple example to keep in mind is the case A = ?,h , C = I<*’ , Cl = KS , C2 = TO.

Let us define the transverse axis as the normal to the plane containing the three

particles, AClC2, in either the B” or C rest frame (or in the A rest frame where

the plane is defined by the particles Cl and Cz). The CP-parity eigenstates of the

mode AClC2  can be classified by the spin projection of the particles along this

transverse axis, which we call the transversity. The state of transversity ri of each

particle is defined as that linear combination of helicity states which represents a

spin component r; along the transverse axis in the rest frame of particle i. This

definition is invariant with respect to boosts between the C rest frame, in which we

analyse C decay, and the particle’s own rest frame, which will be used to analyse

its decay.

In Appendix A we prove, using the helicity formalism, that projection onto

states of definite transversity r = 7a + 71 + 3-2  projects out quantities of definite

CP. The following argument gives a more intuitive understanding of this result.

First consider three particles moving in a plane, and let the y-axis be chosen

transverse to the plane. A reflection about that plane can be written as a product

of a space inversion P and a 180’ rotation about the transverse axis.

Rp E peirJY = p;nt . eirr (7)

where Pint denotes the total intrinsic parity of the three particle system, Jy denotes

the projection of the total angular momentum of the three particle state on the
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y axis and r denotes sum of the transversities of the three partic1es.l’ The three

body state can be viewed as a product of three one-body plane wave states, the

reflection acts independently on each particle.

The operator Rp has been used extensively in applying the consequences of

space-time symmetries to four-point functions; i.e. processes characterized by

three independent momenta.14 In a relativistic group-theoretical description, the
-- _

operator Rp is seen to be the generator of the “coplanar little group”; i.e. the

subgroup of the inhomogeneous Lorentz group which leaves three momenta invari-
15ant.

To evaluate the action of the reflection operation on any one particle we can

use the fact that reflection commutes with boosts in the plane. We thus go to

the rest frame of the particle under consideration. In that frame one readily sees

from the definition of the reflection operator- that its eigenvalue for the particle.

j is the product of intrinsic parity times ei*q,  where ~j is defined as the spin

projection along the transverse axis. Equation (7) simply combines the result for

each of the three particles to give the eigenvalue for a three particle state of definite

transversity.

In decays like Bd + J/$Kgr” and Bd -+ ~J/;7r”, each of the three particles

in the final state has a definite intrinsic CP. For such cases one can define the

operation of the product of charge conjugation and the reflection in the plane.

Rep G CRp G CPeiTJY = CP = (CP);,iei”’ (8)

where (CP)i,t denotes the product of the intrinsic CP of the three particles. The

first equality of Eq. (8) is true since the initial state has spin zero, hence the final
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state must also have spin zero and be invariant under rotations in the center of

mass system, and the second equality follows from Eq. (7).

Thus, for example, any J = 0 state of the type I(c~)Ksw”; J = 0) in which the

(CC) has a definite intrinsic CP and is in an eigenstate of transversity r can be

shown to be a CP eigenstate with CP-parity given by the relation

--
CP @)Kgr”;  J = 0) = RCP I(cc)K,gr”; J = 0)

= (CP)i,,(-1)’ I(cE)I(~T~;  J = 0) (9)

The relation (8) applies to any three-body system with a well defined intrinsic

CP for each particle. It also applies if particle A does not have definite intrinsic

CP but decays to a state of definite CP, for example Do + 7r+rr-. In this case we.e
define the intrinsic CP of particle A to be the CP of its decay channel. This allows

a considerable extension of the class of channels that can be used for CP analysis.

Modes such as ~J(ST~, with three spinless particles have r = 0 and the CP is

the intrinsic CP of the three particles. For the final state J/$Kgr”,  for which the

intrinsic CP is odd, the total CP is odd if T is zero and even if T is fl. Note also

that similar results apply also to all radial excitations of the charmonium  states.

For each of the three particles the polar angular distribution of its decay with

respect to the transverse axis can be used to separate contributions for each ITiI,

integrated over all other decay angles. From each set of ITil one can then extract a

measurement of the undiluted asymmetry. These measurements can be combined

to give an improved value but their errors are highly correlated and must be treated

correctly, as is discussed in Section 7.
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When particles Cr and C;! are spinless, two further classes of decays can be

analysed using transversity. Table 1 summarizes the situation, similar results for

the full angular analysis have been tabulated by Dell’Aquila  and .Nelson.2 The first

column of Table 1 defines the classes of decays of a spinless neutral particle that

can be analysed for CP asymmetries using transversity projections. For each class,

Table 1 defines the quantity 6 such that the CP is given by

CP = 5(-l)’ (10)

Examples for each class of decay defined in Table 1 are shown in Tables 2-4.

Whenever decays of the spinning particles allow projection of the magnitude of

the transverse spin, the data can be separated into definite CP classes. The errors

on the various transversity projections are correlated, so care must be taken when

combining results. .w

For class 1 the CP does not depend on the spin of particle C. Thus it is not

necessary to determine that CrC2 arise from the decay of a well-defined particle

C. Hence, in this class of decays, the resonant and non-resonant production of

CrC2 can be combined in the data sample, since all events of a given 7 contribute

with the same CP. This may allow the transversity analysis for such a channel in

cases where the full angular analysis cannot be reliably used because of wrong spin

backgrounds. This will probably be the most useful application of transversity

analysis. In class 1 the particles Cl and C2 may have any integer spin as long as

their subsequent decay allows reconstruction of their transversity.

In class 2, CrC2 must have a well-measured total spin (modulo 2), but not

necessarily a unique parent particle C. In this situation the helicities of particles Cl

and C2 are interchanged as well as sign-reversed under CP. Hence we must require
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that particles Cr and C2 have spin zero in order to form definite-CP quantities

using transversity projections.

For class 3, particle C must be identified as the antiparticle of A, and again

the transversity analysis can only be applied when both Cl and C2 have spin zero.

One last comment on Table 1. Whereas X H x demands that X is seen in a

CP eigenmode, Y = x puts no constraints on the decay products of either X or

Y,For example, class (3) 11a ows any decay mode for particle A provided it allows

transversity projections to be made, and requires only that C decay to two spinless

particles.

SOME MODES WHICH CAN BE ANALYSED USING TRANSVERSITY

Equipped with Table 1 and its interpretation, we can increase the number of

modes that can be used for CP violation studies, without dependence on any spe-

cific model. The particle content of all the modes discussed here is’such that onk”

can construct CP eigenstates from a superposition of helicity states, without invok-

ing a different particle content. Thus, for example, the modes +K,r” and D*+D*-

are considered here, but not modes such as D*+p-.  The pure CP eigenmodes of

??d, such as $1(9, D+D-,  Dope,  and D’K’,‘~ can now be augmented by the many

modes given in Table 2. This Table is not exhaustive, the reader will see obvious

extensions of the list presented here.

In the Standard Model with three generations of quarks, we can study the

three angles of the unitarity triangle, see Fig. 2. Modes of Bd driven by the quark

subprocesses

b-+s+qq c + Es c + Ed c+iid (11)

are all governed by sin(2P).  The b + s transition via a penguin is denoted by
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b ---) s + ?jq. The interference term is sin(2a)  for processes governed by the b +

u + ?id quark-subprocess. Again several modes can be analysed. However, for this

quark subprocess, because only light quarks occur in the final state, there may

be competing contributions from penguin amplitudes which have similar CKM

I7strength but different CKM phases. These must be considered in assessing the

Standard Model prediction.
-- _

Some further comments on the processes listed in Table 2 follow:

For the class 1 processes, it is irrelevant whether the Ks7r” arises from K*’ or

non-resonant production, as discussed above. In fact, for any three body mode of

class 1, AClC2, there is no need to find a pseudo-two-body mode AC. The CrC2

could come from non-resonant as well as resonant production.

For class 2 the D*’ of the mode D*‘p” must be seen in a CP eigenmode. Either of

two decay chains qualify: .m

D*O + ‘-/ fD D*’ + T”fD

where f~ denotes any CP eigenstate produced from Do decay. Both processes

occur through L = 1, because of parity conservation. Note however that it is

important in such cases to be able to distinguish between the photon and the r”

as these have opposite intrinsic CP, and hence give opposite CP contributions for

the same transversity6

In the class 3 processes D*+D*-,D*‘D*’ the D*‘s can be studied in all decay

modes. We do not require the neutral Do, which could arise in the decays D* -+

rD” or D* -+ yD”, to decay to a CP eigenmode. However we do need at least one

of the D*‘s to decay to two spin zero particles (usually ~0).
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The final column of Table 2 lists a few of the many additional modes that can

be analysed using full angular analysis, which we discuss in Section 6. The modes

listed here are not accessible via transversity analysis alone. In contrast, any quasi-

two body mode that can be analysed using transversity can also be treated by the

more complete angular analysis which we will discuss later.

Table 3 presents a similar list for the decays of the B,. For all modes of B, of

the type studied here that are driven by the quark subprocesses of Eq. (11) the CP

asymmetries are predicted to.be tiny in the Standard Model. In contrast modes

mediated by the b + u?id subprocess have a CP asymmetry proportional to sin(2y)

which could be large. Any modes of the type X”YoI(, or X”Yo(K,~o)~*  belong

to class 1 of Table 1 and can be used to study CP violating asymmetries. Here

X”Yo is any pair of light neutral mesons of zero total strangeness which decay

in such a way that transversity can be reconstructed. The transversity analysis.- .w
thus also can considerably enrich the possibilities for a measurement of sin(2y).

However, here again the contributions of penguin amplitudes may complicate the

theoretical predictions.

Consider now B” decays which are driven by b + ciid and produce a neutral

D. Such modes can be used for CP violation studies when this neutral D decays

into a CP lT6eigenstate. It is therefore advantageous to increase the data sample

for Do decays into CP eigenstates. Hence in Table 4 we list modes that can be

analysed by applying the same type of transversity analysis to the Do decay itself.

This may in turn allow significant increase in the analyzable data sample of B

decays. The Mark III collaboration has already determined that the Do + p°K*’

is dominated by the s- and d-waves. That means that this mode is dominated

by a single CP when the I<* decays to I(~R’, and hence this mode can be readily
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treated with this analysis without significant loss of statistical accuracy compared

to a pure CP channel.

EXTRACTION OF DEFINITE CP QUANTITIES FROM TRANSVERSITY

We now turn to the transversity analysis which we present for the case of spin

one for particle A. For higher spins the method is similar; the separation of each 171

can always be made from the polar angle distribution about the transversity axis.

If particles Cr or C2 have spin a similar analysis is needed also for their decays.

To analyse the decay of A we go to the A rest frame. In Table 5 we present the

results. The first column defines two readily analysed groups of possible decays.

Group (a) includes all decays of a spin 1 particle to two spinless particles and also

decays of a vector particle to three pseudoscalar ones. Group (b) includes the decay

of an axial-vector particle to three pseudoscalars, the decay of any spin 1 particle.w
to a photon plus a spinless particle, and the decay of a spin one particle to a pair

of negligible mass spin l/2 particles via a vector or axial-vector coupling. The

second column presents examples for decays of particle A. (We implicitly assume

that this decay proceeds through parity conserving interactions.) Columns 3 and

4 present the angular distributions for each 171 , rr(B), normalized so that

-

1

J dcos thy(O)  = 1 . (12)
-1

Here 8 is an angle that describes the angular distribution of the decaying particle

A, in the rest frame of A, relative to the transverse axis. When A decays into two

particles the angle 0 is the polar angle for one of the particles. When A decays to

three spinless particles the angle t9 is the polar angle of the normal to the plane
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containing the three decay products.’ In all cases all other decay angles have been

integrated out.

Using the angular distributions rr(0) one can then define the quantities

r*(e) = ?y@)(l f c9/2 + np>(lF o/2 (13)

where [ is given in Table 1. The rate for a Bihys to fe can be written as
- -

w = wqhys -+ fe) = r+(i t ++(e) t r-(1 - u)L(~) , (14)

where a and I& may be time-dependent or time-integrated quantities (see Eqs.

ww L te us now define the weighted integrals,

1
iv0 G J ~coser(e)  = r+(i + u) + ~(1 - U) , (15)-1 .m

and
1

ibf2 G J d c0s 8 p2ccos  e) r(e) = r+(i t ++ t r-p - u)w- . (16)
-1

where w* are defined by

(17)
1

w* G dcose~2(cose)r~t(e)  .J-1
Similarly the rate for a gPhys to fe is

I?(@ G r(gO,hys j fe) = r+(i - ++(e) t r-p + +-(e) , (18)

The state Ife) means the state CP Ijo). Hence in Eq. (18) the quantity $ is

sometimes r - 8 and sometimes 0 depending on the particle content of the state.
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Since the angular dependence is such that T,(X - 0) = rr(0)  this introduces no

complication in the analysis. Thus we can extract

1
MO= dcose~(e)=r+(i-a)+r-(i+u),J-1 (19)

and
1

- - JA42 E dcos8P (2 cos e) f’(6) = r+(i - U)U+ t r-(1 t U)U- . (20)

-1
-

The moments MO, MO, M2, Ma derived from both the B” and ?? data samples,

can be combined in many different ways to construct ratios which each give an

undiluted measurement of the CP-violating asymmetry a. First construct the

combinations

(21.).

-
from the B data and the similar quantities IV& obtained from the ?? data. These

then allow two determinations of the asymmetry a,

u* = *P* -ww*tw* * (22)
Note that neither of these results requires prior knowledge of the ratio of P+ to P-.

Furthermore each measures the intrinsic CP-asymmetry of the underlying quark

process without dilution. To obtain the most accurate value of asymmetry from

this analysis one takes a linear combination

a = cm+ + (1 - a)u- (23)

with (Y chosen to minimize the error on the result. The optimal choice of ar does
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depend on the actual values of the I”s. We will return to a discussion of the best

choice of (Y in Section 7.

With a limited amount of data one could alternatively begin by dividing the

angular distribution into two angular bins, commonly called polar and equatorial,

with a cut at some appropriate angle. Let us cut at 0 = 7r/3 where cos 8 = l/2

and define the equatorial and polar components E and P by the relations
-

112

E=2 J dcose rye) = r+(i + u)e+ + r-p
0

1
P=2 J dcose r(e) = r+(i t u)p+ t r-p

112

where the numbers ef and p* are defined by

112

ef E 2 J d cos e r*(e)
0

1
p& = 2 J dcoser*(e) .

m

-

-

u)e-

4P- *

(24)

(25)

(26) -

(27)

-
The quantities IV& and IV& can now be extracted using E and P and the corre-

- - - 0sponding quantities E and P constructed from the B data sample, just as was

done above using MO, M2, MO and x2. The asymmetries a& can then be de-

termined as before. The only differences between the two procedures will be in

the errors on the estimates of a, which will be reduced by the moment treatment.

However the simpler binning procedure could be used for a preliminary look. If a
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CP violation effect is present, it should show up as a statistically significant non-

vanishing value for a even in this simpler analysis. Once such an asymmetry is

found, the treatment of the data can be refined.

In either of these analyses the result for the asymmetry a does not depend on

I+ or I-, or, in principle, on the choice of (Y. However the error on a can be

minimized by choosing Q in a way that depends on I+ and I’-. The values of I+

and I?- can be determined from examination of channels related to the channel

under study by isospin symmetry. In many cases these channels will provide much

more data than the channel used for the CP analysis and so the errors on I’+ /I’-

will have little effect on the error on the asymmetry.

FULL ANGULAR ANALYSIS

For classes (2) and (3) a full angular analysis will usually prove superior to,.

the simple moment treatments described above, since the error on the asymmetry

measurement from a given set of data can be reduced by more fully exploiting the

known angular structure to extract several measurements of the asymmetry a with

different correlations among their errors. Such analysis also allows study of modes

for which the transversity treatment is not applicable, for example modes where

neither particle A nor C decay to two spin zero particles.

Appendix B presents the general helicity formalism and develops a method

based on using the Yl, functions to perform angular projections. The treatment

of the case of AC = 9K” is given as an example. The results for D*D* are also

tabulated. The angular analysis of the decay of each particle is most simply carried

out in the rest frame of that particle. One needs to specify a choice of coordinates

for each decay of a spinning particle, once this is done the angular projections can
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be used to separate out the combinations of helicity amplitudes that have a definite

CP and hence to measure asymmetries.2  As in the case of the transversity analysis

this can be achieved by combining B” and B” data, without any a_ priori knowledge

of the various amplitudes involved. One can obtain an asymmetry measurement

for each possible combination of helicities.  These results can then be combined for

an improved measurement as discussed in Section 7.

- - This analysis can be applied for any of the modes discussed previously, provided

the system (Cl C2) has a well defined total angular momentum. In addition, modes

where the transversity analysis cannot readily be used can also be analysed; some

such modes are listed in Tables 2-4. For example consider the case

where each A subsequently decays to a proton and a pion. Although the pro:

ton spin cannot be measured it is still possible to use the angular projections of

these decays to extract quantities of definite CP. This analysis is also presented in

Appendix B. We find for this case that two definite CP quantities ReGs/2+G;,2+

and Re&/2-G;,2- where GA* = w can be isolated using angular projections.

Each of these provides a possible measurement of the intrinsic CP asymmetry.

This result applies for any pair of spin 3/2 resonances, both of which decay to p7r

(or ~7r). For the case of two spin l/2 resonances which both decay to pa (or pr)

the averaging over the proton spins removes all possibility of separating the differ-

ent CP contributions by angular analysis as only a uniform angular distribution

survives.
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MINIMIZING THE ERROR ON THE MEASURED ASYMMETRY

The methods described above each give more than one measurement of the

asymmetry. With the transversity analysis we had a& or in the more general case

one measurement for each set of ]ri]. Consider for instance for integer spin particles

A and C the full angular analysis gives effectively (s + 1)2 measurements, one from

the square of each of the 2s + 1 definite CP combinations of helicity amplitudes and
-- _
one from each interference term between any two such amplitudes with the same

CP. Here s = min(s,, sc). Interference terms between opposite CP contributions

depend only quadratically on the asymmetry and hence do not provide as sensitive

a measurement. Furthermore, as can be seen from the example of

Im&+$-  = emrt [Re(Gr+G;-)q ReXKM sin Amt

(28)
•t Im(Gr+G;-) cos Amt I .*

derived in Appendix B the separation of the weak phase dependence from the

strong phases is not as clean in this case. For the pure CP terms such as

&+$+ = ]Gr+12[1  - 77 Im(XKM)  sin(Amt)] eert

the time and asymmetry dependence is much simpler. From such a term one can

readily form the combination
-

(G+G‘;+ - ol+c;+)
u++ = (Gl+G;+ t Gl+G;+,

= -qIm(XKM)  sin(Amt) (29)

In either analysis the errors on the various measurements of the asymmetry

are correlated, and these correlations must be treated properly in determining the

error on any value of the asymmetry extracted by combining them. All this is

standard statistical analysis, we review it briefly here for completeness.
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Consider first the case where we have only the two measurements a& extracted

from the single moment transversity analysis. We choose 18

a = au+ + (1 - cr)u- .

Minimizing the x2 with respect to Q gives, for small asymmetry,

- _
Cl!= a: t p+a-

03 t 0: t p+a- (31)

where a* are the standard errors on IV* and p measures the correlation of these

errors. The result of this treatment is shown as the solid curve in Fig. 3 as a

function of

r+ - r-
‘= r++r- (32)

.w.

for the case of two spin one particles one of which decays to two spin zero particles

while the other decays to an e+e-  pair e.g.@K*‘. We plot the ratio of the expected

error from this analysis to that obtainable with an equal number of decays to a

pure CP state.lg For comparison we also show the errors obtained for a fixed value

Q = f , this gives the upper curve on Fig. 3. One sees that, in the worst case, where

I’+ and P- are equal, this analysis requires approximately nine times more data

than a pure CP channel to achieve equal accuracy for the asymmetry measurement.

This situation can be improved by making a maximum likelihood fit for the

asymmetry using expression for the B-angular distribution given by Eq. (14). This

analysis requires further parameters, namely the quantities F* which we assume

can be extracted from isospin-related channels. The result of this treatment for

the error on the asymmetry is shown as the dashed curve in Fig. 3.
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Another way to improve the result is by making a more complete angular anal-

ysis. Again we have two options, an analysis based on moments that does not

require knowledge of the relative strengths and phases of the various amplitudes,

and a maximum likelihood fit to the full set of parameters. Where sufficient in-

formation is available, the latter method is superior. Figure 4 shows the result for

the errors on the asymmetry from using a maximum likelihood fit to the angular

dependence of the data where it is assumed that the quantities Grk and Go defined

in Appendix B, are all known from measurements on isospin related channels. For

simplicity we assumed a << 1 in making this error analysis. For comparison we

plot the result against the same combination of variables as were available in the

transversity analysis. The various cases shown are chosen to indicate the range

of possibilities. It can be seen that even in the worst case that we studied this

type of analysis provides a more accurate value for the asymmetry than the best.w
transversity treatment. Figure 4 also shows that in the fortunate situation where

a single CP contribution dominates either treatment gives accuracy comparable to

that obtained for a pure CP channel.

We have also carried out a study of the sensitivity of the asymmetry measure-

ment in a maximum-likelihood fit procedure to errors in the estimated values and

phases of the various amplitudes. This analysis is summarized in Appendix C.

The results are encouraging, the asymmetry measurement errors will most likely

be dominated by the statistics of the channel for which the asymmetry measure-

ment is made and is relatively insensitive to small errors in the amplitude values

or phases. However, if these quantities are poorly determined, one can fall back to

the moment analyses to extract asymmetry measurements that do not depend on

them.
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To summarize the situation we remark again that the value of the transversity

analysis is greatest in the channels described by class 1 of Table 1, namely three

CP-self-conjugate particles, where it allows combination of resonant and non-

resonant production of the particles Cl and C2. It also has the feature of being

particularly insensitive to the non-CP-violating asymmetries of the amplitudes

that is to asymmetries between B and B data that arise from interference between

the CP-odd and CP-even  contributions. However whenever there is not a single

dominant CP contribution the most accurate results for asymmetries will come

from the use of a maximum-likelihood fit to the parameters that define the angular

distributions, rather than any of the analyses which depend on projecting out

specific moments to identify definite CP contributions. Whenever possible, such

a treatment will include isospin-related channels in the fitting procedure. Since

the isospin-related channels typically have higher rates than the CP eigenstate

channels the additional parameters needed for this type of analysis will be well

measured for many modes by the time one has sufficient data to measure the

asymmetry, so this method will be the one used for most channels.

SUMMARY AND CONCLUSIONS

We have shown that there are many channels for which one can study CP

violations in B" decays if one uses angular analysis to separate the different CP

contributions which arise from different helicity terms. Some of these modes will

compete in accuracy with the modes with unique CP which have already been

much discussed. In general, to carry out the angular analysis accurately somewhat

more data is needed for these modes than for the unique CP modes; in the worst

case that we have analysed this requires approximately ten times as much data for
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an equally accurate measurement of asymmetry, the degradation will possibly be

even greater for higher spin channels.

We have presented several different approaches to the angular analysis, each of

which has merit in different situations. To summarize:

Transversity analysis is most useful in the case of decays to three self-conjugate

particles, class 1 of Table 1, where it allows the combination of resonant and

non-resonant production of the particles Cr and C2. If the relative strengths of

the two CP contributions (I’*) are not known, then a moment analysis of the

type described in Section 5 should be used. Whenever the values of I’* can be

determined using data from isospin related channels then a maximum-likelihood

fit to the transversity polar angle distributions will provide a more accurate result.

For all other modes, including those listed as class 2 and 3 in Table 1 which could

be analysed using the transversity method, the full angular distribution analysiz,

will prove superior. Again there are two choices, a moment analysis of the type

described in Appendix B or a maximum-likelihood fit to the full angular distribu-

tions. Wherever sufficient information on the various helicity amplitudes can be

extracted from data on isospin-related channels the latter method will again give

more accurate results. Clearly what this means is that in such cases one should

make a global fit of all parameters, the helicity amplitudes and the asymmetry,

to the data from all related channels, to obtain the most accurate asymmetry

measurement.

This discussion makes no distinction between a time-integrated experiment or

one that measures time dependencies of the B- and B-decays. In the latter case

the angular structure and the time dependence factorize in a simple way, as demon-

strated in Appendix B. In a time-dependent experiment one simply performs the
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angular analysis for each time bin separately, or in a maximum-likelihood fitting

procedure one includes the predicted time dependence in the fitting prescription,

and treats the data as a function of time as well as angles.

However the angular analysis so enriches the sample of modes to study that we

expect it will play an important role in the extraction of the CP violating physics

at a B factory. Among the many channels listed in Tables 2 and 3 there well may

be-some that provide as accurate or more accurate asymmetry measurements as

the unique-CP modes. Since .we do not yet have much information on branching

fractions to the various modes it is too early to be certain which of the many modes

will provide the best measurements. Hence we have simply presented summary

tables of some of the modes which, according to the Standard Model, will measure

the various angles of the Unitarity Triangle. We have not found any one mode for

which the currently measured branching fractions suggest it would be markedly.w
superior to the unique-CP modes, but several may be comparable, especially in

the fortunate circumstance that a single CP channel dominates the process. Our

knowledge of these branching fractions will certainly be much better by the time

any B-factory capable of measuring CP-asymmetries is built, so at that time it

will be obvious which of these modes is most readily used, and which method of

analysis to apply to it.
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APPENDIX A

HELICITY AND TRANSVERSITY

This Appendix gives the general proof that transversity projections can be used

to select definite CP quantities. When a spin zero particle B, at rest, decays into

two particles (A and C),th e must have equal helicities (X). Now we consider they

case where the particle C decays to two integer spin particles Cl and C2, which
-- _

have spins sl and s2 and helicities X1 and X2 . In the rest frame of particle C we

can write the state formed by’the decay of B as

where we define

IX, Xl, X2; 0) = JA(X; 0, O), Cl(Xi; Q,O)Cz(~z;  r - 0, r)> 1 (A.2)

We use Jackson conventions to define our angles and axes.* In addition we have

chosen to define the C-decay angles so that dc, = 0, thus Rc = (0,8,0).  The

choice &, = 0 is made event by event without any loss of generality. It is a

convenient choice for the transversity discussion since it identifies the y-axis of

these coordinates with the direction transverse to the plane. In Appendix B we

will use a different convention for $ in the full angular analysis. Of course these

choices are merely a matter of convenience for each analysis and have no physical

cant ent .

It is important to note that for three self-conjugate particles we can here avoid

the assumption of a specific particle C and simply sum over all possible angular

momenta for the system CrC2 in its rest frame, in which case X is the projection of
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this angular momentum along the direction opposite to particle A. Then Eq.(A.l)

generalizes to

We now wish to use the decays of A,Cl and C2 to analyse their transversity. To

do this for each particle we go to its rest frame. The transversity for each particle

is defined as the spin component along the y-axis in the particle’s rest frame.

With the choice $c, = 0 all three y-axes are parallel. However we must choose

the same direction for the definition of transversity for all three particles, so that

we can define the total transversity as the sum of the three projections. We will

fix this as the direction of the positive y-axis for the decay of particle C. Then we

can relate transversity states to helicity  states for a particle of integer spin s by

x {Is, X), + (-lyT Is, -X),> -

The rotations are defined with respect to the axes just described, and K = 1 for

particle Cr and K = -1 for particles A and C2 in order to achieve the required

matching of positive transversity direction. The phase factor on the negative he-

licity term arises from redefining the D-function for -X in terms of that for X.

Now let us first consider decays in which the three particles A, Cl and C2 all

are neutral bosons self-conjugate under CP (class 1 in Table 1). Then

CP IX, x1, A‘& 0) = E(-l)so+Sl+S2-X-Xl-X2  I-X, --XI, -x2; e> ) (A4

where t is the product of the intrinsic CP-parities of the three particles. Notice
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that the angle 8 is unchanged under CP, since it is defined to be the angle between

particle Cr and the direction opposite particle A in the C rest frame, and hence
- is unaltered by the reversal of all momenta. Now we use the property of the

D-function

DQO, 0,O) = d;,+(6) = (-l)+Kx,-,(e) (A-6)

torewrite Eq. (A.3) as

If(O)) = 5 c [l - 3 b,olP - a h,olP - 3 b2,ol
x,x1 ,XzlO

{ Iqx, ,x2) + I%,-A2) + ~sLw2) + ISL-~2 >
+ px;x, ,x2) + lLx2) + Isx7-A1,A2)  + Isx;-A1,-A2) } 7

where

GxJgJ2{lX’ Al, x2; 0) f (-1)x+x1+x2 I-X, --Xl, 42; q>

and we have introduced the amplitudes

9i,t1,x2 =

(A-7)

(A-9)

which correspond to definite CP contributions. Under CP

cp Is:Al,x2) = ft(-l)sa+s1+S2  Is$1,x2) ? (A.lO)

where we have used Eq. (A.5).
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Now let us project out the contribution obtained by requiring the transversities

ra, T~,Q for the particles A, Cl, C2. We can write the result in the form

A(7a,71,72) = ( 7Q, 71772; W(Q
(A. l l )

= (1+ (-l)S+r)B+ + (1 - (-l)s+‘>s-,

where S = sa + s1 + s2 , T = rQ + ~1 + 72, and

+ (-1)sl--xl-rl idx,-x1 ,-x2 (6) &I ,x2

Here p is

- -Q[l - 3 S,,o][l - 3 &,,I[1 - 4 b2,01>2P  + hJ~x10~x201PXJlJ2 - Jz

(-l)~+X2(i)X+X1+X2d~r.  , ,
W)d~ rlw2)d~ ,w4 *

In Eq. (A.ll) we have used the fact that

di,,(n/2) = (-1)S-‘d:,,,(r/2).

(A.12)

(A.13)

(A.14)

Equation (A.ll) 1c early shows that for any fixed T we have projected out a definite

CP contribution. Combining Eq. (A.12) and Eq. (A.lO) we see that the non-

vanishing contributions all have CP parity <(-l)r.
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Examination of Eq. (A.ll)  clearly hs ows that only the absolute values of

r,rl, 72 need be definite, since they are all integers. This then indicates that the

simplest experimental procedure to separate definite CP quantiti-es  will be to inte-

grate over the azimuthal dependence of the decays with respect to the transverse

axis and to project for definite lril using the distribution polar-angle about this

axis. We thus need only take non-trivial moments of a single angular dependence

for each particle to reconstruct the magnitude of its transversity. We then can

combine B and B data to obtain a measurement of the CP asymmetry for each set

of I4 1~1171721~ as discussed for the example in Section 5. These results can then

be combined to yield an improved estimate as discussed in Section 7.

If Cl and C2 are not self-conjugate particles, as in classes 2 and 3 of Table 1,

then Eq. (A.5) does not apply since CP interchanges particles. However, if we

require both Cr and C2 to be spin zero particles, then the transversity of particle. .
A will again allow separation of CP-odd  and CP-even contributions. The proof

can readily be seen from the case discussed above,with the sums over J reduced to

the single term J = SC and with sr = X1 = 0 and s2 = X2 = 0 .

APPENDIX B

FULL ANGULAR ANALYSIS AND TIME DEPENDENCE

In this Appendix we will present a method for using the full angular distribution

to define a set of moments from which all measurable combinations of helicity

amplitudes can be extracted. The method is a standard helicity analysis which we

present here for completeness. We analyse here the B” decays into two spin one

particles, one of which decays to two spin zero particles and the other to an e+e-

pair, for example the mode $K* where $J + e+e-  and I(* + Ks7ro.  A similar
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analysis for B” decays into two spin 1 particles which each subsequently decay to

two spin zero particles is also presented. An analysis for the case of two spin 3/2

particles is also briefly discussed. We further present here the explicit structure of

the time dependence of the various quantities that can be measured and discuss

the extraction of time-dependent CP-asymmetries.

The first step in this analysis requires the definition of some conventions. We

use here the conventions of Jackson for the definition of the rotation D-functions.

The decay angles for the process B + II, I(*‘, II, + e+e-, K*’ + KsrO are shown

in Fig 5. We assume the B, T(4s),  J/$ and the K* are in the plane of the paper.

The 2 axis in the respective helicity frames are opposite to the parent particle.

The Y axes are in the direction of the cross production of the 2 axis of the parent

and the 2 axis of the helicity frame. This causes the Y axis of the K* to be out

of the paper and the Y axis of the $ to be into the paper. Hence the X axes are
1..

both pointing upward. This will cause the 4 angle of the e- and the 7r” to be going _

in opposite directions such that their sum will yield the relative angle between the

two decay planes. In this drawing neither the e+, e-, 7r” nor the K” need to lie in

the plane of the paper.

The matrix element of the decay of B t 1c, I<*‘, I(*’ + Ksro can be written

using the helicity formalism as

The amplitudes Ax in (B.l) contain implicit time dependence which we will discuss

later. The important point is that the time dependence and the angular dependence
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factorize in this way, so one can perform the angular analysis for each time bin

and thus extract time-dependent asymmetries. For the Jackson convention R =

-
MW) Oh is dfii ers from the Jacob-Wick’ where R = (d,O, -4)). Expanding Eq.

(B.l) gives

2J4 + 1 ~JK + 1WI2 = 4r 4r c c AxA&a=*1 X,X’=O,fl Fw

Changing the charge conjugate to real

D$jM(R)  = (-l)“‘-MD!M,-M(R)

and inserting the double D summations

%i 1~~ (R) &jiM2 CR) =1

J1+J2

c (JlM1, J2M2 I J3M3) (JIM;,  J&t,‘I J3M;) D&,&2)
P.3)

gives

c Ax& c (-l)@ c
X,X’=O,fl cY=fl JL,JR=0,1,2

(la,1 - a 1 JLO) (1X, 1 - A’ I J&f;) D$, o(R4)L,

(B.4)

x (lo, 10 1 JRO) (1X, 1 - A’ I JR&) D$;,,(RK)
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After a little rearranging, we have
2

c AxA;, c
X,X’=O,fl JL,JR=O,~

(11,1 - 11 JLO) (lx, 1 - A’ I JLX - X’) D$-x,o(R$) Pw

X (lo,10 1 JRO) I (1X, 1 - X’ I JRX - x)) D$vx,o(R~)

The JL = 1 terms vanish because of the sum over (Y on the Clebsch-Gordan

coefficient (la1 - cr I JLO) and the JR = 1 terms vanish because of the coefficient

(1010 I JRO). We now simplify with the following relations

where YiM = (-l)“Y~-~ and s Ye*,(R)Yel,,(fl)  dR = Stl,S,,t, to obtain

x AxA;\, c
4w

JL, J~=o,2 l/mTwzT-l

x (11,l - 11 JLO) (1X, 1 - X’ I JLX - X’) Y&-,(Q)

(B-6)

x (10,lO I JRO) (1X, 1 - X’ I JRX - X’) Y;;~,,,-A(CIK) .

Let us now define the moments

TJLJRM = JJ IM12Y~L,~(n,)Y~R,~(~~)dRK dRG (B-7)

and thus

IM12 = C C C TJ~J~MY~~,M(RII))y~~,M(~K)  * (B.8)
J~=0,2 J~=0,2 ii4=0,f1,f2

and TJLJR-M = T;L~R~. The relation between the helicity amplitudes and the
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moments is

T
-9 1 1

JLJR-M = G ~~ &&TT x x,=o *lc
9 ,

(11,l - 1 I JLO) (1X, 1 - A’ I JLM)

x (10,lO I JRO) (1X, 1 - A’ I JRM) AxA!, .

Depending on the relative strengths of different CP contributions the various

moments TJ, JIM will show different asymmetries. Linear combinations of moments

can always be found which give undiluted asymmetry measurements. The various

moments are given in Table 6, where we have defined the definite CP quantities

sxk = (Ax f A-A)/& and 60 = &Y&+/a = Ao. Table 7 presents the results of a

similar analysis for the decay into two spin 1 particles which each in turn decay to

two spin zero particles; for example, the mode D*+D*-,  where both D*‘s decay to

Dr. Clearly in either case we can extract the quantities

and

ImGl+G;- and ImGl-6:.

The first four of these are each definite CP quantities, combining B and B data

they can each be used to give an asymmetry measurement. The last two quantities

represent interference terms between CP odd and CP even amplitudes, which have

a more complicated time dependence. They depend only quadratically on the CP

asymmetry and so are less sensitive for small asymmetries.
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To display the time-dependent phase structure explicitly we introduce the

parametrization

GA*(t) = g GA* e-lrnt emrti2
Amt Amt

cos 2 f iv XKM Sin 2 1 (B.lO)

where 17 = [ (-1)’ and [ is given in Table 1. For the mode $I<s~o  we have

‘t--t = +l. The quantity g is the phase of the CKM matrix elements and

the quantity Gj contains any phases from final state interactions and other strong

interaction effects as well as the magnitude of the time-zero amplitude. The CP

violating quantities are contained in the XKM, in the standard model XKM = e2’d

where $ = -/3 or o or -y is one of the angles of the unitarity triangle, see Fig. 2.

The equivalent quantities for the zr,hys  decays are

CA*(t) = fqg* GA* e-*mt -

x e--rt/2 Amt Amt
cos 2 f iq X;;l, sin 2 1 (B-11) -

One then sees that

IBx*I~ = IGx* I2 eArt (1 7 77 Im XKM  sin Amt) (B.12)

and the equivalent quantity extracted from B-decays give a simple time dependent

asymmetry. For example

- --*

up+, 1+) = ch+q+ - ch+&+-
61+iq+ + G+GT+

= -q Im AK&f sin Amt (B.13)

Similarly the interference term between two same-CP amplitudes gives a direct
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asymmetry measurement, for example

Re&+Gz  = Re(Gl+Gi)(  1 - q Im XKM  sin Amt) emrt . (B.14)

Thus we have several asymmetry measurements, one for each possible pair of same

CP contributions. A best asymmetry can be obtained by minimizing the error

on an arbitrary linear sum of these values. This requires some knowledge of the

relative sizes of the various G’s. The even-odd interference terms are less readily

used. We find

Irn&+G;-  = eert Re(Gl+G;-)q  ReXKM sin Amt

+ Im(GI+G;-) cos Amt1
(B.15)

which is not, particularly useful for extracting the value of XKM.

Experimentally we obtain the moments by weighting the experimental events

by the Ye,. For example the T222 moment is extracted from the dataaby  calculating

(B.16)

The A4 = 1,2 terms will have a $l~, + c$K dependence, with our definition of axes

this is the phase between the planes of the two two-particle decay states in the B

rest, frame. To predict the time dependence of the moments one needs to substitute

Eq. (B.lO) in Eq. (B.9). The relevant time-dependent expression has the form

AxA;, =  3 eSrt  [Gx+Gj;,+  +  GA-Gil-]{

+ [Gx+Gf\,- + GA-G!,,] cos(Amt)
(B.17)

+ iq[Gx+Gi,- - GA-G;,+]Re(XKM)  sin(Amt)

- 7 [Gx+G;,+  - GA-G;\,-]Im(XKM)  sin(Amt)},

and Go+ = &Go. Thus we see that the general moment has three terms with
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distinct time dependent behaviors emrt,  edrt cos(Amt), and emrt sin(Amt). Ex-

tracting the moments requires convolution with the relevant resolution function.

A similar analysis for the decay

LI pr
PT

-- _

can be carried out. In this case the proton (or antiproton) helicity is not observed.

Summing over the possible helicity values once again eliminates odd values for JL

and JR. The distinct moments are given in Table 8, in addition T200 = To20  and

T220 = $ Tooo. From this one can identify the definite CP quantities

Re @(3/2)+$/2)+) and Re @(3/2)-$+z)-)

and thus this mode can be used to measure the CP violating asymmetry. A similar

analysis can be applied to any spin 3/2

channels. For two spin l/2 particles which each decay strongly to a nucleon and

a spin zero meson only Too0 survives after summing over nucleon and antinucleon

spins, hence one cannot construct undiluted CP asymmetries in these cases. We

have not studied the situation for weak decays of such particles.
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APPENDIX C

SENSITIVITY ANALYSIS

For the maximum likelihood fits we have assumed that the amplitudes of the

decay, except for the CP violating part,, are understood from study of the untagged

and isospin related channels. The question of the sensitivity of the results to

this assumption naturally arises; specifically an error on the even to odd ratio
-- _

(I’+/I’-)  in the transversity case or the amplitudes (&+,Go, &-) in the case of

the full angular distribution analysis will lead to an error in the measured value of

asymmetry.

The transversity analysis is relatively simple. We parameterize the error as

follows:

- Sa/a = (l/a)(da/dc)  x Se w >
. .

where E = (I’+ - I’-)/@‘+  + I’-). Evaluating the derivative numerically we find

I(l/u)(du/dc)l  < 1.2 for all c.

For $I(* one can estimate that the data sample that will be available for

evaluating c from untagged and isospin related channels will be M 20 times larger

than the tagged sample. This implies that typical errors on 6 will be x &%

smaller than the error on a. Thus considering Eq. (C.1) it is clear that the effect,

of a typical 66 on SA is negligible.

In the case of the full angular analysis the situation is more complex. Three

amplitudes  (CL+, GO, Gl-) are needed. Two of the amplitudes (&+ and Go) are

CP even and the third (&-) is CP odd. We parameterize the errors on these

amplitudes by rotations between the magnitudes of two amplitudes and by errors

on the relative phases. For example our estimate for the magnitudes of the &+
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and 60 amplitudes might be related to the true values as follows:

lC1+l  = 19+11  c-(z)  + IGOI sinw (C.2)

lg?ol = 1601 co+> - l&+1 sin(4 (C.3)

where the @s represent the estimated values and the plain G’s represent the true-- _
values. Similar relationships can be used to quantify the possible experimental

confusion between I&+[ and ]&-I, and between 1601 and l&-l. Figure 6 shows

w4(wd~)  for each possible angle of confusion. Note that confusion between

the two CP even states (&+ and 60) has little effect but that confusion between

either CP-even and the CP-odd amplitudes typically produces noticeable effects.

Thus it appears that the overall CP-even to CP-odd ratio is the most sensitive

parameter. As seen above it should be possible to determine this parameter to as.

accuracy much better than needed using the untagged and isospin related channels.

We have also investigated the effect of phase errors in GA* and we find them to

be small. For example a phase error of 30 degrees changes the asymmetry by only

0.003 when the true asymmetry is 0.15 and I’+ = r- (the worst case).

The final analysis will probably be a maximum likelihood fit of all the parame-

ters (the three amplitudes and the CP violating asymmetry) to all the data samples

(tagged, untagged, isospin related). This analysis of sensitivity of the measured

asymmetry to assumed values of the parameters indicates that the resulting errors

will be only marginally worse than single parameter analysis used in this paper for

illustrative purposes.

39



3.1 Acknowledgements:

We acknowledge useful conservations  with many colleagues, especially Tom

Browder, Maurice Jacob, Boris Kayser, Yossi Nir, Jeff Richman, Jon Rosner and

Benny Ward.

40



REFERENCES

1. For a recent review of the topic of CP violation in the B-system, see, for

example, I. I. Bigi, V. Khoze, N. G. Uraltsev and A. I. -Sanda in “CP

Violation”, edited by C. Jarlskog (World Scientific), pp 175-248.

2. C. A. Nelson, Phys. Rev. m, 1937 (1984). J. R. Dell’Aquila  and C. A.

Nelson, Phys. Rev. m, 80 (1986) and Phys. Rev. D33, 101 (1986).-- _

3. J. D. Bjorken, Nucl. Phys. B (Proc. Suppl.) 11, 325 (1989).

4. B. Kayser in Proceedings of Workshop on B-Factories and Related Physics

Issues,  (Blois, France, 1989). B. Kayser, M. Kuroda, R. D. Peccei and A. I.

Sanda,  Phys. Lett. B237, 508 (1990).

5. G. Valencia, Phys. Rev. m, 3339 (1989).

6. I. Dunietz and A. Snyder, SLAC-PUB-5234.

7. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973). P.

Krawczyk, D. London, R. D. Peccei and H. Steger, Nucl. Phys. B307, 19

(1988). C. 0. Dib, I. Dunietz, F. J. Gilman  and Y. Nir, Phys. Rev. D41, 1522

(1990). C. S. Kim, J. L. Rosner, C. P. Yuan, Phys. Rev. D42, 96 (1990).

8. See, for example, M. Jacob and G. C. Wick, Ann. Phys. 1, 404 (1959). We

use the conventions defined by J. D. Jackson in Proceedings of High Energy

Physics, edited by C. deWitt and M. Jacob (Les Houches  Lectures, 1965).

9. S. M. Berman and M. Jacob, Phys. Rev. B139, 1023 (1965). M. Jacob and

S. M. Berman, SLAC Report-43, (1965).

10. For a pedagogical review of helicity formalism, see J. D. Richman, Ph.D.

thesis (1985), Caltech Report CALT-68-1231. M. Jacob and S. M. Berman,

SLAC Report-43, (1965).

41



11. For the example of $K”, this is discussed in H. J. Lipkin and A. I. Sanda,

Phys. Lett. 201B, 541 (1988).

12. We here make the approximation that the heavy and light-mass eigenstates

of the BOB” system have the same widths.

13. Harry J. Lipkin and Sydney Meshkov, Phys. Rev. 143, 1269 (1966).

14. A. Bohr, Nucl. Phys. l0, 486 (1959).-- _
15. Harry J. Lipkin,  Physics Reports a, 173 (1973).

16. When a single final state Do is present it must decay to a definite CP state

in order to use these modes, but see Table 4.

17. D. London and R. D. Peccei, Phys. Lett. B223,257 (1989). M. Gronau, Phys.

Rev. Lett. 63, 1451 (1989); B. Grinstein, Phys. Lett. B229, 280 (1989).

18. In Eq. (30) we have restricted the possible value of (Y to lie between zero
.e.

and one. This restriction actually excludes the “best” value when a single

CP contribution dominates. Since the errors on a& are anticorrelated the

fit actually prefers to overshoot and choose cy less than zero or greater than

one in these cases. However the value thus chosen is extremely sensitive to a

precise knowledge of the ratio of I’+ to I’-, and hence unreliable.

19. T. Nakada in Heavy Quark Physics, edited by P. Drell and D. Rubin, AIP

Conference Proceedings 196 (1989).

42



FIGURE CAPTIONS

1) Schematic representation of two paths (a) from B” to the final state j, direct
or via mixing to the B” followed by decay, and (b) from i? to the final state
f, the CP conjugate of j, via direct decay or via mixing to B” followed by
decay.

2) The unitarity triangle for the three generation standard model, showing the
definitions of the angles Q, p and y and some processes that could be used
to measure each angle.

- 3)- The ratio of the expected error on the CP-violating asymmetry extracted
using transversity from the mixed CP state +K* to that obtainable with an
equal number of decays to a pure CP state. The curve labelled  “(Y = l/2” is
based on equal weightings of a*, while that labelled  “cy fit” uses the optimal
choice for each E. The lowest curve is obtained from a maximum likelihood
fit to the asymmetry, assuming I’+/I’- is known.

4) The ratio of expected error on asymmetries obtained using maximum like-
lihood fits for a mixed CP ($I(*)  hc annel to that for a pure CP channel
with equal number of decays. The top curve is the transversity based result,
shown also on Fig. 3. The remaining curves represent different assumed
values for &+/Go,  with &+ and &- taken to be relatively real. .m,

5) Schematic drawing of the kinematics of B” production and decay showing
definitions of the various axes and angles. Each decay is considered in the
rest-frame of the parent particle.

6) The fractional derivative of the asymmetry with respect to an angle, (z),
which describes the confusion between the amplitudes. The derivative was
obtained numerically.
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TABLE CAPTIONS

1: The CP parity for the mode AClC2 with transversity 7. The first column
defines possible classes. The symbol X H x denotes that particle X is
either a CP eigenstate or is observed via its decay into a CP eigenstate.
q(X) denotes the intrinsic CP-parity of particle X.

2: Examples of Bd modes, which are mixtures of CP eigenstates, that can be
studied with an angular analysis. Here Jo denotes any CP eigenmode of Do
and (CrCz)c  denotes particles Cr and C2 coming from a parent particle C.

- 3:- Examples of BS modes which are admixtures of CP eigenstates that can be
studied with an angular analysis.

4: Do Modes
5: Angular structure as a function of the polar angle about the transverse axis.
6: Moments for B” + (e+e-)~(Ksro)Kl in terms of helicity amplitudes.
7: Moments for the B” decay to two spin one particles, each of which subse-

quently decays to two spin zero particles.
8: Moments for B” + (p~)a(@r)~ in terms of helicity amplitudes.
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Table 1
The CP parity for the mode AClC2 with transversity 7. The first column defines
possible classes. The symbol X f-t x denotes that particle X is either a CP
eigenstate or is observed via its decay into a CP eigenstate. q(X) denotes the
intrinsic CP-parity of particle X.

CLASS Example AC1 C2 CP Parity E [ (-l)r

w AHA +Kv” 5+4>7@1>dC2w>T
Cl ++ Cl c2 * c2

I!)2 At,A c * c” 1 D*y7r+7r-)p  1
Cl = c’a

SC, = SC, = 0

(3) A=i? D*+D*- (-l)sc+r
SC, = SC, = 0
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Table 2
Examples of zd modes, which are mixtures of CP eigenstates, that can be studied
with an angular analysis. Here Jo denotes any CP eigenmode of Do and (C1C2)c
denotes particles Cl and C:! coming from a parent particle C.

Quark-subprocess Class (1) Class (2) Class (3) Full Angular Analysis

b -+ ccs ~,LJK~T’, t,l~“K,w~ (Ks7rO)~*(DD)pf ti(PKs)rl

‘b - m i d-- _ ‘~-‘r’.fD , P”no.fD fD* (a+r-)pO ~-WD)D*

Ww.fD, P”Po.fD al(‘-/fD)D*

&IT0 jD*, p”Wo jD*

b -+ ccd how $(a+.rr-)po (Tu)D*(T+j* (@)D* (YD)D*

+P”~o (ro)a*(rD)D* $w

1c, W79 (-@)D*(rD)a* @al

b + uiid wwp” ) wp”7ro w(7r+?T-)po P+P- ww

ww7rO ) www a~(7r+a-)p0 POP0 a:a, ,_,, a$$

way, AK
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Table 3
Examples of B, modes which are admixtures of CP eigenstates that can be studied
with an angular analysis. Here jpo(  Jo) denotes any CP eigenmode of D*’ (Do).

Quark-subprocess Class 1 Class 2 Class 3 Full Angular Analysis

b + ES, s $eO +(K+K-), , +“A.. . dd (@,+)D:t  (@,)D:-

b -+ cud jD*O w”I(, (T.fD)~*o(P~~cs)Ic~

j-,&d- - qmOI(,, t,y’7r01(, $(P°K&-l

b + uiiid wr°Ks, p”roICs, alr’I(, w(p°K&, , p”IL alK, . . .
WWKS) wpOI(,

Table 4
Do Modes which are admixtures of CP eigenstates that can be studied with an
angular analysis.

I Class 1 I Class 2 Class 3 I Full Angulsr  Analysis

ww -w7r°Ks,  p%+v& qb( a+.rr-)po , PO(K+K-)~, w(K+K-)4 K*‘x*‘, K*-K*+, p+p-

p”(I(,7ro)~*o POP0
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Table 5

Angular structure as a function of the polar angle about the transverse axis._

Group Example rl (*I rd*)
ltO+O D*+rD

(4 Or a sin2 8 ; cos2 0
1- + 3(0-) w + 7r+7r-7r”

1+ --) 3(0-) jl --+ qww

(b) 1 -9 + 0 D*--+yD ; (1 + co2 0) a sin2 8
or

1-i+; 9 + e - e +

Table 6

Moments for B” + (e+e-)$(KS7ro)K*  in terms of helicity  amplitudes.

JL JR M 4rT.h JRM ~TTJ, JRM

0 0 0 2(&A; + A-IA:, + AoA;) qGl+G;+  + 61-G;-  + GoG,*>

a 2 0 5 (2AoA;, - AlAf - A-1A:,) 5 (2606;  - i&+6;+  - Gl-Gf-)

2 0 0 3 (AlA; + AmlA*_, - 2AoA;;) * (Gl+G;+  + 61-G;-  - WoG,*)

2 2 0 -$ (AlA; + AvlA:, + 4AoA;;) -& (Gl+G;+  + 61-G;-  + 4GoG3

2 2 - 1 -g (AOK, + Al&j) -y (ReGl+G0+ + iImG1-G$)

2 2 -2 -; AlA*_, -t { lG1+12 - 161-1~ + 2~Im(Ch-G;+)}
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Table 7

Moments for the B” decay to two spin one particles, each of which subsequently
decays to two spin zero particles.

JL JR M 1 ~~TJL JRM I ~KTJ, JRM

0 0 0

0  - 2 - o

2 0 0

2 2 0

2 2 -1

2 2 -2

(AlA; + A-K, + AoA;;) (Gl+G;+  + 61-G;-  + GoGIg

& (2AoA;; - AIA; - A-1A*_,) & (2GoGo*  - Lh+q+ - Gl-6,“)

& (2AoA;; - AIA; - A-IA*_,) A( x706,* - 61+Gf+  - G-G;->

$ (Ad; + A-K, + 4AoA;;) Q (Gl+G;+  + 61-G;-  + 4GoGo+)

; (AoK, + &A;) 9 (Re&+Gl + ;ImGl-Gl)

$ AlA:, $ (lG1+12  - l&-l2 + 2iIm (G-G‘;+))
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Table 8

Moments for B" + (pr)a@)a in terms of helicity amplitudes.

JL JR M e TJLJRM4

0 0 0 A3/2A;,2 + A-3/2A*-3/2 -I- Al/&,, +A--1/2+2

0 2 0 & (-A3/2A;12 - A-s~A*_~,~  + A112A;,2 + fh12~f_,/2)
.- _

2 2 1 5 (A-3/2A:1,2 + A1/2A;,2)

2 2 2 $ (L3/2A;,,, +&/2A;,2)

0 0 0 183/2+12  + 1G3/2-12  + 191/2+i2 + 1G1/2-12

0 2 0 A(-183,2+)2 - )83,2-12  + 1%/2+12 + lG1/2-12)

2 2 1 $ [ W41/2- 6 3+,2- > + Re &3/2+E;/,+  )+iIm(&/z-G;,2+) -i1m(G3/2-B;,2+)  1

2 2 2 5 Re (&T3/2+G;/2+)+  iIm(k?3/2+~$2-) +iIm(%/2+$/2-) - Re(G3/2-G;/2-)
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