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ABSTRACT 

In various important applications of Hamiltonian mechanics, notably in prob- 

lems of accelerator design, it would be useful to set bounds on nonlinear motion 

for finite but very long times. Such bounds can be sought through construction 

- of a canonical transformation to new action-angle variables (J, XP), such that J is 
. . 

nearly constant, and !P advances almost linearly with the time. By examining the 

residual change in J during a time Z’, from various initial conditions in the open 

domain R of phase space, one can estimate the change in J during a much larger 

time T, on any orbit starting in a smaller open domain 0, c 0. A numerical real- 

-. ization of this idea is described. The canonical transformations, equivalent to close 

approximations to invariant tori, are constructed by a new method in which sur- 

faces are fitted to computed orbits. The perturbed tunes u (winding numbers) are 
I -- 

determined as functions of J, and the inverse function J(Y) is also computed. This 

leads to an accurate map of resonant tune lines into J space, which serves to locate 

dangerous regions of phase space. Near a single strong resonance, J varies more 

than usual but follows the pattern expected from the isolated resonance model. 

All calculations proceed from a time evolution map defined by a symplectic inte- 

grator or equivalent explicit formula. As an example, an accelerator problem in 

2 l/2 degrees of freedom is treated. For betatron motion in a model accelerator 

with strong sextupole magnets, stability for lo8 turns is predicted in a region of 

substantial nonlinearity. 
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f 1. INTRODUCTION 

In the design of cyclic particle accelerators and storage rings one encounters 

generic problems of nonlinear mechanics in several degrees of freedom.1’2’3 The roles 

of nonlinear resonances and invariant tori must be analysed, and in many respects 

the analysis resembles that required in other applications of nonlinear mechanics, 

especially in topics from celestial mechanics, semi-classical quantum theory, and 

plasma theory. In other respects the tasks of acccelerator theory are special, and 

make unusual technical demands. For instance, one must study particles that follow 

-. 

- narrowly defined orbits over times that are equivalent to enormous astronomical . . 

times. In a modern proton storage ring the protons travel near the velocity of light 

and are stored for several hours, traveling a total distance of around 1013 meters. 

They interact with nonlinear magnetic fields every few meters. If we regard one 

interaction as being comparable to one revolution of a planet in the solar system, 

we see that a proton storage time corresponds to about 1Ol2 years of planetary 

motion! 

The usual approach to prediction of long-term stability is based on “track- 

ing”, which is direct numerical integration of Hamilton’s equations to follow orbits 

evolving from various initial conditionsP Although tracking seems to provide a 

valuable guide to probable accelerator performance, the time over which an orbit 

is followed is usually much less than the time desired, and the number of initial 

conditions that can be tested is severely restricted. These limitations are due to 

computational expense, and may be gradually reduced through improvements in 

technique. On the other hand, tracking as practiced has an intrinsic limitation, in 

that it amounts to blind experimentation, providing little insight about underlying 

sources of instability. 
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f To approach questions of long-term stability in a more theoretical way, one 

first considers invariant surfaces in phase space. If the system has d mechanical 

degrees of freedom, the effective dimension of phase space is D = 2d + T, where 

r = 0 if the system is autonomous and r = 1 if the Hamiltonian is a periodic 

function of the time. We are concerned mainly with the latter case, but allow also 

the former. We exclude non-periodic time dependence of the Hamiltonian. For 

nearly integrable systems as studied in the Kolmogorov-Arnol’d- Moser (K.A.M.) 

596 theory, a large set of invariant tori of dimension d+ 1 exists. Under the conditions 

of the K.A.M. theorem, every invariant torus of the underlying integrable system 

that has rationally incommensurate frequencies (in the sense of a Diophantine 

condition) persists under the nonintegrable perturbation. If D 5 4, an invariant 

torus divides the space into two disjoint regions. We can then predict stability 

for all time, since if an orbit is inside or on the torus at one time, it must be 

inside or on the torus at all times. If D 2 5, as is the case in realistic models of 

storage rings, an invariant torus no longer divides the space so as to confine orbits. 

Furthermore, arbitrarily close to an invariant torus there are initial conditions for 

orbits that visit regions of phase space far removed from that torus. Such orbits 

follow stochastic layers near resonance structures that form a web permeating phase 

space. This phenomenon is referred to broadly as Arnol’d Diffusion, following the 

demonstration of such an effect by Arnol’d in an example with D = 5. It follows 

that in high-dimensional systems the existence of invariant surfaces has no direct 

bearing on stability of orbits in a laboratory experiment, since it would require 

infinite experimental precision to start an orbit exactly on an invariant surface. 

We must approach the stability question in a different way, attempting to show 

that the drift of orbits along resonances is so slow as to be harmless under the 

conditions of interest. We must seek stability for a finite but very long time. 
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A mathematical result in this direction was obtained by Nekhoroshev7 Stated 

informally, Nekhoroshev’s theorem asserts that any orbit beginning in a certain 

open domain R, of phase space will be confined to a larger open domain R > R, 

for a time t > T, where T increases exponentially as the strength E of the nonlinear 

perturbation tends to zero. The Hamiltonian is assumed to be analytic, with a 

certain “steepness” condition on its unperturbed part. Unfortunately, the theorem 

has no quantitative significance in problems like those of accelerator design, because 

E has to be absurdly small to get a stability time T of practical interest. This 

situation arises from the use of a perturbative argument and the compounding of - 

many pessimistic estimates that are required in the rigorous analysis. Undoubtedly, 

the true time of stability for a given E is underestimated by a very wide margin. 

Various authors have published results of Nekhoroshev type, often modifying 

the hypotheses so as to give simpler proofs. For instance, the steepness condition 

- has been replaced by a convexity condition: and the case of perturbed harmonic 

oscillators, a case of interest in accelerator physics, has been treated.“” The study 

I -- 
of maps rather than Hamiltonian flows also gives some simplification. I1 Another 

endeavor is to look for results with parameters closer to realistic magnitudes, by 

taking advantage of the properties of special 12’13 Hamiltonians. Numerical and 

heuristic studies of simple models, informed by the work of Arnol’d and Nekhoro- 

14 shev, have also been carried out. 

We wish to show that an argument in the spirit of Nekhoroshev’s theorem, 

but quite different in technique, can be carried out numerically. Without a severe 

restriction on the strength of the perturbation, we obtain bounds over time inter- 

vals of suitable magnitude for accelerator physics. Because of the finite nature of 
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numerical analysis, the bounds are not mathematically rigorous. Nevertheless, the 

argument is highly cautious by the standards of theoretical physics, and much more 

persuasive than the blind extrapolations that are usually used to draw long-term 

estimates from tracking. 

We make a canonical transformation from the action-angle variables (I, a) 

of the unperturbed (integrable) system to new action-angle variables (J, Xl?). In 

a region of phase-space devoid of low-order resonances of appreciable width, the 

sort of region preferred for operation of an accelerator, the new action J is nearly 

- constant, and the new angle !P advances almost linearly with the time. Near a 

single resonance of substantial width, J has behavior close to that of the isolated- 

resonance model. In two degrees of freedom that means that in its time evolution 

J closely follows a straight line segment in the (J1,52) plane, the segment being of 

finite length for stable resonant motion. In other situations, for instance when two 

- broad resonances overlap, J may have more complicated behavior. The desired 

“normal” behavior of J is that it either be nearly constant, or else imitate the 

motion characteristic of a stable isolated resonance. By looking for deviations 

of J from this norm, we acquire a sensitive indicator of undesired behavior. By 

contrast, the original variable I typically displays a complicated motion, even when 

J behaves normally. Since conventional tracking works with original variables, it 

fails to reveal a simple normative behavior. 

By examining the time variation of J one can, in principle, derive rigorous 
15,16,17 

long-term bounds on the motion. Consider an open domain in J space, say 

a ball R, and suppose that for any orbit with initial action J, in R the maximum 

variation of [[J/j d urin a g t ime TO is 6J. Then the action of any orbit with initial 

action in a smaller ball R, c R cannot leave R in a time less than T = nT,, 
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where n = AJ/bJ, and AJ is the minimum distance from the boundary of $2, 

. . . 
to the boundary of R. To get the desired large value of n, one has to determine 

the canonical transformation so that SJ is very small, since the magnitude of AJ 

is usually restricted by experimental conditions (for instance, by the maximum 

permissible excursion of an accelerator beam). 

In attempting to compute SJ numerically, one can sample only a finite number 

of initial conditions in R. Nevertheless, working with a specific example one can 

make various tests to get a good estimate of the uncertainty due to limited sam- 

pling. This uncertainty, which seems rather small in the example that we treat, is - 

the only significant breach of rigor in our argument. 

-. 

The central task in this program is to find the canonical transformation. As 

we shall see, this is equivalent to the problem of finding very accurate approxima- 

tions to invariant tori. We demonstrated in earlier work that such approximations 
18,19,20,21,15 

could be constructed by non-perturbative methods. Perturbation the- 

ory might also be considered, if steps are taken to provide high accuracy through 

efficient, high-order computations. For instance, the normal-form algorithm of 

Forest, Berz, and Irwin22 allows computations of rather high order in accelera- 

tor problems. Perturbative programs have also been developed for the purposes 

of satellite 23 dynamics. For the present work we use a new technique that is less 

costly and more robust than previous 16’24 methods. The idea is to make a direct 

fit of toroidal surfaces to orbit points on a Poincare surface of section, the torus 

being represented as a Fourier series in angle variables. 

The variable J is defined as the average over Q of the original action I(@) on 

a fitted torus. Only a few tori are fitted, corresponding to a discrete set of values 

J = J;. Tori for all other values of J are defined by polynomial interpolation in J. 

6 



f 
This defines a canonical transformation for all J in an open region encompassing 

the J;. The interpolation forms bridges over resonances, since resonances interleave 

invariant tori throughout phase space. The canonical transformation is precisely 

defined, even in the midst of a low-order resonance, and in that respect differs 

essentially from canonical transformations computed in perturbation theory. 

The interpolation in J is an essential part of our argument, not merely a pro- 

cedure forced upon us by the use of numerical methods. One could imagine a 

similar interpolation being used in a purely analytical context. In fact, Pijsche125 

and Chierchia and Gallavotti 26 have proved the existence of smooth interpolations - 

of exact invariant tori in the context of KAM theory. A family of exact tori is 

parametrized over a Cantor set in frequency space, but can be smoothly embedded 

in a family of functions parametrized over intervals. Thus, a canonical transfor- 

mation can be defined in an open region of phase space, in such a way that the 

- new action variable that it defines is a smooth function, strictly constant only on 

a family of tori parametrized over a Cantor set. This rigorous construction can be 

viewed as an idealization of our numerical procedure. 
I -- 

All computations in our treatment proceed from the time evolution map that 

takes a Poincare surface of section into itself. In the accelerator problem, the phase 

point of a particle returns to the surface of section after the particle travels N,, 

turns around the accelerator. In the present report the map is defined by numerical 

27 integration of Hamilton’s equations with a symplectic integration algorithm. To 

treat large accelerators economically, it may be desirable to represent the map, or 

its canonical generator, by an explicit formula that can be evaluated 
28,29 

quickly. 

In Section 2 we establish notation, describe the basic scheme of canonical trans- 

formations, and show how to obtain the time evolution map of new variables. 
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In Section 3 we give the general argument for establishing long-term bounds. In 

Section 4 we describe the method to approximate invariant tori. Section 5 deals 

with interpolation procedures and other numerical questions. In Section 6 we give 

results for a non-trivial example in accelerator theory; namely, motion in two trans- 

verse degrees of freedom in a strongly nonlinear sextupole lattice. The Hamilto- 

nian and accelerator parameters are given in Appendix A. Since accelerators are 

described by a Hamiltonian with periodic time dependence, the phase space of this 

example is effectively five-dimensional (two momenta, two coordinates, and time). 

Section 6 deals with a region not containing broad resonances. In Section 7 we 
- 

demonstrate the special phenomena that occur near a relatively broad resonance. 

In Section 8 we consider the outlook for further work. 

2. TIME-EVOLUTION MAPS AND 

CANONICAL TRANSFORMATIONS 
-. 

We deal with a system in d degrees of freedom described by a Hamiltonian of 

the form 

q1, fk q = &(I) + vp, @, q, (24 

where the angle 8 is the independent variable of Hamilton’s equations, which can 

be the time or a strictly monotonic function of the time. In the general description 

of a circular accelerator, 8 represents azimuthal location on a closed reference orbit. 

The perturbation V is 2r-periodic in 19: 

V(I, a, 0 + a?r> = V(1, a, 0). P-2) 

Bold-faced symbols denote d-dimensional vectors. The variables I, Q are action- 

angle variables of the unperturbed system described by H,. 
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In Hamilton-Jacobi theory5’6’18 one seeks a canonical transformation, 

such that the new action variable J is constant. The transformation is obtained 

through a generating function, 

S(J, a, 0) = J . Qi + G(J, ffy 0) , (2.4) 

.- 
- 

-where G is 27r- periodic in 0 and in each component of %. Old and new variables 

are related by nonlinear equations, 

I= J+G.z,(J,@,O) , (2.5) 

: -- Subscripts denote partial differentiation. If the generator G satisfies the Hamilton- 

Jacobi equation, which is the requirement that the new Hamiltonian be indepen- 

dent of a’, then by Hamilton’s equations 
~. 

J = constant , (2.7) 

and the new angle variable Q advances linearly with 8, 

(2.8) 
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f 
In accelerator physics, the winding number Y(J) is called the “tune”. The 

Hamilton- Jacobi equation is 

H(J + G+,@,O) +Ge = Hl(J,o) . w > 

We are interested in canonical transformations of the form given in (2.5) and 

(2.6) such that the new variables satisfy the equations (2.7) and (2.8) to a close 

- approximation, but not exactly. Such transformations can be obtained through 

an iterative numerical solution of the Hamilton-Jacobi equation 
18,19,21 

, but that 
- 

-procedure as implemented to date involves superfluous integrations. For the present 

work we prefer a method that makes a direct use of the time evolution map on 

phase space. 

We define a Poincare surface of section in phase space by 

-. 
0 = 0 (mod 2nN0) . (2.10) 

In the case of a cyclic accelerator, 0 is a coordinate specifying the azimuthal location 

of a particle in the machine, equivalent to arc length along a periodic reference 

orbit (not necessarily circular). In one turn around the machine, the value of 19 for 

a particle increases by 27r. Thus, our surface of section corresponds to a transverse 

slice through the beam at a fixed location in the laboratory, but we examine values 

of (I, ‘P) on this slice only after each interval of N, turns. 

The Poincare return map, which takes the section (2.10) into itself, will be 

called the “No-turn map” and will be denoted as 

M(I, @; No) = (I’, a’) . (2.11) 
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We are interested in invariant surfaces of this map for NO = 1. Henceforth, the 

term “invariant tori” will refer to these surfaces. It is convenient to describe the 

invariant tori by giving I as a function of a: 

I = J + u(J, a) . (2.12) 

Here u is 2r-periodic in each component of @, and has zero mean with respect to 

9. Thus J is the average of I: 

2% 

J = I(J, @)d(@/ar) . 
J 
0 

(2.13) 

In-view of Eq.(2.5) and the periodicity of G in 0 and a, we see that u can be 

identified with G+ on the surface of section, and that J in (2.13) is the same as the 

-. invariant action defined above. Thus, a value of J labels each invariant torus, and 

u(J,Q) = Gap(J,@,O) . (2.14) 

We next consider approximate invariant tori, but retain the same notation. 

The equation of an approximate invariant torus, 

I = J + u(J, 0) , (2.15) 

may also be regarded as a change of variables, 

U(J,Q) = (I,@) . (2.16) 
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The inverse map, 
-. 

U-‘(1,ip) = (J,iB) , (2.17) 

provides a function J(1, a) of the original variables that is nearly invariant on 

orbits of M: 

J(I(d), a(0)) z constant , (2.18) 

4 = 27rN,p, p = 0,1,2, ... . (2.19) 

- The time evolution of this function, that is to say its deviation from a constant . . 

value, will be the object of study in this paper. 

The change of variable (2.16) is useful by itself, but it is not a full canonical 

transformation. To find the generator G of the full transformation, we apply 

Eq.(2.14) and integrate u with respect to ip with the help of a Fourier series. In 

- sections 4 and 5 we show how to construct u(J, CD) as a finite Fourier series, 

u(J, a) = c ii(m, J)eim’* . (2.20) 
f -- m#O 

The corresponding series for G is 

G(J, @,O) = c G(m, J,O)eim’” . (2.21) 
m#o 

In Eq.(2.21) we have arbitrarily omitted the @-independent term (m = 0). This 

does not spoil generality, as we shall show presently. By Eq.(2.14) , the j-th 

component of u is 

uj(J, 43) = c kzjG(rn, J, O)eim.* . (2.22) 
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For any vector m # 0 there is a j such that 

&m, J,O) = iij(m, J)/imj , mj # o . (2.23) 

The generating function defined by (2.23) and (2.21) allows us to complete the 

canonical transformation by defining 

.- 

where 

\E = + + GJ(J,@,O) . (2.25) 

(2.24) 

The complete transformation is 

24 o Y-l(J, Q) = (I, a) . (2.26) 

If the transformation is ideal, so that J is constant, then the change in !P in 

one turn will give the tune U: 

XP(27r) - Xl!(O) = @(2x) - 9(O) + GJ(J, @(a~), 0) - GJ(J, a(O), 0) = 2r~(J) . 

(2.27) 

If J is approximately constant, this equation will yield an approximation to the 

tune if we put J equal to its initial value J(0) and let +(27r) be the angle value 

that evolves from (J(O),+(O)) under the one-turn map. We use this method to 

obtain the tune numerically. 
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If G is modified by addition of a @-independent term, 

@,J,e) , (2.28) 

the relation (2.27) is not changed, because such a term must be 27r-periodic in 0. 

The local definition of Q would be changed, but not the increment of \E when 0 

advances by 27r. 

The map M on original variables of course induces maps on the new variables 

through the transformations U and V. We have 

N(J,@) =24-l oM oU(J,<fi) = (J’,@‘) , (2.29) 

and 

O(J, *) = V o Lf-1 o M o U o V-‘(J, TP) = (J’, q’) . (2.30) 
- 

These relations are obvious from the commutative diagram of Fig.1. For instance, 

Eq.(2.29) is obtained by noting that h/ followed by U produces the same result as 
2 -- 

U followed by M; that is, 24 o JV = M o U. Note also the nice symmetry of the 

diagram about its center line, associated with the fact that U and Y are obtained 

from the two derivatives, G* and GJ, of the same generating function, 

Since we are mainly interested in the time evolution of J, and less in the time 

evolution of !P, we work mostly with the “half transformed” map n/, which is easier 

to evaluate than the “fully transformed” map 0. The evaluation of N requires 

the computation of U-l(J’, a’), w ic is not available from an explicit formula. In h’ h 

Section 5 we point out that this quantity is easily computed by Newton’s method. 
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3. LONG-TERM BOUNDS 

The map N of (2.29) g ives the change in J over No turns. We apply an 

essentially trivial argument to find bounds on the change in J over a number of 

turns N much greater than No. We find the largest change in J that can occur over 

No turns, and then imagine the worst possible case in which the change over pNo 

turns is just p times the largest change over No turns. We are able to succeed with 

this coarse argument only by constructing such a good canonical transformation 

.- that the change of J in No turns is extremely small. 

It should be recognized that the resulting bounds are for the No-turn map, 

and make no direct reference to what may happen between turn ICN, and turn 

(Ic+ l)N,. It is conceivable that the orbit could leave the desired region during this 

interim, but nevertheless return to it by turn (Ic + 1)No.30 In practice we rule out 

- any harm from such an effect, since the No-turn map is evaluated by integration 

of the equations of motion in small steps. The numerical integrator is arranged to 

give a signal if the orbit leaves a prescribed region. 
2 -- 

We define a domain R of phase space, and a smaller domain !-IO c R as follows: 

fl={J,@ 1 IJ;-j;l<AJi, O<Q;<%r, i=l,q.,d) , (34 

R, = {J,9 1 JJi - j;] < &AJ;, 0 5 a’; 5 27r, i = 1,2,. . . ,d} , 

O<X;<l . 

15 
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-. 
The fixed vector J = {ji} d e fi nes an “average amplitude of interest” for our stabil- 

ity studies. Now suppose that for all (J,@) E R the No-turn map (2.29) is such 

that 

IJ; - J,!j < SJ;, i = 1,2,...,d . (3.3) 

Any orbit with initial condition (J(O), Q(0)) in R, will stay within the larger region 

R for at least N turns, where 

N=pNo , (3.4) 

and p is the largest integer such that 

p&J; < (1 -&)AJ; , i = 1,2,...,d . (3.5) 

That is, a trajectory cannot cross the annulus between R and R, in fewer than 

- 
(p + l)No turns, where 

2 -- 
p + 1 2 A(R, 0,) = min (’ -,“;)“‘i . 

i 2 

We may think of the quantity A(R, R,) of (3.6) as an “amplification factor” 

that gives a bound for N turns in terms of a bound for a smaller number of turns 

No. In the example of Section 6 we find an A of around 104, and the value is 

substantially independent of No for No up to at least 104. The discovery of such 

large amplification factors is the basis for our interest in the method. 

The best choice of the regions R and R, is a matter that depends both on the 

particular system studied and on the goal of the study. In general one can expect 

that A(R,R,) ‘11 wr initially be an increasing function of AJ;, until R gets so large 
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that some source of instabilty is encountered (for instance, a broad resonance), 
-. 

causing an increase in SJ; and eventual decrease of A. On the other hand, R might 

become too large to be suitable for the conditions of the problem. In an accelerator 

problem it might reach into a region of phase space beyond the physical aperture 

of the machine, and would then be of no interest. 

Simple regions like (3.1), (3.2) are not necessarily the most relevant for practical 

stability studies. In the different stages of operation of an accelerator the particles 

visit various regions of phase space. Generally, one would like to ensure stability 

- -for any action value from J = 0 out to some limit. In two degrees of freedom, 

this limit would be described by some curve in the J1 - J2 plane, of course just 

in the first quadrant of that plane since the Ji are non-negative by definition. For 

example, let us take the curve to be made of two straight line segments, parallel 

to the J1 and J2 axes. Further, let us consider two such curves and the L-shaped 
- 

region ,C between them, as shown in Figure 2. Suppose that we could show, by 

arguments as above, that any trajectory starting near the inner edge of ,C (in the 

L -- darkened band B of the figure) cannot cross to the outer edge of ,C in pNo turns. 

Suppose also that any trajectory starting in ,Co, the region enclosed by -C, cannot 

move more than the width of B in No turns. If N = pNo is large it then follows 

that ,C forms an effective barrier to motion out of Lo. 

This is reminiscent of the absolute confinement of trajectories by K.A.M. sur- 

faces that occurs in low-dimensional systems (d 5 2 for autonomous systems, d = 1 

for time dependent Hamiltonians of the form (2.1) ). Although in higher dimen- 

sions we do not have absolute confinement, we may have confinement for a very long 

time by a barrier region such as ,C, which can be viewed as a “thickened surface.” 
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We now state this argument more precisely for a phase space of arbitrary 

-. dimension, and comment on its practical realization. Referring to Figure 2, we 

define 

.L = {J, @ 1 J/O) < Ji < J;“‘, 0 5 <pi 5 2~) , (3.7) 

23 = {J, @ 1 J/O’ < Ji < J,!“’ + vi, 0 5 Qi 2 2~} y (3.8) 

- . 0 < ‘Ii < J!l’ - J!” 
t I * (3.10) 

Here and in the following it is understood that i runs from 1 to d, for d degrees of 

freedom. Assume that the No-turn map (2.29) gives 

Ji - Ji < vi , (J, a) E Lo 7 -. 

and that for some S Ji > 0, 

-’ -- 

Ji- Ji < SJi 9 (J,*) E LC. 

Then any trajectory with initial condition (J(O), ip(0)) E Lo will satisfy 

Ji < J(l) 1 

for N = pNo turns, where p is the largest integer such that 

(3.11) 

(3.12) 

(3.13) 

p&J; < J(l) - J!‘) - vi 2 1 7 (3.14) 

18 
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hence 

c 

(3.15) 

Notice that we have not put absolute value signs on the increments J: - Ji, since 

there is no objection to large negative increments. 

In a numerical application of this argument it is advantageous to take vi con- 

siderably larger than SJi. Verification of the inequality (3.11) can then be done at 

much smaller expense than is required for verification of +~/CXEJ . In region 

Lo one can take fewer mesh points in J, or fewer Fourier modes in (2.20) . The 
- 

-width 7; of the band B can still be much less than (l) Ji _ J(O) 
2 , so that the value of 

vi has little impact on the bound (3.15) . 

In-any practical case it is necessary to have statements about the original 

laboratory variable I, rather than J. The methods of Section 5 provide a way of 

going back and forth between J and I. For any (I, a) one can find the corresponding 

J through numerical evaluation of L/-l, and vice versa. 

4. COMPUTATION OF : -- 
APPROXIMATE INVARIANT TORI 

In this section we describe a method24’16 for computing close approximations to 

invariant tori, beginning with the map M(1, @) = (I’, a’) for No = 1. To simplify 

notation and give numerical examples we take two degrees of freedom, d = 2. A 

good feature of the method is that it generalizes obviously to any d. 

Starting with initial condition (I(O), 9(O)), we follow a single orbit by iterating 

the map P times, recording the coordinates at each iterate, 

(I,@)j ) j = 1,2,*..,P . w 
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Suppose that the orbit is not in a region of wide-spread chaos, as is usually 

true in accelerator physics. If the orbit is not on a resonance, or is on a resonance 

of very high order, the angular coordinates Cpi will be distributed rather densely in 

the (@I, @a) plane at large P. In Figure 3 we plot 4000 values of +D on a trajectory 

of the system treated in Section 6. In Figure 4 we show the contrasting behavior 

of @ on a resonant trajectory. In Figure 5 we plot the points (Ir,@r, &) in 

three dimensions for a nonresonant trajectory (not distinguishable from a resonant 

orbit of very high order). Figure 6 shows the corresponding points (12, @I, +2). 

Excluding obvious resonant cases, we attempt to fit the points (I, @)j to a surface 

represented as a finite Fourier series, 

I = C ti(m)e”“+@ . W) 
mES 

-. The Q-independent term (m = 0) will be identified with the approximate invari- 

ant action J, in accord with (2.12) and (2.20). 

In our examples of interest the set S of Fourier modes in (4.2) usually includes 

modes up to m = 20 or so in each variable, but for some purposes our maximum 

m may be as low as 10 or as high as 30. Thus, we have a fairly large set of 

coefficients to determine, and that is a problem in itself. Moreover, the values 

of @ are scattered unpredictably. For that reason we cannot use an elementary 

discrete Fourier Transform (say an FFT), which requires values of Q on a uniform 

rectangular mesh to compute the coefficients C(m). 

To handle the problem of scattered abscissae, we replace the unknowns G(m) 

with a new set of unknowns, namely the values of the function I(+) on a uniform 

mesh on 4[3 space. The matrix that relates these quantities to the data points I(+j) 
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f 
is close to the unit matrix (provided that we use only a certain subset of the data 

points), and that implies that one can solve for the unknowns by iteration. The 

iterative method avoids solution of the large linear system by a direct method (say 

Gaussian elimination) which would be too expensive. 

As a one-dimensional model of our problem consider 

m=M 

I($j) = C C(m)eimdJ , j = O,l, e-f ,I< - 1 (4.3) 
m=-M 

for some set of scattered points {qSj}. W e re pl ace 6(m) with the discrete Fourier 
- transform of I: 

K-l 

f?(m) = f C 
k=O 

(4.4) 

-. 

Now substitute (4.4) in (4.3) , reverse .the order of the m and Ic sums, and choose 

M so that K = 2M + 1. Evaluating the sum over m as a geometric series we find 

K-1 sin[r(z(j) - Ic)] w> = c k=O Ksin[,(z(j) - Ic)/K] 
~( 2?rlc) 

K ’ P-5) 
I -- 

where x(j) is a normalized coordinate replacing $j, 

$j = 2rx(j)/K . 

The matrix D = {Djk} with 

sin[r(z(j) - lc)] 
Djk = I< sin[r(z(j) - rC)/K] 

(4.6) 

(4.7) 

is a discrete analog of the Lejeune-Dirichlet kernel that is used in Fourier analysis 

to express partial sums of Fourier series. 
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The interesting aspect of D is that it is close to the unit matrix if the $j are 

close to the evenly spaced mesh points 2rj/Ii of the discrete Fourier transform; 

equivalently, 

We can ensure that (4.8) holds for all (j, Ic) ‘f 1 we compute a sufficiently long orbit 

and admit to the fitting procedure just those points with angles #j sufficiently close 

to the evenly spaced mesh points. In matrix notation the K x K system (4.5) takes 

the form 

I=(l-D)I+i ) P-9) 

where _ 

I = {I(2nj/K)) , i = {I(C$j)} . (4.10) 

-. Provided that 1 - D has sufficiently small norm, (4.10) can be solved by simple 

iteration, beginning with I as a first guess. We actually apply a modified Gauss- 
31 

Seidel method , which is more effective than simple iteration. With the p-th 

iterate denoted by I(P) our iteration is 

j-l K-l 

C( 
Sjk - Djk)IF+" + C (Sjk - Djk)It) + fj * (4.11) 

k=O k=j 

This scheme results from (4.9) and the observation that for evaluation of the j-th 

component of I@+‘), th e updated values of prior components are already available, 

namely @+l) for k = 0 1 , Y”‘7 j - 1. In the ordinary Gauss-Seidel method, D and 

i in (4.9) are multiplied by A-l, where A is the diagonal part of D. For some 

reason, our iteration is slightly better in the present case. 
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In two degrees of freedom we have two surfaces to fit, corresponding to the two 

components of I = (11~12). We try to solve for 

I( 2rkl /Kl , 2rk#Cz) . (4.12) 

From the sequence (4.1) we select a subsequence of Kr.lC~ points having angular 

coordinates in one to one correspondence with the evenly spaced mesh points, 

(2C/K, 2rjz/Iir2) , j; = O,l, . . . ,I<; - 1 . (4.13) 

.- 
- 

-‘The correspondence is set up by choosing one and only one point close to each 

mesh point in the sense 

IXC; - j;l < Ti , 0 < r; 5 l/2 , i = 1,2 , (4.14) 

where the xi are normalized values of the angular coordinates from (4.1) -- 

Qi = 2TXi/ICi . (4.15) 

: -- 

The normalized coordinates satisfying (4.14) will be denoted as x:;(jr, jz), and the 

corresponding original coordinates by @i (jr, j2). 

To apply the iteration (4.11) we introduce a map of the index pair (jr, j2) into 

a single index j, and define the unknowns, 

Ij = 1(2rjl/Kl, 2rj2/K2) , 

and the data, 

& = I(%(ji,ja), @2(jl, j2)) . 

(4.16) 

(4.17) 
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The bold face characters are a reminder that there are two surfaces to be deter- 

mined. The matrix D analogous to (4.4) is the same for both surfaces, and has 

the form 

Djk = sinb(xl (A, h) - h)] sinb(x2(jl,h) - h)] 
I(1 sin[dxl(jl, A> - h)/Kl] I(2 sin[r(xz(jl, j2) - k2)/K2] * 

(4.18) 

In practice it may be difficult to store this large matrix in the computer. We 

resorted to storing only the two factors of (4.18) , each as a three-dimensional 

array. 

The “radii” ri of the neighborhoods of mesh points, as defined in (4.14) , . 

determine the rate of convergence of the iteration (4.11) , smaller values giving 

faster convergence. In all of our examples we have found convergence with rl = 

r2 = 1/2, which means that the neighborhood (4.14) is the same size as a cell of the 

mesh. In the examples of Section 6 there was an advantage in using smaller values 

of r; to increase the rate of convergence; our typical choice was rl = r2 = 0.3. This 

advantage disappears in cases where iteration of the map M is more expensive, 

since the length of the sequence (4.1) to produce the required points increases 

sharply as r; is decreased. 

An interesting property of this method is that it provides a convenient way to 

filter out resonances. A low-order resonant orbit such as that of Figure 4 will not 

come close to every mesh point and hence will never satisfy (4.14). A resonance 

of higher order may satisfy (4.14) , but it has less and less chance of doing so 

as ri is decreased. In our examples, any resonant orbit that satisfies (4.14) with 

rl = r2 = 0.3 and Ml = M2 = 20 is of such high order that its resonant character 

has no significance in our discussion; for our purposes it is indistinguishable from 

an orbit lying on an invariant torus. 
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After Eq. (4.9) is solved, we find the the Fourier amplitudes G(m) of (4.2) by 

the discrete Fourier transform (4.4). It is easy to see that the resulting surface (4.2) 

actually passes through the data points (provided that (4.9) is solved exactly). 

5. INTERPOLATION AND INVERSION 

OF NONLINEAR FUNCTIONS 

The basic object needed to find long-term bounds is the change of variable 

U(J,9) = (I,@). Th e method of the previous section gives U in the form 

I = c ti(m, J)e”‘“‘* . 
mES 

(54 

By definition, the parameter J for this surface is 

-. 
J = G(O) , (5.2) 

-’ -- a quantity which is not known until all the Fourier coefficients have been deter- 

mined by fitting data. We observe in computations, and require in principle, that 

there is a one-to-one correspondence between initial values I(0 = 0) of fitted orbits 

and values of J, the correspondence being made at a fixed value of the initial angle 

@(6’= 0). Th e c h oice of the fixed angle is immaterial; we take it to be zero for all 

fitted orbits, and adopt the notation I, for the corresponding initial action: 

PO, 0) = W), wq)e=o * (5.3) 

If we fit n orbits, all with different values 1,; of I,, we obtain 
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I 

I= Ji+ C ii(m,J;)eim’@’ , i= 1,2,...,n , 
mfo 

(5.4) 

the n values Ji being all distinct. 

In order to define the transformation (5.1) as a smooth function of J in a region 

of phase space, we seek a smooth interpolation of the Fourier coefficients G(m, J;). 

The Ji are not exactly predictable, but we expect and find empirically that there 

is a nearly linear dependence of J on I, in domains of interest (except near a broad 

resonance where there can be jogs in the linear behavior). This means that one 

can control fairly well the distribution of the J; by appropriate choice of the I,; 

and thereby make a reasonable choice of points to interpolate. We usually put 

the Ji near the points of a regular Cartesian grid, but since we can not put them 

precisely at such points interpolation in one dimension at a time is not possible. 

We are therefore led to a method like that used in the preceeding section to fit data 

at scattered angles. The desired function of J is expanded as a linear combination 

I -- of basis functions, and linear equations are solved to determine the coefficients. 

The basis functions themselves will be tensor products of functions of one 

variable. For the latter we choose basis functions for cubic splines 
32 

on the interval 

[0, 11, with s + 1 evenly spaced knots, 

Xi=2 S ‘I 7 i = O,l,“.,s . (5.5) 

We define a spline function f(x) to be a piecewise polynomial function that is cubic 

in each interval [xi, xi+r], has a continuous second derivative at x1, x3, . . . , ~~-1, 
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t 
and a continuous third derivative at xl and x,-r. We define p;(x) to be that spline 

.r. 
function which is equal to 1 at xi and 0 at the other knots, 

@i(Xj) = Sij , i,j =O,l,*‘*,S . w-3 

A spline function is uniquely defined by its values at the knots, as can be seen by 

counting the continuity conditions. It follows that f(x) may be represented as 

.- f(x) = 2 f(Xi)Bi(X) 7 (5.7) - . i=O 

since the right hand side is a spline function, and has the correct values at the 

knots. -The coefficients of the cubic polynomials that make up the basis splines p; 

can be obtained by applying standard codes (for instance CUBSPL from Ref. 32 ) 

-. and the defining property (5.6). 

Now suppose that f( x is not a spline function, and that its values are known ) 

at s + 1 distinct points [i, different from the xi and in general not equally spaced. 

We can try to approximate f(x) as 

defining the X; as solutions of the linear equations 

f(tj> = 2 xiPi(tj) 7 j = O,l,...,s . 
i=O 

(5.8) 

(5.9) 

Then f(x) interpolates the given values, j(<i) = f(ti), and Xi = /(xi). 
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If we were working in one dimension, it would clearly be more convenient to 

take the spline knots at the tit so as to obtain Xi = f([i) without solving equations. 

With scattered abscissae in two or more dimensions there is no such possibility, 

but the above method can still be applied. In two dimensions we apply spline 

approximation first in one variable and then in the other to obtain 

.f(Xl, x2) = PC X1, X2) = 2 5 Xij/3j1)(Xl)~~2)(X2) , (5.10) 
i=O j=O 

For scattered data at points (&,qk) the equations to fix the coefficients are 

f(tk, vk) = 2 2 ~ij~~1’(b)~~2’(ok) * (5.11) 
i=O j=O 

As before, f^ interpolates the given values f([k,vk), and Xij = j([k,qt). 

-. In the following we use the scheme based on (5.10) , (5.11) for approximating 

several different functions. In each case a rectangular domain for the vector variable 

of interest is mapped onto [0, l] x [0, l], so that the same basis functions can be 

used for all interpolations. For interpolation in each component of J the map to 

take J E [Ja, Jb] into x E [0, l] is 

5112 - J;j2 

x = J1/2 _ J1/2 * 
b a 

(5.12) 

The use of J112 rather than J in (5.12) is to take account of the fact, familiar 

from perturbation theory, that invariant surfaces contain powers of ~~~~ at small 

J. At the larger values of J considered in Section 6, a linear map is probably just 

as suitable as (5.12). 
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Interpolation of scattered data can be used to invert nonlinear functions nu- 

I. 
merically. Given the values of a 1 : 1 function f : x --+ f(x) on a finite set of points, 

which is to say a set of pairs (xi, fi), one can interpolate in either direction: find a 

smooth function f(x) with I(xi) = fi, or a smooth function g(f) with $(fi) = xi. 

- In Section 6 we use this method to find J(Y), th e action as a function of the tune u. 

The function v(J) is first evaluated on a mesh in J space by application of (2.27). 

Having determined U (J, a) as a finite Fourier series in @ with coefficients 

as spline functions in J, we can now turn attention to evaluation of the map 

N as defined in (2.29). Referring to (2.29) , (2.30) , and Figure 1, we see that _ 

evaluation of n/(J, a) requires evaluation of W’(I’, a’), which is to say solution 

of the following equation for J’: 

I’ = J’ + u(J’, a’) . (5.13) 

-. 

This equation is easily solved by Newton’s method. Since J’ is typically very close 

to J, a Newton iteration beginning with J as zeroth iterate converges quickly. In 

L -- fact, the first iterate is an adequate solution for much of the work in Section 6; it 

is given by 

~. J’ x J + [l + UJ(J, @‘)]-‘[I’ - J - u(J, ia’)] . (5.14) 

Here uJ may be computed analytically by differentiating the spline functions that 

express the J dependence of u. Thus, we have all the ingredients to evaluate n/ 

through formula (2.29). 
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6. LONG-TERM BOUNDS FOR A REGION 

IN WHICH ALL RESONANCES ARE WEAK 

We illustrate our method on a problem of basic interest in accelerator theory, 

the so-called betatron motion in a cyclic accelerator or storage ring. It consists of 

oscillations in two degrees of freedom transverse to the direction of the beam. The 

coordinates xi, i = 1,2 are transverse displacements from a closed reference orbit 

of circumference 27rR. The corresponding canonical momenta are pi = dxi/ds, 

where s = R6’ measures arc length along the reference orbit and serves both as 

-. 

- the independent variable of Hamilton’s equations and as a coordinate to specify . 

the longitudinal location of the particle. The motion is essentially equivalent to 

perturbed harmonic motion, with the nonlinear perturbation arising from sextupole 

magnets that are introduced to compensate the dependence of the focusing system 

on the longitudinal momentum. The field of a sextupole is concentrated in a small 

region of s, and gives a term in the perturbation V proportional to XT - 321x;. 

Thus, the contribution of a single sextupole to the evolution in s resembles a four- 

dimensional quadratic map. Owing to the s-dependence of the sextupole fields, 

the Hamiltonian depends periodically on s, and the system effectively has a 5- 

dimensional phase space (23 degrees of freedom). 

We choose a relatively simple accelerator model, containing only four sex- 

tupoles, which allows us to make rather extensive numerical experiments at low 

cost. The example corresponds to one cell of the lattice (configuration of magnets) 

of a forthcoming electron storage ring, the Berkeley Advanced Light Source (ALS). 

Our model is not intended as a good approximation to the actual machine, since 

the full lattice has 12 cells and additional complications that we do not account 

for; also, we neglect synchrotron oscillations, which have an important effect on 
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long-term behavior. Nevertheless, the example is of real practical interest in that it 

involves realistic parameters leading to strong excitation of nonlinear resonances of 

various orders, a matter of concern in most accelerators. In particular, it includes 

resonance phenomena similar to those induced by high-order magnetic multipoles 

associated with superconducting magnets in large hadron colliders. Thinking of 

our example as being relevant to hadron machines, we try to predict stability for 

lo8 turns. Large-amplitude stability is required for far fewer turns in electron ma- 

chines (say 104), owing to damping of oscillations by synchrotron radiation. 

- . For a fully realistic treatment of accelerators it will be necessary to include an 

additional degree of freedom for synchrotron motion, which is to say oscillations 

in energy with frequency much less than the betatron frequencies. There is rea- 

son to believe that this can be done after further work, but for the present it is 

more important to evaluate and understand the method in the simplest non-trivial 
-. 

context. In formal aspects the method is the same in any dimension. 

The Hamiltonian and accelerator parameters for our model are given in Ap- 

L -- pendix A. For the present discussion the reader only has to know that this Hamil- 

tonian defines the time evolution map M of Eq. (2.11) via numerical integration 

of Hamiltonian’s equations. The integration is done by the fourth order explicit 

symplectic algorithm of Ref. 27, with one symplectic integration step per sextupole 

magnet. Increasing the accuracy by using two steps per magnet has no appreciable 

effect. 

The first step of the computation is to determine a set of approximately in- 

variant tori by the method of Section 4. We work in a rectangular region R of J 

space as follows: 
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2.51 . lo-% 5 Jl 5 2.82.10-% 

1.34 . 10%~ 5 J2 5 1.64. lo-“m 
(6.1) 

The action J is defined so as to have the dimension of length, and is measured in 

meters. It is the usual action divided by the longitudinal beam momentum. The 

region R is a domain of rather strong nonlinearity. This is clear from Figures 5 and 

6, which show sets of points (I, 0) for a J in this region. We compute tori at 25 

points in the region (6.1). The points are those marked with an asterisk in Figure 

7. They lie close to the points of a 5 x 5 Cartesian grid. 

The points do not follow a Cartesian grid exactly, and we cannot make them 

do so, since the J of a chosen grid point may correspond to a resonance of sufficient 

width to preclude construction of a “good” torus. A good torus is defined loosely 

as one that is invariant under the map M to a standard of accuracy chosen for 

the problem at hand. For instance, the 25 good tori for the points marked in Fig- 

ure 7 are all invariant to 2 parts in lo6 or better. We decided on this standard of 

accuracy by experimenting with the number of Fourier modes in the torus repre- 

sentation (4.2). The standard adopted is roughly the best that could be achieved 

at reasonable cost. It is obtained by including all Fourier modes up to the 20th, 

IrnlI, 14 5 M  =20 * (6.2) 

Increasing the maximum mode number M to 30 gives little improvement at high 

cost, whereas decreasing it to 10 degrades the accuracy by a factor of 10 or more. 

(Actually, a computation with M = 10 already gives bounds of significant magni- 

tude, and is a great deal cheaper). 

As was explained in Section 5, the initial actions I, defined in (5.3) are the 

primary inputs to the program that finds tori, not the desired values of J. Moreover, 
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the program may fail at a particular I,,, owing to the presence of a resonance. Since 

resonances are found fairly often, the computer program is arranged so that after 

a failure it automatically shifts the value of I, by a small amount and tries again. 

Failure is declared when a full set of orbit points close to the @ mesh points is 

- not obtained in a specified number of turns Nt; i.e., when there are not enough 

points Xi to satisfy (4.14) f or all j;. We typically choose Nt = 10000 for r; = 0.5. 

In region (6.1) th e required shifts AI, to overcome failure are quite small, as can 

be seen from Figure 5. We tried to put the points on a regular Cartesian grid, 

_ and succeeded quite well except for the point near the intersection of six resonance 

lines at the right of the figure. 

To-find the required values of I, to produce desired J values, up to small 

shifts, we exploit the approximately linear relation between I,, and J. We run the 

torus fitting program for a few values of I, near the region of interest, and use 

the resulting values of J to make a least-squares fit to the coefficients in a linear 

formula giving I, as a function of J. This calculation can be done at low cost, since 

I -- only a few Fourier modes are needed to determine J with adequate accuracy. 

Having determined tori on a (slightly irregular) mesh in J space, we follow the 

interpolation methods of Section 5 to define the canonical transformation for all J 

in the region R. We can then find the tune v(J) by the method of Eq. (2.27), and 

the inverse function J(Y) by the interpolation technique described near the end 

of Section 5. The function Y(J) is locally nearly linear, so that the boundary of 

the rectangle s2 is mapped by Y(J) into a figure Z that is nearly a parallelogram, 

as shown in Figure 8. Our program automatically finds all resonant tune lines, 
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up to a certain order, that pass through Z. The resonant tune lines are given by 

the equations 

ml4 + m2v2 = P , 

ImlI, 177221 5 &f , 
(6.3) 

where m; and p are integers. These resonance lines are mapped into the J plane 

by applying the spline representation of J(Y). F’g 1 ure 7 shows the resulting lines in 

the J-plane; all resonances in 0 with ]m;] < 20 are plotted, along with their mode 

numbers [ml, m2]. Figure 9 shows a similar plot, computed less accurately, for a 

_ larger region of the J-plane. Here some curvature of the resonance lines is visible. 

Figure 10 is for the same large region, but with mode numbers restricted to ]mi] 5 

10. 

The computed lines in the J-plane serve to locate the resonances accurately, 

even in the case of very narrow resonances of high order. To test accuracy of a 

line, we track an orbit with initial condition on that line, and plot the values of 

the original angle variables (@I, @ ) t 2 a each turn. In Figure 11 we show the result 

for the [17, 161 resonance of Figure 7. The points apparently lie on curves, having 

17 intersections with the @r axis and 16 with the a:! axis, as predicted. The 

corresponding curves for the new angles, (81,82), would be nearly straight lines. 

We can now proceed to the main problem in finding long-term bounds, which 

is to estimate the change in J on an orbit of No turns, for any initial condition 

in R. We must investigate J’ - J, where (J’, a’) = n/(J, a), for all J E R and 

all a. The map n/ is obtained from the time evolution map M of the original 

variables, by using the change of variable U and its inverse, in accord with Figure 1 

and Eq. (2.29). To evaluate US1 we use the lowest order Newton method (5.14), 

after verifying that higher order Newton iterates would produce no change in our 
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-. 
conclusions. (If we had to deal with a high power of N, more accuracy might be 

needed, but all we need is a rough value for the first power). 

To evaluate U and U-l we must sum the Fourier series for u and UJ. To 

minimize the cost of summations we of course use the reality property ti(m, J) = 

;I(-m, J)* to eliminate almost half of the terms in the series. Furthermore, we ex- 

ploit the fact that many of the Fourier amplitudes are negligible. We throw away 

all amplitudes that are smaller in magnitude than a fraction E of the largest am- 

plitude ti(m, Ji), m f 0, with a typical choice for e being 10m7. This eliminates at 

_ least two thirds of the modes, without affecting the quality of the canonical trans- 

formation. This step is not equivalent to using a lower maximum mode number; 

some high modes are important. 

-. 

A further reduction, which saves storage if not computation time, is achieved 

by noting that the two components 0f.u should both come from derivatives of the 

same generating function G, according to (2.14). Thus, 

62 (ml, m2, J> = zfil (mvu, J>, ml # 0 - 
L -- 

(6.4) 

Although this condition was not built into our determination of u, it is nevertheless 

well satisfied. Of all the components of &2, we can discard all but &(O, m2, J), m:! > 

0, using 61 and the reality condition to find the others. It is interesting that the 

torus fitting method of Section 4 fails if one attempts to introduce the constraints 

(6.4) at the start. This circumstance can be understood analytically by analyzing 

Eq. (4.9) under the constraint. 

The cost of evaluating the Fourier coefficients by spline interpolation goes up 

sharply with the number of mesh points Ji. For that reason we avoid the full 
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5 x 5 mesh for extensive calculations, and instead do calculations in each of four 

overlapping squares, each based on the 3 x 3 mesh in one corner of 52. The squares 

are denoted by R;,i = 1,.-e, 4; each one extends 5% in each direction beyond the 

square formed by mesh points. They are numbered as follows: Rr, lower left; &, 

lower right; R 3; upper left; fib; upper right. On a 3 x 3 mesh the spline scheme 

reduces to interpolation by single quadratic polynomials. We notice no decrease in 

accuracy from using the quadratic rather than piece-wise cubic scheme. 

For increments of J in No turns we adopt the notation 

J’ - J = ;I) (J, @, No) (6.5) 

-. To get an impression of the problems involved in bounding 27, we first plot D as 

a function of one of its four arguments, with the others held fixed. In Figure 12 

we show a result for 9 dependence, plotting Dr(J, a, 1) versus @r for a2 = 0 and 
: -- 

J = (2.55,1.525). lo- 6m. In Figure 13 we show J dependence, plotting Z&(J, a, 1) 

versus J1 at J2 = 1.525 . 10e6m with Qi = 0. Doing a number of such plots, for 

various values of No, we encounter a wide variety of functional forms, but in every 

case there are many oscillations in the 4[, dependence, but only one or two in the J 

dependence (J being restricted to one of the four squares). Thus, it appears that 

we may need to sample only a small number of J values, but many Q values at 

each J. We therefore start by trying to get information of a statistical sort on the 

required number of @ samples at fixed J. At fixed J we evaluate 27 on random 

sequences of points in the ip plane. 
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ns np < dl > < ch > (~1 ff2 min(dl) max(di) min (d2) max (d2) 

200 50 7.1.10-13 1.8.10-12 9.7.10--l4 1.2.10-12 5.1.10-13 9.7.10-13 5.6.10-13 

100 100 7.5.10-13 1.9.10-12 9.0.10-14 1.7.10-13 5.8e10-13 9.7e10-13 1.4e10-12 2.3.10-12 

10 1000 8.9.10-13 2.2.10-12 5.7e10-14 1.1.10-13 8.2.10-i3 1.0.10-12 1.9 *lo-l2 2.2.10-12 1 2.3.10-12 

Table 1: Statistical data on the quantities dk defined in Eq. (6.6), 
for N, = 10. The ensemble average < dk >, standard deviation Q, and 
minima and maxima refer to an ensemble of ns values of dk, each member 
of the ensemble coming from a maximum over np values of @ at J = (2.55, 
1.525) .10m6 m. 

In Table 1 we show results for n, different sequences of np points each, for 

various choices of n, and np at N, = 10. For sequence number j we find the 

maximum, 

-. 
max d(j) = 

k l<i<n, 
J&j) N a ’ 0 ) k=1,2 ) (6.6) 

(A and compute the mean, minimum, maximum, and standard deviation of d, with 

respect to j. There is a total of 10000 samples for each line of the table, different 

samples from one line to the next. It appears that 10000 samples are enough to 

determine the maximum of the function to a few percent. That is indicated by 

one- dimensjonal plots such as Figure 10, and also by the fact that three different 

maxima over 10000 are almost the same. Fortunately, we also see that 100 samples 

are enough to get an estimate which is adequate for our purposes. For sequences 

of length np = 100, the standard deviation of d!) over 100 sequences is about 10% 

Cd a of the mean, and the maximum d, IS only about 60% larger than the minimum 
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dy). Very similar results were obtained at several other values of J and No. The 

picture that emerges may be described as rapid oscillatory behavior in !D that is 

statistically the same at all J and No. 

It now seems reasonable to explore the J dependence of 

dk (J) = max IQ(J,+,i,No)I , k = 1,2 , l<i<np (6.7) 

taking at each J a different random sequence { api} of small fixed length, say np = 

100. The dk(J) are expected to be smallest at the mesh points {J;} corresponding 

to the original fitted tori. We might look for larger values at the following points 

in the J plane: 

(i) Points near resonances, especially points where resonance lines cross. 

(G) Points a maximum distance from mesh points, where there could be interpo- 

lation error. - 

(G) Points near the boundary of R, where there could be interpolation error and 

also effects of resonances lying outside R but close enough to be felt. 

In practice we check such points, but also do random sampling in both J and 

@ at once. In choosing the number of samples for the latter we are informed by the 

above discussion of @ sampling. In a region where the J variation of 27 is expected 

to be small (expected, for example, on the basis of one-dimensional plots such as 

Figure 11) the number of samples in (J, a) p s ace should be about the same as the 

number of @ samples at fixed J, about 100 in the present example. Since we think 

that D has small variation over one cell of our J mesh, this means 1600 points 

for the 16-cell mesh of Figure 5. This guess is confirmed by a statistical study of 

sampling in J and cf, at once, for small No. With np samples of (J, a) in a 4-cell 
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region, we found that the standard deviations of maxima over n, sequences were 
-. 10 to 15% of mean values, for No = l,lO, 100, with np = 400 and n, = 15. 

For a first exploration we have found sampling in J and !B at once to be the 

most workable scheme. It is aided by a simple graphical device: we store all values 

of /Z&I, and then plot in the (Jl, J2) plane all J such that IDk,l is larger than half 

its maximum value. This sometimes reveals small domains of large [Z&l that may 

often be eliminated by introducing more mesh points. In the region R considered 

here, no additional mesh points were needed; the values of IZ&l larger than half- 

maximum are distributed rather uniformly over the region. In particular, values on 

resonances lines and at the point where six resonances cross were not larger than 

average. Furthermore, the values on the original fitted tori were not much smaller 

than average. Apparently, the resonances in this region are so narrow that motion 

on a resonance closely follows a neighboring torus. 
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No maxl~l I maxID I < p11 > 

1 9.9.10-l3 1.9.10-l2 2.4.10-13 

10 1.5*10-12 1.7*10--l2 2.7.10-13 

100 1.2*10-l2 2.5.10-12 3.1*10-l3 

1000 1.5*10-12 2.7.10-12 3.3*10-l3 

10000 1.9*10-l2 2.7.10-12 4.0*10-l3 

< Vl > 

3.8.10-15 

2.1.10-l5 

-2.7.10-14 

1.3 .1o-l4 

1.0.10-14 

<2)2 > 

-6.4.10-15 

3.8*10-14 

-2.0*10-l4 

2.7 *lo-l4 

3.9*10-l4 

Table 2: Data on J’ - J = D(J, a, No), the change of J in No turns, 
for 400 random samples of (J, a) with J in subregion 04. The brackets 
< > indicate ensemble averages. 

In Table 2 we show results from 400 samples of (J, ‘P) in a;2q, for No ranging 

from 1 to 10000. Similar results were obtained in the other three 0;. In addition 

to the ensemble maxima of [Z&l, we also give the ensemble average < lZ7k I > of 

the absolute values, and the ensemble average < Z& > including sign. The results 

are remarkably independent of NO. A trajectory starting on a torus is as close to 

that torus after 10000 turns as it is after 1 turn. Furthermore, averages including 

sign are very small, of order 10-14m, which indicates that the orbit makes small 

oscillations about the torus, spending almost as much time on one side as on the 

other. In some average sense, the tori are invariant to much greater precision than 

the maximum deviations would indicate. 

In Table 3 we show data on 27 for NO = 10000 for each of the four squares, 

again for 400 samples of (J, @) in each square. Our statistical study of sampling 

for NO = 1, 10, 100 indicates that the values of maxJZ)k) should be increased by 
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about 30% to estimate the true maxima of the functions. It therefore seems safe to 

-. increase them by SO?7 o, which leads to the following estimates of maxima over R: 

- _ . 

- 

: -- 

(SJ1, SJ2) = (2.8,4.0) - lo-r2m, 

6J, = J ;“E R 1Dk (J, a, 10000) I 9 

Region maxPA I maxID < p11> < ID21 > < 2)l > -CD, > 

01 1.5.10-I2 2.1.10-12 3.1*10-13 4.3.Wl3 1.5.10-14 -2.3.10-14 

a2 l.2.10-12 2.6.10-I2 3.5.10-l3 6.3.10-13 -2.2.10-15 1.0.10-14 

Q3 1.4.10-I2 1.6.10-12 3.1*10-l3 4.4.10-l3 -1.2.10-14 -3.4.10-14 

Q4 1.g.1()-12 2.7.10-12 4.0e10-13 6.5.10-13 l.0.10-14 3.9.10-l4 

Table 3: Data on J’ -J = 27(J, a’, lOOOO), the change in J over 10000 
turns, for 400 random samples of (J, a) in each subregion Ri. The brackets 
< > indicate ensemble averages. 

We can now follow the argument of Section 3 to get a long-term bound on the 

motion. To get a bound for lo8 turns from our results for lo4 turns, we take a 

rectangular region 00 c R such that AJ;/&J; = 104, where the AJi are the widths 

of the strips forming the annulus between no and R. Thus, Ro is the region 

2.54 e 10e6m < J1 < 2.79 . 10F6m , 

1.38 . 10m6m < J2 < 1.60 . 10m6m . 
(6.9) 

Any trajectory beginning in Ro will stay within the boundaries of the bigger region 

0, defined in (6.1), for at least lo8 turns. 
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7. VARIATION OF J NEAR A STRONG RESONANCE 

We examined a number of regions in phase space that were similar to the region 

- studied in Section 6 with respect to size and degree of nonlinearity. In most regions 

the variations of J were similar in magnitude to those found above, but in some 

cases much larger variations were found, due to the presence of relatively broad 

resonances. 

As an example we investigate a region 0,: 

2.235 . 10e6m < J1 < 2.456 e 10m6m , 
- _ . 

1.277. 10m6m < J2 < 1.303. 10a6m . 
V-4 

The [5,6] resonance appearing in Figure 10 passes through the middle of !-&.. In 

a broad band about the [5,6] 1 ine, the torus fitting program fails. It succeeds 

easily, however, if the mesh points {J;} are placed at a distance of 5.10m8m from 

- the line. Keeping mesh points at about that distance, we set up a 4 x 3 mesh 

which provides a definition of u(J, a) throughout 0,. This definition is somewhat 

arbitrary, depending strongly on the choice of mesh points. If we take the mesh 

points as close to the resonance as we possibly can, then the J dependence of 

u(J, S) does not look sensible, and varies erratically with the choice of mesh points. 

This is comprehensible by analogy with a system in one lower dimension (l-l/2 

degrees of freedom). If we tried to interpolate two families of invariant curves 

I( J, 4), one on either side of a broad island chain, we would get nonsense if those 

curves were too close to the separatrix. The two sides of the separatrix are out 

of phase, one having a maximum and the other a minimum at a given point, and 

they have a cusp where they touch. Our functions have too simple a J dependence 

to follow first one half of the separatrix, then have some reasonable form inside 

42 



the islands, then follow the other half of the separatrix, as J is varied across the 

resonance value. 

Having made a definite choice of the change of variable, I = J + u(J, @), 

however arbitrary, it is interesting to see how J evolves in time. In the work of the 

preceeding section, J took small, seemingly random steps of order lo-l2 m. By 

contrast, near the [5,6] resonance it follows a straight line segment with slope 6/5 

in the (Jl, J2) plane, with excursions of up to 10m8m, as shown in Figure 14. This 

suggests that the motion of J follows the isolated resonance model. 

The isolated resonance model is described by the Hamiltonian 

H, = A(J) + B(J) cos (me !l? - no + C (J)) , 

which depends on only one angular coordinate, 

me*-n0. - 

It is useful to make a canonical transformation, 

Ii’1 = ll;ll -(mlJl +wJz) , 

This arises from the generator 

h -mlJ2) , 
1112 

F2(K,XP) =t.K . 
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The new Hamiltonian is the same as (7.2), except for addition of the term aF2/t% = 

-_. 
-nIG/llmll. S ince H, is independent of &, the conjugate action A’2 is constant. 

With I(2 constant the new Hamiltonian depends only on Ii’1 and (1, and is therefore 

itself constant. 

If we identify J and \E of (7.2) with our new variables defined through the 

complete canonical transformation (2.26), th en we expect J to move on a straight 

line segment, I(2 = constant, as in Figure 14. In general such motion could be 

unstable, but in the present case it is stable over a long time and the motion of Kr 
.- 

_ resembles that of a physical pendulum. To see a phase portrait of the pendulum 

motion, we plot K1 = m . J/II m /I versus m . XP (mod 27r), taking values of (J, @) 

on our usual surface of section from the No turn map. Results are shown in Figure 

15. We seem to have cleanly defined curves, in spite of the somewhat arbitrary 

choice of u(J, a). 

- The variable K2, whether plotted as a function of & or plotted versus turn 

number, shows random variation with a scatter of about lo-“m. Thus the vari- 

ation of J in the direction of the vector (-m2, ml) is small. The variation in the 

perpendicular direction (ml, m2) is large but oscillatory. The question arises as 

to whether there is any long-term drift of the center of oscillation in the (ml, ma) 

direction. Judging from a few thousand turns, the rotation curves of Kr in Fig- 

ure 15 (the curves that correspond to the pendulum swinging all the way around) 

are defined to about 10-l’ m; one sees that much scatter in a magnified graphi- 

cal display. Thus, drift of the center of oscillation in either direction, (-m2, ml) 

or (ml,ma), seems to be limited to about 10-l’ m over NO turns, with No a few 

thousand. This is not much bigger than the drift of J itself observed in the region 

of Section 6. 
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To handle this problem more formally, one should treat the rotation curves of 

-. Kr in the same way that we treated the tori followed by I. Using a one-dimensional 

version of the torus fitting program, one should construct a few curves fitted to data 

on Kr, and interpolate those curves to get a continuous family of curves labeled by 

3 =< Kr >, the average over (1. As in our previous work, 3 would be regarded 

as a new, nearly constant variable, and examination of its variation would lead to 

lim its on the oscillation of Kr, just as we previously found lim its on the oscillation 

of I by controlling the variation of J. 

. 
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8. CONCLUSIONS AND OUTLOOK 

We have demonstrated a technique for setting bounds on nonlinear Hamilto- 

nian motion for a finite but very long time. We gave a nontrivial example in 2 l/2 

degrees of freedom, an example in which the existence of invariant tori does not 

guarantee stability for infinite time. Stability for a finite time can be ensured, in 

spite of the existence of nonlinear resonances, chaotic motion, and Arnol’d Diffu- 

sion. 

Finite-time bounds follow from the existence of a continuous family of approx- 

imate invariant tori. We have described an efficient numerical method for the 

construction of such a family, which provides a canonical transformation to new 

action-angle variables such that the action is nearly constant. The transforma- 

tion is mathematically well-defined, despite its numerical provenance. Conclusions 

- about stability would be rigorous if one could find a bound on the variation of 

the new action J over No turns. The variation 27(J, ao, No) of J from any initial 

condition (J, +) can be computed with adequate accuracy. The only serious uncer- 

tainty arises in bounding the maximum of the variation over all initial conditions in 

an open region. We have constructed a tentative bound, that we find convincing, 

by a statistical study of randomly chosen initial conditions. We have also tested 

particular initial conditions, for instance points on resonances, that might be ex- 

pected to produce large variations. Of course, the uncertainty can be reduced by 

expending more computer time, but it may also be possible to do sampling in more 

informative ways. For instance, it may be interesting to make a Fourier analysis of 

the @ dependence of 2), and try to correlate behavior of Fourier amplitudes with 

resonances. One might also try to estimate a bound on the derivative of D with 
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respect to J, again looking for correlations of large derivatives with resonances. 

. . 
Further work should explore these possibilities, among others. 

A large part of the power of the present analysis derives from studying the 

variation of J over a large number No of turns. By carefully integrating the equa- 

tions of motion for No turns, we account for cancellations that occur in typical 

stable motion and prevent accrual of large increments of J. On the other hand, 

No need not be so large as to create problems of round-off error. Rounding error 

is firmly under control in this approach, even when we seek bounds for the very 

long storage times typical of proton storage rings. _ 

One is strongly motivated to extend the calculations to 3 l/2 degrees of free- 

dom, since motion in a third coordinate associated with oscillations in energy (syn- 

chrotron oscillations) is known to have an important influence in long-term sta- 

bility of accelerators. It is also interesting to study the beam-beam interaction in 

colliding-beam machines, which may induce a somewhat different pattern of non- 

linear resonances. Both of these problems are being pursued. 

Finally, we express the hope that our experience in efficient treatment of sev- 

eral degrees of freedom may find application in other fields, such as semi-classical 

quantum theory and plasma theory. Since our scheme for approximating invariant 

tori requires only the Poincare map of the system, it can be applied directly to 

almost any problem in a few degrees of freedom. 
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APPENDIX A 

. . 
Our model for motion transverse to the beam in an accelerator is based on a 

Hamiltonian of the form1’2’3 

H(I,W) = n(s) .I+ v(I,@,s) , (A4 

where the independent variable s is arc length along a closed reference orbit, and 

w> = P/P1 (4, warn is formed from the Courant-Snyder functions p;(s) 

which characterize the linear features of the magnet lattice. The nonlinear pertur- 

- _ bation V comes from sextupole magnets, and has the form 

v (I, 9, s) = y (XT - 3.24 ) (A-2) 

where 21 and x2 are horizontal and vertical displacements of the particle from 

the reference orbit. These displacements are given in terms of the action-angle 
- 

coordinates by the equation 

2; = [21;@i(S)]‘/2 COS@i , i = 1,2 . (A4 
L .- 

The function S(s) is zero except over the extent of a sextupole magnet where it is 

constant, with the value S; at the i-th magnet. Both S(s) and p;(s) are periodic 

with period C, the length of the reference orbit. 

The Hamiltonian may be put into the form (2.1) by a canonical transform 

designed to remove the s-dependence of the linear term. The generator of the 

transformation (I, a) + (I’, W) is 

F2 (I’,@,s) = I’. (A-4) 
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where 27rR = C and 

-. 

u. = & ji(u)du . 

0 

(A.5) 

This yields 

2 I=% = I’ ) 

-= @ + ;uo - ’ fl(u)du . 
J 
0 

A.6 

WV 

H’zH,z 3 
= ++v 

(A4 
I’$+ 

J 
fl(u)du - vo; . 

0 

The new Hamiltonian (A.8) h as the form (2.1), after a change of independent 

variable s -+ 4 = s/R. The linear term now represents harmonic motion. 

Let us define 
s 
P 

x(4 = J fwdu 7 (A-9) 
0 

ldP(4 -- 
&=-2 ds 

(A.lO) 

Since /3 varies linearly over the extent of a sextupole magnet, we can compute x 

for use in (A.8) f i we specify only the initial values of p, (I! , and x at one edge of 

the magnet. 

The parameters for the model that we study, one cell of an early design for 

the lattice of the Advanced Light Source at Lawrence Berkeley Laboratory, are 

given in Table IV. There are four sextupoles, each with leading edge located at s, 
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strength S, and length As. The values of /~,QL, and x are for the leading edge. 

-. The units are meters for s and 8, (meters) -3 for S. The total length of the cell is 

16.4 m, and the unperturbed tunes are 

VOl = 1.189735, vo2 = 0.681577 . (A.ll) 

s (Leading Edge) Pl,2 q2 x1,2 S 

5.775 1.4724 
I 

-1.7791 
I 

2.4799 -88.09 

6.875 

9.325 3.1367 
I 

-1.9628 
I 

4.5996 115.615 

10.425 2.2972 

Table IV: Berkeley ALS CELL. 

10.6957 1 8.4007 1 A658 

3.9837 I 2.2722 I 2.8191 

1.5798 .4167 1.2217 

1.4428 I -.2681 2.9279 

7.6031 

115.615 

-88.09 

As 

.20 

.20 

.20 

.20 
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z .- FIGURE CAPTIONS 

1. A commutative diagram showing how the maps JV and 0 are induced by the 

original map M and changes of variable. The transformations U and V are 

given in explicit form through derivatives of the generator G. 

2. A region L that forms a barrier to escape from Lo for at least N turns. 

3. Values of Q = (@I, ax) at the surface of section 19 = 0 on an apparent 

invariant torus. 

4. Values of * = (@I, @2) at th e surface of section 0 = 0 on a resonant orbit. 

5. Three-dimensional plot of points (11, @I, @2) at the surface of section 8 = 0 

on an apparent invariant torus. Example of Section 6 for J in the region 

specified in Eq.(6.1). 

6. Three-dimensional plot of points (12, @I, a~) at the surface of section 0 = 0 

- on an apparent invariant torus. Example of Section 6 for J in the region 

specified in Eq.(6.1). 

7. Resonant tune lines mapped into J space. All resonances in the region R 

with ]m;] 5 20 are plotted. The points marked with an asterisk are the mesh 

points {Ji} corresponding to tori fitted to orbits. 

8. The image in tune space of a rectangle in action space. 

9. All resonances with ]mij 5 20 in a large region of J space. 

10. All resonances with ]m;] 5 10 in a large region of J space. 

11. A test of accuracy of an high-order resonance line in J space. Following an 

orbit with initial condition on the [17, 161 line of Figure 7, we plot [@1,@2] 

on a surface of section and find evidence of the expected resonance. 
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12. A plot of J; - J1 = D1(J, a’, 1) versus @I at Q = 0 and J = (2.55,1.525) . 

10m6m. 

_ 13. A plot of J; - J1 = Dr(J, $1) versus Jr at @ = 0 and J2 = 1.525 . 10m6m. 

14. Increments of J near a strong [5,6] resonance. The graph shows results from 

iteration of the 100 turn map, starting at (Jo, aa), for fixed Jo and three 

different @o. The points plotted are the increments dJ = J - Jo. 

15. Phase portrait of the “pendulum” variables, m . J/llmll, m a *(mod 27r), 

near the [5, 61 resonance. 
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