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1. Introduction

The continuum limit of matrix models, achieved by taking N to infinity and
the potential to criticality, provides both a simple formulation of two dimensional
gravity and a laboratory for studying noncritical strings. This method was used
to study 2-d gravity in its pure form or with worldsheet matter, on fixed-genus

P-31surfaces . The results agree with continuum calculations, performed in the

framework of Liouville theory[4’51  [‘I Moreover, recently some interesting results on-- _
nonperturbative (all-genus) strings in the discrete models were obtained, by em-
ploying the double scaling limit[7-131

Of the matrix models for which one can get exact results, the D = 1 model is

the most promising for the purposes of string theory, since its worldsheet matter
consists of a (single) bosonic field. This field may be interpreted as an embedding

dimension1141  . One of the basic results in the genus zero D = 1 matrix model is
the two point function. In-string terminology, it is the propagator of the tachyon
in the single embedding dimension. Kostov[3]  has obtained an expression for the

two point function as an infinite sum, by performing exactly the N t 00 limit via

WKB techniques. His subsequent evaluation of this sum near criticality, however,
lacked precision. In this paper, we complete his treatment rigorously via a Poisson

resummation and a careful analysis of the g + gC limit. The result is that the g-

nonanalytic part of his propagator is indeed dominant, but only for momentum P
smaller (in magnitude) than a cutoff. The cutoff depends on the (convex) curvature
of the critical potential at its top, and is hence non-universal. We roughly interpret
this limitation as follows: when the two points are close enough in target space,
the propagator is sensitive to the discreteness of the worldsheet - and thus to the

shape of the potential. We also apply the WKB and resummation techniques to

the three point function, and obtain its critical behavior in the regime of external
momenta smaller than the cutoff.

This paper is organized as follows. In section 2 we review the D = 1 matrix

model. In section 3 we briefly describe Kostov’s derivation of the two-point func-
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tion, represented as an infinite sum over fermion- hole pairs in a fermi sea of WKB
states, and find its critical behavior using Poisson resummation. In section 4 we
extend these techniques to find the three-point function near criticality. Finally,
in section 5 we restate our conclusions and discuss further work to be done along
these lines.

2. Review of Matrix Model

Let us begin by reviewing the D = 1 matrix model*. C$ is a hermitian N by
N matrix, a/@ the matrix a/&&j, and V(X) a potential; viewing the embedding

dimension as time t, the quantum hamiltonian operator in the configuration basis
is

H = -itr[(&)2] + NtrV(qS/fi). (1)

The precise shape of V should not matter in the continuum limit; the important
feature of V is that it should be possible to tune it smoothly between the free_

V(4) = $ and some critical potential, V,(4), to e c aracterized below. We shallb h
assume most of the time the quartic form with one coupling,

-

1 2V(X) = 5x +9x4 (2)

Although the entire treatment generalizes immediately to a large class of potentials.
For simplicity, we shall always take V to be symmetric: V(X) = V( -A). We also
define V(0) = 0.

The matrix C$ is decomposed as U~DU-I, where the ‘angular’ variable U is a
unitary matrix and $D the diagonal matrix with elements JNXi, 1 5 i 2 N. As

long as one computes only correlators of single-time traces, the angular variables
are not excited, and hence may be ignored. Let no(x) be the symmetric wave
function of the ground state. The ‘radial’ (i.e. {Xi}) part of the kinetic operator

A- We will consider  here  an uncqmpactified  embedding  dimension.
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in (1) is not separable in the X variables, but becomes so when the wave function
is redefined as

xo{V = Afio{V, (3)

with A the Vandermonde determinant of {Xi}. Now x0 is totally antisymmetric,

and the ‘radial’ hamiltonian in the new picture is

Hf = 5 Nh(X;),
i=l

l 2 82W) = - ztifdx2 + V(X), lif = ; I
(4)

We shall denote eigenvalues of the one-fermion hamiltonian by the letter 6. The
internal product in the new hilbert space is the usual euclidean one:

(XIX’> = J X*{xllX’{x~  n dXi
i

(34

This picture is also adequate to describe all the purely radial excitations xa, and

corresponds to N identical, noninteracting fermions in a potential V (hence the
subscript ‘f’ of Hf). Furthermore, the effective tLf in (4) is $, so the large-N limit

can be treated via WKB methods.

In this limit, the connected Feynman graphs appearing in the perturbative g
expansion of the ground state energy, correspond to genus-zero random surfaces.
More precisely, defining the ‘free energy’ of the matrix model as

one has in the large-time limit:

FN = hTlirn {&In
. J

ezs-To/2To’2 yd4])
O-‘W

(5)

(6)

Where L is the lagrangian corresponding to eq. (1). The connected graphs appear-
ing in the g expansion of (6) are weighted by ( -g)A,  where A is the vertex number’.

t A becomes  the discrete surface-area  in the dual graph.
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The feature which distinguishes the D = 1 model from the D = 0 one is that the
propagators in these graphs are not just a constant, but are rather proportional
to e-ilt-2’l.  If, as universality arguments suggest, this gives the same continuum

limit as a gaussian propagator would, then the D = 1 matrix model can be said
to be a discretization of 2-d Liouville quantum gravity with target space RI. The

free energy F = limN,, FN then becomes the partition sum over genus-zero ran-

dom surfaces. The continuum limit is achieved by tuning g (or more generally the

function V(X)) from g = 0 to a value where F is singular. Averages of geometrical

attributes also become singular, which is what one expects of a continuum limit.

The N independent fermions fill the N lowest-lying levels of the potential V. In

the classical N -+ co limit, the levels form a continuum. The highest filled level of

this fermi sea is cF(g), the fermi level, and is determined by the condition that the

total number of fermions be N. One can continue physical quantities to negative

g’; g = gc is the value for which cF(g) = V,,,, i.e. the fermi sea is on the verge

of spilling over (see Fig. 1). We shall denote EF as E except where confusion might

arise. X0 = X0(c)  shall denote the turning point: V(fXo) = E. ’
.w.

The Bohr-Sommerfeld semiclassical quantization condition reads

x0 (El
Ai .I p&W} = ; + o(h) V-4

--X0(E)

where A is a difference between two consecutive levels, E is the energy of an arbi-

trary level, and

Jo> = lm = dG--m (7.2)

is the classical momentum. Since N levels are filled, summing (7.1) up to the fermi

$ although the quantum  mechanical  system is not defined  there since V(X) is unbounded  from
below.
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level yields the number-of-particles condition’:

X0(m)
J p,,(X)dX = 5.
0

(8)

This condition determines the function Ed = eF(g).

The semiclassical density of states in phase space is given by the measure
d$A-/(2dif), so the free energy is

FE; J $$(; + v(ii))t+, - $ - v(x)) = 7’ g ‘i?’ d$($ + v(x))
-X0(6) -P(X)

(9)
where c = EF. Another useful quantity is the classical period of oscillation for a

fermion at the fermi level, and the corresponding frequency: *

, (10)

F(9) and to(g) are singular at the critical point g = gC for which V’(X0) = 0. This

condition, together with V(Xo) = E and (8), determines gC. We denote V(X) =

VZ(X)  and X0 = X, at g = gC. For a general potential, we require that &(A) be

convex at X = X,. Near criticality, we denote the location of the local maximum

of V(x;g) by X,(g); X,(gC) = Xs(gC) = XC. (see Fig. 1). The required critical
behaviors of various quantities are treated in appendix A.

3 There  are corrections  to (8)  for finite N. Whenever we quote exact semiclassical results with
no indication  of k power corrections, the N + co limit is understood.
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3. Two Point Fuction

Following ref. [3], we now consider the euclidean connected two-point function lI :

Gc2)(r) = Jim~(~s]T{tr~q(-ir)tr$q(0)}]~o)C~+
(11)= J@m(XolTie  J+(--i7) 5 A~(0)>lXo)c

i = l j=l
- _

where T here denotes the euclidean time-ordering operation, 1x0) is the ground
state in the fermion picture and q is an arbitrary even, positive integer. The

random surface interpretation of (11) is as a sum over over all surfaces that pass

through the two points 0 and T in euclidean target space.

Gc2) is a connected Green’s function, and so receives contributions only from
intermediate states x # ~0. Further, in the fermionic picture the only excitations
which contribute are those consisting of a single fermion above the sea plus a

single hole in the fermi sea. Expressing the tr@ matrix elements in terms of

single-fermion matrix elements and using WKB wave functions, Kostov obtains,

Gt2+)  = 2 n(fn)2e-nwlrl, 1
n=l I

Here fn is the matrix element of A(J between two WKB levels near the fermi level,

separated by the energy difference $w. A(t) = --x(-t) is the classical trajectory
at the fermi level; thus at t = 0 the fermion is at the bottom of the well, X = 0.
clearly X(t0) = X0. fn vanishes for n odd, so only even n values contribute to Gc2).

7 We generalize slightly; ref.[3]  treats  q = 4. The critical behavior  of correlators  should not,
and does not, depend on q as long as q is held fixed in the continuum  limit (‘microscopic
loop’).
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The euclidean-momentum two point function is the fourier transform of (12):

Gc2)(p) = 7 dTG(2)(+iPT  = (13.1)
-CCl n>O,even

and for n even,

to
f=Jn

-to

to dt
J

GXq(t) cos(n&)

0

(13.2)

Since Gc2) (P) is symmetric in P, we will henceforth assume P > 0.

At this point our treatment diverges from that of Kostov. Our method is
rigorous and is valid for any potential V which satisfies the above conditions.
Upon combining (13.1),(13.2) and employing the symmetry of X’J to extend the
summation to even n values of either sign, we find

G(2)(p) =fJ(f2n)24~2s,nZ2~  p2
n=l w

to to
1

n2
(14) _

=-
W JJ

dtldt2-$Aq(tl)Xq(t2)  2 e2inw(t1-t2)
-to -to 0 -CO n2 + (&)2

which reduces to

to to to
82’(P) = i

J
dtX2q(t) - &

JJ
dtldt2Xq(t,)Xq(t2)S(tl  - t2) (15)

0 -to -to

where a simple application of Poisson’s resummation yields,

S(t) = Fe2iwnt(&)2  ’ = 2 ~e-plt-~le
(16)

-CO n2 + (&)” m=--03

The last expression is a geometric sum:

e-2Pto
S(t) = g{eePlti  + 21 _ e-2Pto coshPt}, ItI 5 2to (17)

The last condition is satisfied, since t = tl - t2 in (15). Equations (14),(15),(17)
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suffice to evaluate G(‘)(P)  *. It is shown in appendix A how to extract the critical
behavior of the t integrals.

The results are as follows. Let PO = dm (eq. (A.12)),  a momentum
scale set by the convex curvature of the critical potential at its maximum. We
distinguish two cases. For P < PO, we obtain (restoring explicitly the g-dependence
of S’(P)),

~‘2’(R9) =21(2)(P;g,) + O(g - gc) + ()((A, - ~o)l+wo)-_ _
4 p  e--2Pto

[f(2)(p)]2
w-4- -

r l- e--2PtO

where f(‘) is the g-independent function

fc2’(P) = Jdtji” - x”(t)] cash Pt
0

(1 w

and x(t) is the c assical trajectory for 6 = tc and g = gc ‘. This integral converges,1

since P < PO and (see eq. (A.13)) X, - x(t) G conste-POt  for Pto >.> 1. ,-

In (Isa), the first term is g independent and hence irrelevant in the continuum
limit. The remaining terms are nonanalytic, and singular at g = gc. Consulting
eqs. (A.12) and (A.16) we see that the last term of (18a) is the dominant one,

since P < PO. Further, when P < Po/(2n + l), n > 0, the first (n + 1) terms in
-2pto

the geometric series re,-2Pto are significant in the continuum limit.

To summarize, for P < PO,

e-2Pto
ec2)(P) e(g independent) - y[f(2)(P)]2 1 _ e-2Pto

=(g independent) - F[f(‘)(P)]‘coth(Pto)
(19)

which agrees with Kostov’s result, and with continuum results [4][5][6].  However,
for P > PO, the dominant term in (18a) (apart from the irrelevant first term) is the

* Notice  that although P is a euclidean  momentum,  the integration  variables tl and t2 are
real embedding  times.

t f(‘) depends  on the details  of the critical potential  through x(t).
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nonanalytic O(g - 9,) term. Thus eq.(19) is invalid for large momentaS . But this
is not a problem since, as pointed out in the introduction, high momenta probe
the discrete nature of the random surface and hence one would not expect the

correspondence with continuum results to hold in this regime.

4. Three Point Function

Next, we proceed to apply the above techniques to compute the genus-zero

connected three-point function. Proper counting of N powers shows that the ap-

propriate quantity is (again we Wick-rotate to euclidean time),

We shall first compute Gt3) for 71 > 72 > 0, and then use symmetries to extend it

to the other regions. Note the complication that the connected matrix element is

of order $, so one must handle the WKB approximation more carefully.

There are two intermediate states in (20); let us call them x1 and ~2. As

before, they must be fermion-hole pairs. There are three types of configurations

that contribute:

I) x1 has a fermion at level p > N (N is the fermi level) and a hole at cy 5 N,

and x2 = x1; II) x1 is the same as in (I) and x2 has the same hole level but a

fermion at y > N, y # ,D; III) x1 is as in (I) and ~2 has a fermion at level /? and a

hole at level y 2 N, y # cr.

$ We have checked this explicitly  in the large  P limit. When both P >> PO and g - ge + 0,
we find G(“)(P)  M C/P” where,  C .1s independent  of P and singular  at g = ge.
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In terms of single-fermion matrix elements and energies, we thus obtain for

7-l > 72 > 0,

G(3)(q,~2,0) =N c c I(alXqI~)12e-r1N(FB-F~)((~IXql~)  - (alXqlcx))
a<N /3>N

+NC c e
-N~l(r,-ra)+N~2(~,-~p)((YI~qIY)(~l~q~~)(~I~qICy)

c&N P,r>N
P#r

In the limit N + oo.

Our first task is to evaluate the N -+ 00 limit fore fixed g. To leading WKB
approximation, the single-fermion wave functions are*

x

(Ala) M d-&e(lili2 cos[N
J

p,,(z)dz + y] (22)
0

in the interior of the classically allowed region p(X) 2 0. The transition region near
the turning points &X0, as well as the classically-forbidden region, contribute to
matrix elements only to order ht. Thus we obtain, for LY - ,8 fixed in the N --+ 03
limit,

where the function ~(a, b) is independent of N. Also, from the Bohr-Sommerfeld
quantization condition, again assuming (Y - p fixed,

N(ea - 9) = (a - P)w( e,:e”)+~~(~--B1ea~e,)+~(~) (23b)

where again ~(a, b) is independent of N.

* With  a particular,  convenient phase choice.
t In addition,  there are O( l/N), corrections to eq. (22)  itself.
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Substituting (23b) into (23a) and using (13b) we obtain,

where p’ is a third N-independent function.

In equation (al), IN - ~1, IN - PI and IN - yl may be treated as being O(1)
i&he N + 00 limit, since the summands are suppressed exponentially as any of
these three integers increases. Thus we may use eqs. (23). For the difference in

the first sum, we find

Similar leading-order cancellations occur between the second and third sums of
(21). The details appear in appendix BS.The final result is (still for 71 > 3-2 > o>._

GC31(7-r,  Q,O) = 2 4wn2e-2nwr1  (fzn)2Efo
n=l

+ 2
m,n=l

4wimn.f2m.f2n  $fim+2n  + n(m + n) f2m+2n f2n$  f2m}

x(e -2wrln--2wr2m + e -2wrl  (m+n)+2wr2m
>

(25)

-8~: 2 mn(m + n)f2mf2nf2m+2n(T2e-2wr1n-2wr2m
m,n=l

+ (71  - 72)e
-2wq(m+n)+2wrzm

>

For any other ordering of ri, one uses the fact that Gc3)(rr,  72,~~) is symmetric and

depends only on ri - rj.

$ By $ we mean a partial  derivative holding g fixed.
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We fourier-transform the amplitude:

coo0

gt3’(P,Q) = / J d~ld72ei(Prl+Qr2)G(3)( 71,72,0>  = c $)(P, &>a (26)

-co --oo perm

Here P,Q and -P - Q are the euclidean momenta of the three vertex operators,

and Cperm is a sum over all 6 permutations of these three momenta. After some
algebra,  one obtains

-- _
@‘(P,Q) =2w 2 2 mnf2mf2n df2m+2n 1 1

dc
m=-cc 12c-m 2mw - iQ 2nw - iP

-iwgfie 2 g mn(m + n)f2mf2nf2m+2n
m=-cc 12z-m

1 1
xPmw - iQ)2 2nw - iP

(27)

As in the case of the two-point function, the infinite sums are easy to evaluate by
using (12) for f2n and bringing the m, n summations inside the time.integrals. The.

basic sums needed are the following two, evaluated via Poisson resummation:

Fl(t; p> z 2 2nw\ iPe2”wntz  = sgnP emPt(d(Pt)  + 1 ~-~~~~lto), (28~)
n=--03

F&P) z fy ” l
n=--c4 r (2nw - iP)2

e2iwnt =$(t; P)

= - tFl(t; P) - eePt2to
e-21Plto

(1 - e-21PltO)2
(28b)

Another ingredient needed is the representation of the c-derivatives in (27) as time
integrals; from (12) it is easy to show

X0

af2m 1-=--
d e 2 J QAq-le2imwt(X)  d t(x>

&+)
-X0
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where t(A) is the inverse function to A(t). From (lo), one shows

X0
at0 1 1-=---86 &zV’(~o) J dAV’(Xo)  - v’p)

wdb(u3 .
0

(30)

From (29)-(30),th e critical behavior of these objects can easily be found (see ap-

pendix A):

1 at0 4 1--=--
to de pocog-9c

+ o(‘l)
9 - SC to

X0 1
afirn ld 1

de “-Tiz to( )J qAq-le2imwt(X) t(X)dX

-X0 1

The terms neglected in the second equation arise from g acting on t(A) in (29),
and it is shown in appendix A that these terms contribute to (?t3)(P, Q) a piece of

order* O(A).

From eqs. (la), (26)-(29)  one thus finds: -

G”c3’(P,Q) = &;!$ c J j: dtldt2 J” dX3 c#-~(X~ - X;)(Xg - A;)
peTm-to  -to -X0

xF;(ta - t3; P)[(tl + t2 + ts)F:(tl  - t3; Q) + W(tl - ts; Q)
e--2lQlto

- 4toQe-Q(tl-t3)

(1 - ,-2lQlto) 21+0(x  :x0,
m

where ti = t(A;),A;  = ii(ti).

The critical behavior of the triple integral is found by straightforward appli-
cation of the methods of appendix A. The critical behavior in the small-momenta
regime (to be precisely defined below) arises entirely from the explicit to depen-

dence of the integrand of (32) and the $2 factor in front of the integral. The
0

* The critical  behavior  of X, -- X0 as a function  of g - ge is given by eq. (A.16).
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result is:

y(g - gc)83)(P, Q) = &to 1
e-2(lPI+IQl)tosgnp  h(P)h(Q)h(--P  - Q)

perm
(1 - e-2IPIto)(l - eL21Qlto)2

1
c

e-2(IPI+IQI)to,gnp,gnQ
- -

67r peTm (1 - e-2lf’lto)(l - e--2lQlto)

x[h’(P)h(Q)h(-P - Q) + h(P)h’(Q)+P - Q) + WV(Q)+P - Q>l

- -+$J e-21Q’to
peTm 1 - e-2IQlto sgnPsgnQ[-h’(Q)q(P, Q) + (2% - s)h(Q)]

+&to 1
e--2lQllo

peTm (1 - e-21Qlto)2 sgnp h(Qh(P,  Q> + O((L - h>to>

(33)
where h and 77 are the following functions of the momenta (independent of g):

h(P)-= -2P J dt(Xz - i(t)“) cash Pt,

0

PQ

CO=,&)=  ] 1 dXldX24X~-‘gX~-‘B(sgnP(Xl - Xz))e-Ptl+(P+Q)tz
(35)

-A, -A,

In (35)) ti = E(X;) where f(X) is the inverse function to x(t).

A few comments are in order here. The expression on the right-hand side of

(33) is a continuous function of P and Q, despite appearances. Also, the terms
written out dominate over the remainder O((X, - Xo)to) provided at least one of
the three numbers IPI,IQI,IP+  &I is less than PO/~. As IPI and I&I decrease, more
terms of the type e-2mlPlto-2nlQlto  become relevant ‘. Among the terms of (33))

t These terms  are obtained by expanding r-e-!+,,r,,  etc., as geometric series.
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the following are dominant’:

poco+9 - sc)~c3k Q> M &to c sgnP h(Q)q(P,Q)ee21Qito. (36)
perm

The function qh is non-universal, as are the constants PO and Co. to depends
logarithmically on (g-gc)  (see eqs. (A.12) and (A.16)). The strongest dependence
on-momenta is the exponential factors. Thus (36) tells us that Gc3)(P, Q) is domi-
nated by the sum of three terms, each of which depends essentially only on one of
the three momenta.

When P and Q are set to zero, we obtain from (33)

xc
83)(o,o) 8 1 1M -~

dmo 2; 9 - 9c
0

(37)

As a check, we computed this quantity via a -different method. A small term g,X+,
is added to V(X); d’ff1 erentiating the free energy F three times with respect to gq
at g, = 0 also gives 83)(0,  0), and the result agrees with (37).

5. Conclusions

Using a resummation, we have rendered the previous treatment of the critical

two-point function in the D = 1 matrix model, both more rigorous and valid for
any potential in the simplest universality class (to which the quartic potential
belongs). Our result differs from Kostov’s for momenta above a non-universal
cutoff. This reflects the fact that probing the random surface at small enough
embedding distances reveals its potential-dependent, discrete nature. We applied
the large-N WKB limit and the Poisson resummation to the three-point function,

and found its critical behavior for momenta below the cutoff.

$ Each of the other terms in (33) is suppressed by a factor l/to and/or an exponential factor.

16



This work can be extended in two obvious directions: to all genera, and to
higher n-point functions. The former may be doable by applying the double scaling

limit. The extension to n-point functions would yield more information on the full

tachyon effective action in noncritical D = 1 string theory. It is also of interest to

extend the continuum calculations of this effective action, along the lines of ref[6],
and compare with matrix-model results. Such a comparison can begin with our

eqs. (33) and (36) for the three-point function.
-- _
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APPENDIX A

We demonstrate how to obtain the critical behavior of the various time- ok
X-integrals* appearing in the two- and three-point functions, and list some useful

results.

For a potential V(X) = V(X; g) near criticality, we have defined in the text the

quantities XO,Xm,e  = EF and to, all functions of g. Let us also define the convex
curvature of V(X) at its maximum X,:

Q = -V”(X,). (A-1)

At g = gc, X, = X0 = X,. We define the critical value of cx to be Pt:

Po=Jcyc=dW (A.2)

* One can convert between a time integral and its corresponding X integral by the change of
variables X = X(t), the classic+1 trajectory at the fermi level.
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where &(A) = V(X;gc) is the critical potential+. We have

V(Xm;g) - e(g) = i&(X, - XO)2 + O((Xm - XO)2m)*

From eq. (2),

Am - X0 = O(g - 9,)

(A4

(A4

and we easily obtain from (A.l-4),

’ - Ec = (9 - 9C)xZ - ~plf(Xm - h)2+O((g  - gc)2)  + O((X,  - Xo)3)
(A-5)

+O((9  - Sc)(Xm - XO)2)

Now, differentiating the number-of-particles condition (eq.(8))  with respect to
g with E = c(g) yields:

lo dt
to

49) =
J

GX4(t) =X4, - ; /dt(Xj, - X4(t))
0 0

X0

=x4, - L
J

X(x; - X4),
to o P(X)

and also (eq.(lO))
X0

J

dX
t o =  -

P(X) ’
0

(A.6)

(A-7)

where the classical momentum p(X) is defined in eq. (7.2).

To proceed further,we must extract the critical behavior of X integrals such as

(A.6 - 7). We sketch be ow1 a convenient method for doing so.

t Actually,  it is only one of a universality  class of critical potentials;  see discussion  in text.
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For any integral over X from 0 to X0, separate it into Ji’ + Jt, where X1 is an
arbitrary fixed number satisfying 0 < X1 < X0. The so”’ integral can be expanded
as a Taylor series in E - cc and g - gc. In the second piece JA’, change variable
from X to y, defined as

1
-O!?J2 = [V(Xm) - V(X)].2 (A4

When y is used as an integration variable, and the integrand expanded simulta-

neously in powers of c - cc,9 - gc and y, a systematic expansion of the entire

.i; integral may be obtained. This technique may also be used to determine the
behavior of any integral

x
I(w) =

J dzf(z; 4 (A-9)
0

when X M X0(g),  g z gc. By applying the method to

x

tP) = o &qqJJ

we find, for A(t) M X0 and g M gc,

A, - A(t) M (A, - X0) cosh(Po(to - t))

with systematically computable corrections. From

X0

t0=0 d&7J

(A.10)

(A.lO)

(A. l l )

we obtain

Am - X0 = ClemPoto + 0( (Am - XO)2) (A.12)

where Cl is a g-independent constant. Like PO, this constant depends on the
particular choice of critical potential V,, and is thus non-universal.
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At g = gc, Xm = X0 SO (A.12) impl ies to + 0;). for the critical trajectory i(t),

we find from (A.lO) and (A.12),

A, - i(t) M clcfit ( Pot >> 1 ). (A.13)

Analysis of the integral in (A.6) using the y variable yields

-- _ ( f=$ - AZ) = --$ + o(i),
C 0 0

where Co is another non-universal constant. Thus

c - EC = O(g - 9,).

(A.14)

(A.15)

Using (A.5),(A.12)  and (A.14) yields

2P,2tO(Xm - xO)2 + O((Xm - XO)2) = - 2Po(X, - XO)~ Zn(X, - X0)

=c,c;- 9,){1  + O($} .
(A.16?

Hence, up to a logarithmic factor Xm - X0 behaves as ,/E, so by (A.12),  to

diverges logarithmically as g --+ gc. We also see from (A.14) that c - cc is a
nonanalytic function of g - gc, since to is.

The above results enable the determination of the critical behavior of the in-

tegrals in eqs. (15) (two point function) and eq.( 32) (three point function). As an

example,  (A.13) plim ies that the integral fc2)(P) (eq. (17b)) converges for P < PO.

As a final example of these techniques, we show how

In eq.(30), V’(Xo) M o(Xm - X0),6 G cc, and by changing
from X to y we find

eqs.(31) were obtained.
the integration variable

‘!$=O(& 1x)+ ’ LJdy Y-P

0 Om 0 tO(Xm - XO)2 p,3 (Y2 - P2)3’2~
(A.17)
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where ~1 is the value of y at X = X0. From (A.8) we find

p=x,- xO + O((Xm - XO)2). (A.17a)

The y integral is easily evaluated, and (A.17)-(A.17a)  combined with (A.16) yield

the first of eqs. (31). The second of eqs. (31) is obtained by starting from eq. (29),

and showing that the gt(X) contribution to z(3)(P,Q) is of order l/(X, - X0).

This reduces to showing that for an even positive integer 1,

X0

jijf, =

J

IX’-ldXat(X)

86
=  o ( (A.18)

0

This, in turn, is proven as follows. By differentiating (A.lO) w.r.t. t and integrating

(A.18) by parts, .w.

X0

Wi = -
J
0

(A.19)

which is then analyzed using the y integration variable.

APPENDIX B

We begin with eq. (21) in the text. In the first sum, we let cy = N - m,

/? = N - rn + n where the range of (m,n)  is 0 5 m < n. In the second sum, we let

o = N - m,,0 = N + 11 - m + 1,~ = N + la - m + 1, with 0 5 m < Zr,m 5 Z2 and

11 # Z2. Finally, in the third term, (m, II, Z2) have the same range as in the second

term, but CY = N - II + m, /? = N + m + 1,~ = N - I2 + m. We thus obtain (for
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co n-l

G(3)(~l,  72,(l)  = C 1 ~-r1N(FN+n--m-FN--m)((N-m~~qIN-m+n)j2

n=l m=O

XN((N-m+nlXqIN-m+n)  - (N-mlXqIN--m))

min(ll ,Iz)
+ 2 c c N{e-d+iVt~2tl-m-%n)+~Z~(~Nt~2tl-m-~A't~ltl-m)  (B.l)

11=0 ogz <cm m=O
lZ#ll

~~~~-m~Xq~N+l~+l-m)(N+Z2+1-m~Xq~N+Z~+l-m)(N+~~+l-m~~q~~-m)

- e--r~N(E~+m+l-~N+m--12)+~2~(fNtm--11-~N+m--12)

The order No cancellation in the first sum was already exhibited in eq. (24).

A similar cancellation occurs between the two terms inside curly braces in the

second sum of (B.l). In fact, by using eqs. (23a-c)  (which is allowed, see comment
preceding eq. (24)), we obtain .w

W N+12+1--m - EN--m)  =(b +  1)u  +  o(k),

W N+I2+1--m  - eN-m) - N(Cv+mtl - eN+m--12 ) =(1x + l)(Z2  - 2m,$U~

1 a
(IV-mlXqIN+12+l-m)  - (N-12+mlXqIN+m+l)  =(Z2 - 2m)7$J~fi2+1

and similarly for the other energy differences and matrix elements appearing in
(B.l). The factors N in the two sums of (B.l) cancel the l/N factors in the

differences, giving a finite N + co limit. A further simplification is that in (B.l),

the N + 00 summands depend on m only through simple factors. In the first sum,
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there is no m dependence at all, and the m sum is thus just n. In the second sum
the following m sums appear:

min(l1 ,Zz)
C( 22 - am> =
m=O

1 0 if 11 > 12 > 0
(la ~1)(11

’ (B.3)
- + 1) if 12 > 11 > 0

-- _ C(‘l- 2m) =m=O 1
0 if Z2 > II > 0

(11 - Z2)( Z2 + 1) if 11 > Z2 > 0 ’ VW

min(ll Jz)
C( I1 + 12 + 1 - 24 = (Zl + 1)(/2 + 1). VW
m=O

The final expression for the N --+ co limit of G(3)(rr, ~2, 0), given by eq. (25) in
the text, is obtained by noting that fm vanishes for odd subscripts, and changing
summation indices in the second sum of (B. 1) from (II, Z2) to (m, n), where 11 =
2m+2n-landZ2=2n-1.  Therangeof(m,n)isthenm>l,n,>l. ,q
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Figure 1. V(X) and the Fermi sea near criticality.
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