Measurement of the $W^{+} W^{-}$Threshold*

Morris L. Swartz
Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

Abstract

Scan strategies for the measurement of the $e^{+} e^{-} \rightarrow W^{+} W^{-}$. threshold are discussed. The most sensitive beam energies $\left(E_{b}\right)$ for the measurement of the W mass $\left(M_{W}\right)$ and width (Γ_{W})are $E_{b} \simeq M_{W}+0.5 \mathrm{GeV}$ and $E_{b} \simeq M_{W}-1 \mathrm{GeV}$, respectively. With a commitment of $250 \mathrm{pb}^{-1}$ to the measurement of the W-pair threshold, it appears to be possible measure M_{W} with a precision $\delta M_{W} \lesssim 160 \mathrm{MeV}$. The corresponding precision on the width, $\delta \Gamma_{W}=400-500 \mathrm{MeV}$, is not competitive with recent indirect determinations from the CDF and UA2 collaborations.

Submitted to Nuclear Physics B

[^0]
1. Introduction

The recent precise measurements ${ }^{[1]}$ of the mass of the Z^{0} boson $\left(M_{Z}\right)$ have completed the treelevel specification of the electroweak parameters of the Standard Model. Precise measurements of other physical quantities that are related to the electroweak parameters test the Standard Model at the loop level. A precise measurement of the W boson mass (M_{W}) will be an important contribution to this field.

Currently, the most precise determination of M_{W} is extracted from the measurement of the ratio M_{W} / M_{Z} by the UA2 Collaboration at the $\operatorname{Sp} \overline{\mathrm{p}} S$ collider ${ }^{[2]}$

$$
M_{W}=\mathrm{SO} .49 \pm 0.43(\text { stat }) \pm 0.24(\text { syst }) \mathrm{GeV}
$$

Future work at the Tevatron collider may improve the precision of this type of measurement to the level $\delta M_{W}=100-200 \mathrm{MeV}$.

The production of W boson pairs will become possible in the second phase of LEP operation. The installation of superconducting RF cavities will permit the beam energy to be increased to a value above the threshold for the process $e^{+} e^{-} \rightarrow W^{+} W^{-}$. The main focus of the LEP200 physics program will be to study the three gauge boson vertex. It will also be possible to perform measurements of the mass and width of the W boson.

There are several different techniques that can be used to perform these measurements. It is possible to extract M_{W} from measurements of the W pair threshold shape and from measurements of the distributions of jet masses and lepton energies. These methods are are described in Reference 3.

The purpose of this document is to consider scan strategies that are necessary for the optimization of the threshold measurement. The small absolute size of the W pair cross section implies that the threshold measurement will be limited by event statistics. It will be desirable to use the available luminosity in an optimal manner.

2. High Energy $e^{+} e^{-}$Cross Sections

The character of the total $e^{+} e^{-}$cross section in the region of the W pair threshold differs somewhat from the more familiar region of center-of-mass energy $\sqrt{s}<M_{Z}$.

2.1. The Cross Section for $e^{+} e^{-} \rightarrow f \bar{f}$

. . The basic $e^{+} e^{-} \rightarrow f \bar{f}$ cross section for five quark and three lepton flavors increases from about 7 units of R at center-of-mass energies below the Z^{0} pole to 10 units of R at energies above the Z^{0} pole. The tree-level cross section is approximately 34 pb at $\sqrt{s}=160 \mathrm{GeV}$. Unfortunately, the initial state radiative corrections increase this number enormously. The cross section for the process $e^{+} e^{-} \rightarrow \gamma Z^{0}$ is approximately three times larger than the high mass neutral current cross section. This is illustrated in Figure 1. The cross section for $e^{+} e^{-} \rightarrow f \bar{f}(\gamma)$ is plotted as a function of the normalized $f \bar{f}$ longitudinal momentum x_{F} and of the $f \bar{f}$ center-of-mass energy $E_{f \bar{f}}$. The center-of-mass energy of the $e^{+} e^{-}$system \sqrt{s} is 160 GeV . N ote that there is a large peak near the nominal center-of-mass energy $E_{f \bar{f}} \simeq \sqrt{s}$ and $x_{F}=0$ and two larger peaks near $E_{f \bar{f}}=M_{Z}$ and $x_{F}= \pm 0.68$. The latter peaks correspond to highly boosted Z^{0} bosons. At $\sqrt{s}=160 \mathrm{GeV}$, we estimate the size of the total cross section to be -150 pb .

2.2. The $W^{+} W^{-}$Cross Section

The tree-level cross section for the process $e^{+} e^{-} \rightarrow W^{+} W^{-}$has been calculated by Muta, Najima, and Wakaizumi. ${ }^{[4]}$ They incorporate the finite width of the W by expressing the cross section in the following form,

$$
\begin{equation*}
a_{,,(s)}=\int_{0}^{s} d s_{1} \rho\left(s_{1}\right) \int_{0}^{\left(\sqrt{s}-\sqrt{s_{1}}\right)^{2}} d s_{2} \rho\left(s_{2}\right) \sigma\left(s, s_{1}, s_{2}\right) \tag{1}
\end{equation*}
$$

where: s is the square of the center-of-mass energy; s_{1} and s_{2} are the squares of the invariant masses of the W bosons; $\sigma\left(s, s_{1}, s_{2}\right)$ is the tree-level cross section for
the production of W bosons of masses $\sqrt{s_{1}}$ and $\sqrt{s_{2}}$; and the function $\mathrm{p}(\mathrm{s})$ is a normalized Breit-Wigner distribution function,

$$
\rho(s)=\frac{1}{\pi M_{W}} \cdot \frac{s \Gamma_{W}}{\left(s-M_{W}^{2}\right)^{2}+s \Gamma_{W}^{2}}
$$

where Γ_{W} is the W boson width.
We incorporate initial state radiation into the calculation using the structure function approach of Nicrosini and Trentadue, ${ }^{[5]}$

$$
\begin{equation*}
\sigma_{w w}(s)=\int d x_{1} d x_{2} D\left(x_{1}, s\right) D\left(x_{2}, s \int_{0}^{A}\right) \quad d \int_{1}^{B} \rho\left(s_{1}\right) d s_{2} \rho\left(s_{2}\right) \sigma\left(x_{1} x_{2} s, s_{1}, s_{2}\right) \tag{2}
\end{equation*}
$$

where $D(x, s)$ is the electron structure function and A, B are limits: $A=x_{1} x_{2} s$, $B=\left(\sqrt{x_{1} x_{2} s}-\sqrt{s_{1}}\right)^{2}$.

The cross section $\sigma\left(s, s_{1}, s_{2}\right)$ has contributions from s-channel photon and Z_{-}^{0} subprocesses and a t-channel neutrino subprocess. The form of the cross section is too complex to reproduce here and the reader is referred to Appendix A for the gory details. The result of the four-dimensional integration given in equation (2) is plotted in Figure 2 as a function of $E_{b}-M_{W}$ where E_{b} is the single beam energy. The mass and width of the W are assumed to be 80 GeV and 2.1 GeV , respectively. Note that three curves are plotted: the dashed curve is the basic tree-level cross section; the dashed-dotted curve is the cross section including the effect of initial state radiation; and the solid curve is the cross section including initial state radiation and the effect of a finite W width. The inclusion of initial state radiation reduces the size of the cross section. The finite W width produces non-zero cross section at energies below the nominal threshold at $E_{b}=M_{W}$.

3. Scanning Theory

The optimization of a threshold or resonance scan requires some a priori knowledge of the lineshape to be measured. In this case, the W mass has been measured to some reasonable accuracy and the Standard Model predicts the threshold shape in terms of several parameters (M_{W} and Γ_{W}).

Let us consider a hypothetical scan of N energy-luminosity points:

$$
\begin{aligned}
E_{b} & =E_{1}, E_{2}, \ldots E_{N} \\
\mathcal{L} d t & =L_{1}, L_{2}, \ldots L_{N}
\end{aligned}
$$

We assume that a cross section σ_{i} is measured at each point,

$$
\sigma_{\text {measured }}=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}
$$

The M parameters $a_{j}-(j=1, M)$ of our theoretical lineshape $o(E)$ can be extracted from a χ^{2} fit to the measured points. The quantity χ^{2} is defined as, .

$$
\begin{equation*}
\chi^{2} \equiv \sum_{i=1}^{N} \frac{\left[\sigma_{i}-\sigma\left(E_{i}\right)\right]^{2}}{\left(\delta \sigma_{i}\right)^{2}} \tag{3}
\end{equation*}
$$

where $\delta \sigma_{i}$ is the error on the $i^{\text {th }}$ measurement.
The best estimate of the parameters $\left(\bar{a}_{j}\right)$ is the one that minimizes χ^{2}. The parameter errors are found from a Taylor expansion of χ^{2} about the minimum value,

$$
\begin{align*}
\chi^{2} & =\chi^{2}(\bar{a})+\frac{1}{2} \sum_{j k=1}^{M} \frac{\partial^{2} \chi^{2}}{\partial a_{j} \partial a_{k}}\left(a_{j}-\bar{a}_{j}\right)\left(a_{k}-\bar{a}_{k}\right) \\
& =\chi^{2}(\bar{a})+\sum_{j, k=1}^{M}\left(\mathbf{C}^{-1}\right)_{j k}\left(a_{j}-\bar{a}_{j}\right)\left(a_{k}-\bar{a}_{k}\right) \tag{4}
\end{align*}
$$

where the matrix \mathbf{C}^{-1} is the inverse of the parameter covariance matrix. The error hyperellipsoid is determined by changing χ^{2} by one unit about the minimum value.

It is straightforward to show that the parameter errors are given by the diagonal elements of the covariance matrix C,

$$
\begin{equation*}
\left(\delta a_{j}\right)^{2}=\mathbf{C}_{j j} \tag{5}
\end{equation*}
$$

Averaging equation (4) over many experiments, the inverse matrix can be expressed in the following form,

$$
\begin{equation*}
\left(\mathbf{C}^{-1}\right)_{j k}=\sum_{i}^{\Delta} \frac{1}{\left(\delta \sigma_{i}\right)^{2}} \cdot\left[\frac{\partial \sigma}{\partial a_{j}}\left(E_{i}\right)\right] \cdot\left[\frac{\partial \sigma}{\partial a_{k}}\left(E_{i}\right)\right] \tag{6}
\end{equation*}
$$

Although equation (6) is quite general, it is useful to express the cross section errors in terms of the luminosity and the theoretical cross section. Ignoring the statistical errors on the luminosity measurements: we can express the cross section errors as $\left(\delta \sigma_{i}\right)^{2}=\sigma\left(E_{i}\right) / L_{i}$. Equation (6) can then be written as,

$$
\begin{equation*}
\left(\mathbf{C}^{-1}\right)_{j k}=\sum_{i=1}^{N} \frac{L_{i}}{\sigma\left(E_{i}\right)} \cdot \frac{\partial \sigma}{\partial a_{j}}\left(E_{i}\right) \cdot \frac{\partial \sigma}{\partial a_{k}}\left(E_{i}\right)=\sum_{i=1}^{N} L_{i} \cdot S\left(E_{i}, a_{j}\right) \cdot S\left(E_{i}, a_{k}\right) \tag{7}
\end{equation*}
$$

where we define the so-called sensitivity function $S\left(E, a_{j}\right)$ as

$$
\begin{equation*}
S\left(E, a_{j}\right) \equiv \frac{1}{\sqrt{\sigma(E)}} \cdot \frac{\partial \sigma}{\partial a_{j}}(E) \tag{8}
\end{equation*}
$$

If the lineshape is a function of a single parameter or if the off-diagonal elements of the inverse matrix \mathbf{C}^{-1} are small, the parameter errors have a particularly simple form,

$$
\begin{equation*}
\left(\delta a_{j}\right)^{-2} \simeq \sum_{i=1}^{N} L_{i} \cdot\left[S\left(E_{i}, a,\right)\right]^{2} \tag{9}
\end{equation*}
$$

Equation (9) implies that the error δa_{j} is minimized when the integrated luminosity is concentrated in regions of scan energy where $\left|S\left(E, a_{j}\right)\right|$ is large. Note that $\left|S\left(E, a_{j}\right)\right|$ is lar 8 where the derivative $\left|\partial \sigma / \partial a_{j}\right|$ is large and where the cross section is small.
\star This assumption is quite valid for the measurement of non-resonant cross sections.

The correlations between the parameters are described by the off-diagonal elements of the matrices \mathbf{C}^{-1} and C (the error ellipsoid is unrotated if they vanish). The presence of non-zero correlation always increases a parameter error beyond the value given in equation (9). ${ }^{\dagger}$ It is clearly important to minimize the off-diagonal elements by our choice of the scan point luminosities.

Equations (7) and (5) predict the complete parameter error matrix in terms of the theoretical lineshape and the scan point luminosities. Note that it is assumed that $\dot{\chi}^{2}$ is well-defined $(N>M)$ and that a sufficient number of events is collected at each point that the errors are Gaussian.

Since any cross section measurement has an associated normalization uncertainty, it is important to consider the sensitivity of the final result to systematic shifts in the measured cross sections. Expanding the theoretical cross section in parameter space about the best estimates \bar{a}_{j}, it is straightforward to derive the average shift in a parameter Δa_{j} caused by shifts in the measured cross sections $\Delta \sigma_{i}$,

$$
\begin{equation*}
\left\langle\Delta a_{j}\right\rangle=\sum_{k=1}^{M} \mathbf{C}_{j k} \cdot \sum_{i=1}^{N} L_{i} \cdot \frac{\Delta \sigma_{i}}{\sigma_{i}} \cdot \frac{\partial \sigma}{\partial a_{k}}\left(E_{i}\right) \tag{10}
\end{equation*}
$$

It is clear that we would like to choose the energies and luminosities to minimize the parameter errors and the correlations between the parameters. We can be guided in this task by examining the energy dependence of the functions $S\left(E, a_{j}\right)$.

[^1]
4. Mass and Width of the W

It was shown in chapter 2 that the total $e^{+} e^{-}$cross section in the region of the W-pair threshold is dominated by the ordinary $f \bar{f}(\gamma)$ final state: The isolation of the W-pair signal requires the application of some selection criteria. The measured cross section therefore has the following form,

$$
\begin{equation*}
\sigma_{m e a s}\left(E_{b}\right)=\varepsilon_{w w} \sigma_{w w}\left(E_{b}\right)+\frac{B}{\left(2 E_{b}\right)^{2}}, \tag{11}
\end{equation*}
$$

where: $\varepsilon_{w w}$ is the efficiency to identify a W-pair event; $\sigma_{w w}\left(E_{b}\right)$ is the cross section plotted in Figure 2; and B is a constant that represents the residual background (which presumably scales as I / s).

The sensitivity function for some parameter a_{j} of the $W^{+} W^{-}$cross section therefore has the following form,

$$
\begin{equation*}
S\left(E, a_{j}\right)=\frac{\varepsilon_{w w}}{\sqrt{\varepsilon_{w w} \sigma_{w w}\left(E_{b}\right)+B /\left(2 E_{b}\right)^{2}}} \cdot \frac{\partial \sigma_{w w}}{\partial a_{j}}\left(E_{b}\right) . \tag{12}
\end{equation*}
$$

The cross section $\sigma_{w w}$ and its derivatives* with respect to M_{W} and Γ_{W} are tabulated as functions of $\epsilon_{b}=E_{b}-M_{W}$ in Table I (assuming parameter values: $M_{W}=80 \mathrm{GeV}, \Gamma_{W}=2.1 \mathrm{GeV}$). The mass and width derivatives peak at points of small cross section (5.0 pb and 2.1 pb , respectively). The total cross section in this region is larger than 150 pb and the large $E_{f \bar{f}}$ cross section is $35-40 \mathrm{pb}$. It is clear from equation (12) that any selection criteria that can reduce the background to a level that is comparable to or smaller than the W pair cross sections are worth a modest price in detection efficiency.

[^2]
4.1. Selection Criteria

The background processes produce mostly two- and three-jet hadronic events or lepton pair events that are often highly boosted along the beam direction. The visible energy of the background is often small as compared with $2 E_{b}$. The W-pair events appear most often as four-jet events (-44\% of W-pairs) or as an energetic lepton and two jets (-44\% of IV-pairs).

- -The authors of Reference 3 have studied a number of selection criteria to reduce the background cross section to less than -1 pb while retaining -75% of the fourjet and $\sim 45 \%$ of the lepton+two-jet events (we assume that τ leptons cannot be used and that one third of the remaining events are eliminated by the isolation cut used to suppress heavy flavor events). The net efficiency for the detection of W-pair events is therefore $\varepsilon_{w w} \simeq 0.53{ }^{\dagger}$ N ote that the sensitivity functions $\left|S\left(E_{b}, M_{W}\right)\right|$ and $\left|S\left(E_{b}, \Gamma_{W}\right)\right|$ are increased greatly by the application of these criteria (see equation (12)).

4.2. The SEnsitivity Functions

The results of the last section can be used to calculate the sensitivity functions for a real measurement of the W-pair threshold. We assume that the efficiency is $\varepsilon_{\boldsymbol{w} \boldsymbol{w}}=0.53$ and that the residual background is 1 pb at $E_{b}=M_{W}$ (we take the constant B in equation (11) to be $\left.B=1 \mathrm{pb} .\left(2 M_{W}\right)^{2}\right)$. It is then straightforward to calculate the sensitivity functions for M_{W}, Γ_{W}, and the background constant B.

The sensitivity function $S\left(E_{b}, M_{W}\right)$ is plotted in Figure 3 as a function of $\epsilon_{b}=E_{b}-M_{W}$. Note that the maximum sensitivity occurs at $\epsilon_{b} \simeq 0.5 \mathrm{GeV}$.

The sensitivity function $S\left(E_{b}, \Gamma_{W}\right)$ is shown in Figure 4 as a function of ϵ_{b}. As one would expect, it peaks just below the nominal threshold ($\epsilon_{b}=-1 \mathrm{GeV}$) where

[^3]the width-induced tail in the cross section is largest. The function $S\left(E_{b}, \Gamma_{W}\right)$ decreases rapidly as E_{b} is increased. It passes through zero near $\epsilon_{b}=1 \mathrm{GeV}$ and plateaus above $\epsilon_{b}=3 \mathrm{GeV}$. The sensitivity in the plateau region is due to the reduction in the cross section caused by the finite width (see Figure 2). The maximum value of $\left|S\left(E_{b}, \Gamma_{W}\right)\right|$ is smaller than the maximum value of the mass sensitivity function by a factor of three. A good measurement of Γ_{W} will clearly require a substantial commitment of luminosity to a point of very small cross section. Note that the product $S\left(E_{b}, M_{W}\right) . S\left(E_{b}, \Gamma_{W}\right)$ is an odd function about the point $\epsilon_{b}=1 \mathrm{GeV}$. In principle, the $M_{W}-\Gamma_{W}$ correlation can be cancelled by measuring the cross section on both sides of this point. The functions $S\left(E_{b}, M_{W}\right)$ and $S\left(E_{b}, \Gamma_{W}\right)$ are not large in the region $\epsilon_{b}>1 \mathrm{GeV}$. The cancellation of the correlation therefore requires a substantial commitment of luminosity to a relatively insensitive region.

The function $S\left(E_{b}, B\right)$ is plotted as a function of ϵ_{b} in Figure 5 . As one would expect, the background sensitivity is largest at small beam energy and decreases dramatically as E_{b} increases through the W pair threshold. Note that it is possibte to cancel the $B-\Gamma_{W}$ correlation but that it is not possible to cancel the $B-M_{W}$ correlation.

4.3. Scan Strategies

It is clear that precise measurements of M_{W} and Γ_{W} require that LEP be operated in regions of small cross section. Since all other studies of the W-pair system require a large sample of data, there will be considerable pressure to operate the machine on the cross section plateau at the largest available energy. In order to estimate how precisely M_{W} and Γ_{W} could be measured in a l-2 year run (500 pb^{-1}), we assume that 50% of the luminosity is dedicated to operating at the largest available energy (we assume that $\epsilon_{b}=15 \mathrm{GeV}$ or $\sqrt{s}=190 \mathrm{GeV}$ is achieved) and the remaining 50% is dedicated to operation in the threshold region.

It is instructive to first consider an extremely unrealistic scan scenario. We assume that we will measure only one parameter and that the other parameters
are precisely known. In this case, we need only one scan point in the threshold region for a constrained fit. We choose to allocate the entire $250 \mathrm{pb}^{-1}$ luminosity to operation at the most mass-sensitive point ($\epsilon_{b}=0.5 \mathrm{GeV}$) or at the most widthsensitive point ($\epsilon_{b}=-1 \mathrm{GeV}$). Using equation (9) we estimate the precision of these measurements to be

$$
\delta M_{W}=92 \mathrm{MeV} \text { or } \delta \Gamma_{W}=286 \mathrm{MeV}
$$

The M_{W} measurement would be a very desirable result. The Γ_{W} measurement is not competitive with the recent indirect determinations that have been published by the CDF and UA2 collaborations, ${ }^{[6,7]}$

$$
\begin{aligned}
& \Gamma_{W}=(0.85 \pm 0.08) \cdot \Gamma_{Z}=2.19 \pm 0.20 \mathrm{GeV}(\mathrm{CDF}) \\
& \Gamma_{W}=(0.89 \pm 0.08) \cdot \Gamma_{Z}=2.30 \pm 0.20 \mathrm{GeV}(\mathrm{UA} 2)
\end{aligned}
$$

Since the width cannot be measured to an interesting level, it is clearly unwise to design a scan to measure Γ_{W}. We therefore concentrate on the measurement of M_{W}.

A real measurement of M_{W} will require that the background constant B be varied as a fit parameter. Unfortunately, the $B-M_{W}$ correlation cannot be canceled by a clever choice of scan points. It is therefore necessary to measure both parameters well.

The number of scan points is somewhat arbitrary. A minimum of three points are required to constrain the two parameter problem. The presence of a high energy point implies that only two points are needed in the threshold region. Equation (7) implies that several closely spaced points in a region of large sensitivity are equivalent to a single point in the same region. We can therefore analyze the optimization of the M_{W} measurement by considering a two-point threshold measurement.

An optimal scan must include an energy point in a region of large background
 tion $\left|S\left(E_{b}, M_{W}\right)\right|$. We choose the scan point energies to be $\epsilon_{b}=-5 \mathrm{GeV}$ and
$\epsilon_{b}=0.5 \mathrm{GeV}$, respectively.* The apportionment of the available luminosity between the two points is a straightforward problem in one-dimensional optimization. We find that the error δM_{W} has a very broad minimum about the ratio of Iuminosities, $L(0.5 \mathrm{GeV}) / L(-5 \mathrm{GeV}) \simeq 2 / 1$. If the luminosities of the -5 GeV and 0.5 GeV points are $85 \mathrm{pb}^{-1}$ and $165 \mathrm{pb}^{-1}$, respectively, the minimum value of the error δM_{W} is approximately 155 MeV .

A two-point threshold scan is somewhat risky. It is safer to bracket the region of maximum M_{W} sensitivity with several scan points. We therefore construct an optimal four-point scan (a five-point measurement when the $\epsilon_{b}=15 \mathrm{GeV}$ point is included) by assigning one third of the $165 \mathrm{pb}^{-1}\left(55 \mathrm{pb}^{-1}\right)$ to each of three points: $\epsilon_{b}=0 \mathrm{GeV}, 0.5 \mathrm{GeV}$, and 1.0 GeV . It is instructive to compare this scan (Scan 1) with a slightly modified version. The modified version (Scan 2) is created by shifting the luminosity from the $\epsilon_{b}=0 \mathrm{GeV}$ point to $\epsilon_{b}=-1 \mathrm{GeV}$. We expect the second scan strategy to improve the width measurement at the expense of the mass measurement. Finally, we note that our modified scan strategy is similar to the scan strategy that was studied in Reference 3 (which we label Scan 3). The authors of Reference 3 assigned $100 \mathrm{pb}^{-1}$ to each of the following five points: $\epsilon_{b}=-5 \mathrm{GeV},-1 \mathrm{GeV}, 0 \mathrm{GeV}, 1 \mathrm{GeV}$, and 15 GeV .

Using equation (7) and the sensitivity functions, the performance of each scan scenario can be estimated. The expected number of detected events and the expected precisions $\delta M_{W}, \delta \Gamma_{W}$, and δB are listed in Table II for each of the three scan strategies. The presence of a high energy point in each strategy reduces the $M_{W}-\Gamma_{W}$ correlation sufficiently that the M_{W} precision obtained from the three parameter fit is essentially identical to that obtained from a two-parameter fit.

As one might expect, the third scan strategy which allocates $400 \mathrm{pb}^{-1}$ to the threshold measurement provides the most precise M_{W} measurement, $\delta M_{W}=$ 150 MeV . The M_{W} precision obtained from the optimized mass scan (Scan 1) is

[^4]worse by 7\%. Note however, that Scan 1 produces nearly GO\% more events than does Scan 3. Surprisingly, the second scan strategy provides a slightly better width measurement than does the third strategy. This occurs because the second scan produces a smaller $B-\Gamma_{W}$ correlation than does the third scan strategy.

It is clear from equation (12) that the functions $S\left(E_{b}, a_{j}\right)$ are sensitive to the level of residual background and to the W-pair detection efficiency. We investigate these effects by reducing the background constant to $B=0.5 \mathrm{pb} .\left(M_{W}\right)^{2}$ and by-increasing the detection efficiency to $\varepsilon_{w w}=0.70$. The results are listed in Table II. The error δM_{W} is improved by approximately 20 MeV in the case that the background is reduced by a factor of two. The mass error is improved by approximately 30 MeV when the efficiency is increased. Note that the optimal luminosity ratio $\mathrm{L}(0.5 \mathrm{GeV}) / L(-5 \mathrm{GeV})$ is nominally sensitive to both effects. However, the optimal region is so broad that the use of a $2 / 1$ ratio degrades the result by less than 1%.

4.4. Systematic Errors

The measurement of the W-pair threshold is affected by systematic uncertainties on the energy scale and cross section normalization. The energy scale uncertainty affects the M_{W} measurement directly. Assuming that the fractional error on the beam energy scale is constant, the uncertainty on M_{W} should be comparable to the one that applies to the M_{Z} measurement. By 1994, this uncertainty is expected to be -20 MeV .

The sensitivity of the results given in Table II to normalization errors can be estimated from equation (10). Taking the first scan strategy as an example, we estimate that the uncertainties on the parameters are related to an overall normalization uncertainty $\delta \sigma / \sigma$ as follows,

$$
\begin{aligned}
\delta M_{W} & =-2.26 \mathrm{GeV} \cdot \frac{\delta \sigma}{\sigma} \\
\delta \Gamma_{W} & =-19.3 \mathrm{GeV} \cdot \frac{\delta \sigma}{\sigma}
\end{aligned}
$$

The normalization error must be controlled to the 3% level to avoid inflating the M_{W} error.

4.5. Sensitivity to Assumptions

Our analysis assumes that we have complete a priori knowledge of the W resonance parameters. Although the characteristic width in E_{b} space of the $M_{W^{-}}$ sensitive region is larger than the current uncertainty on M_{W}, our precision estimates are likely to be somewhat optimistic. It is possible to alter the results by $\$ 10 \%$ by varying the resonance parameters over reasonable intervals.

5. Conclusions

Despite the uncertainties on the ultimate W-pair detection efficiency and residual background contamination, several conclusions can be drawn from this analysis:

1. The most sensitive scan region for the measurement of M_{W} is $\epsilon_{b}=0-\mathrm{IGeV}$. The mapping of the entire threshold shape would produce a less precise measurement.
2. It is not possible to remove the correlation between the background parameter and M_{W} by a clever choice of scan point energies. This implies that a scan point of energy below the nominal threshold is quite important. If the energy is chosen to be $\epsilon_{b}=-5 \mathrm{GeV}\left(E_{b}=75 \mathrm{GeV}\right)$, an M_{W}-optimized scan strategy would allocate twice as much integrated luminosity to the M_{W} sensitive region as is allocated to the low energy point.
3. A measurement of M_{W} at the $\lesssim 160 \mathrm{MeV}$ level is possible with the dedication of a large integrated luminosity ($250 \mathrm{pb}^{-1}$) and good control of the background contamination.
4. The measurement of Γ_{W} to an interesting level is difficult or impossible. It is probably unwise to attempt anything more than a cursory measurement.

Acknowledgements:

The author would like to thank Gary Feldman and Michael Peskin for useful conversations.

REFERENCES

1. G. Abrams et al., Phys. Rev. Lett. 63 (1989) 2173;
D. Decamp et al., Phys. Lett. B231 (1989) 519 and Phys. Lett. B235 (1990) 399;
P. Aarnio et al., Phys. Lett. B231 (1989) 539;
B. Adeva et al., Phys. Lett. B231 (1989) 509 and L3 Preprint \#004, Decem-
-- .ber 1989;
M.Z. Akrawy et al., Phys. Lett. B231 (1989) 530.
2. J. Alitti et al., CERN preprint CERN-EP/90-22, March 1990.
3. J. Bijnens et al., Proceedings of the ECFA Workshop on LEP 200, edited by A. Böhm and W. Hoogland, CERN 87-08, June 1987, pg 85.
4. T. Muta, R. Najima, and S. Wakaizumi, Mod. Phys. Lett. Al (1986) 203.
5. O. Nicrosini and L. Trentadue, Phys. Lett. 185B (1987) 395.
6. F. Abe et al., Phys. Rev. Lett. 62 (1990) 154.
7. J. Alitti et al., CERN preprint CERN-EP/90-20, February 1990.

Table I
The W-pair cross section and its derivatives as functions of beam energy $\epsilon_{b}=E_{b}-M_{W}$. The W mass and width are assumed to be SO GeV and 2.1 GeV , respectively. The errors are the statistical -uncertainties associated with the Monte Carlo integration.

$\epsilon_{b}(\mathrm{GeV})$	$\sigma_{w w}(\mathrm{~Pb})$	$\partial \sigma_{w w} / \partial M_{W}(\mathrm{pb} / \mathrm{GeV})$	$\partial \sigma_{w w} / \partial \Gamma_{W}(\mathrm{pb} / \mathrm{GeV})$
-5.0	$0.44 \mathrm{f0.01}$	-0.102f0.004	$0.195 f 0.005$
-4.0	0.56 f 0.01	-0.153f0.005	$0.241 f 0.004$
-3.5	$0.59 f 0.01$	-0.188 ± 0.005	$0.275 f 0.004$
-3.0	0.6Sf0.01	-0.239f0.006	0.318 ± 0.004
-2.5	0.84 ± 0.02	-0.310f0.006	$0.375 f 0.005$
-2.0	1.00f0.02	-0.407f0.007	$0.424 f 0.005$
-1.5	$1.23 f 0.02$	-0.591 ± 0.008	$0.500 f 0.005$
-1.0	$1.56 \mathrm{f0.02}$	-0.859 ± 0.010	$0.567 f 0.006$
-0. 0	$2.09 f 0.03$	-1.34f0.01	$0.603 f 0.006$
0.0	2.91 f 0.03	-1.91f0.01	$0.491 f 0.007$
0.5	3.87 ± 0.03	-2.27 ± 0.02	0.223 ± 0.008
1.0	$5.01 \mathrm{f0.04}$	-2.29f0.02	-0.026f0.010
1.5	$5.99 \mathrm{f0.05}$	-2.17f0.02	-0.215f0.011
2.0	$6.99 f 0.05$	-2.05 ± 0.02	-0.336f0.012
2.5	7.81 ± 0.05	-1.88 ± 0.03	-0.415f0.013
3.0	S.59f0.06	-1.78 ± 0.03	-0.464f0.014
3.5	$9.42 \mathrm{f0.06}$	-1.67 ± 0.03	-0.501f0.015
4.0	$10.06 f 0.07$	-1.50f0.03	-0.546f0.016
4.5	$10.55 f 0.07$	-1.48 ± 0.03	-0.533f0.016
5.0	$11.19 f 0.07$	-1.43f0.03	-0.573f0.017
5.5	$11.65 f 0.07$	-1.34f0.04	-0.550f0.017
6.0	12.18 ± 0.08	-1.29f0.04	-0.567 ± 0.018
7.0	12.96 ± 0.08	-1.19f0.04	-0.537f0.020
8.0	13.59 ± 0.08	-1.01 ± 0.04	-0.571f0.020
10.0	14.74f0.09	-0.902f0.043	-0.509f0.021
15.0	16.31f0.10	-0.623f0.047	-0.495f0.023

Table II
The predicted results of three different five-point measurements of the W pair threshold. Scan 1 is optimized for the measurement of M_{W}. Scan 2 is an attempt to improve the measurement of Γ_{W}. Scan 3 is identical to the threshold scan used in Reference 3. The results are presented for several assumptions about the level of residual background B and the W-pair detection efficiency.

Quantity	Scan 1	Scan 2	Scan 3
$L[-5 \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	85	85	100
$\mathrm{L}[-1 \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	0	55	100
$L I O \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	55	0	100
$L[0.5 \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	55	55	0
$L[1 \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	55	55	100
$L[15 \mathrm{GeV}]\left(\mathrm{pb}^{-1}\right)$	250	250	100
$\begin{gathered} B=1.0 \mathrm{pb} \cdot\left[2 M_{W}\right]^{2} \\ \varepsilon_{w w}=0.53 \end{gathered}$			
Number of Events	2951	2912	1863
$\delta M_{W}(\mathrm{MeV})$	160	176	150
$\delta \Gamma_{W}(\mathrm{MeV})$	531	482	492
$\delta B\left(\mathrm{pb} \cdot\left[2 M_{W}\right]^{2}\right)$	0.12	0.12	0.12
$\begin{gathered} B=0.5 \mathrm{pb} \cdot\left[2 M_{W}\right]^{2} \\ \varepsilon_{w w}=0.53 \end{gathered}$			
Number of Events	2737	2698	1627
$\delta M_{W}(\mathrm{MeV})$	137	154	130
$\delta \Gamma_{W}(\mathrm{MeV})$	50s	450	44s
$\delta B\left(\mathrm{pb} \cdot\left[2 M_{W}\right]^{2}\right)$	0.096	0.09s	0.09s
$\begin{gathered} B=1.0 \mathrm{pb} \cdot\left[2 M_{W}\right]^{2} \\ \varepsilon_{w w}=0.70 \end{gathered}$			
Number of Events	3760	3709	2309
$\delta M_{W}(\mathrm{MeV})$	130	144	123
$\delta \Gamma_{W}(\mathrm{MeV})$	453	407	410
$\delta B\left(\mathrm{pb} \cdot\left[2 M_{W}\right]^{2}\right)$	0.12	0.13	0.13

FIGURE CAPTIONS

1) The cross section for the process $e^{+} e^{-} \rightarrow f \bar{f}(\gamma)$ is plotted as a function of the normalized $f \bar{f}$ longitudinal momentum x_{F} and of the $f \bar{f}$ center-of-mass energy $E_{f \bar{f}}$. The center-of-mass energy of the $e^{+} e^{-}$system is 160 GeV .
2) The cross section for the process $e^{+} e^{-} \rightarrow W^{+} W^{-}$as a function of $E_{b}-M_{W}$. The mass and width of the W are assumed to be SO GeV and 2.1 GeV ,

- - -respectively. Note that three curves are plotted: the dashed curve is the basic tree-level cross section; the dashed-dotted curve is the cross section including the effect of initial state radiation; and the solid curve is the cross section including initial state radiation and the effect of a finite W width.

3) The sensitivity function for M_{W} as a function of the single beam energy about the W pair threshold $E_{b}-M_{W}$.
4) The sensitivity function for Γ_{W} as a function of the single beam energy about the W pair threshold $E_{b}-M_{W}$.
5) The sensitivity function for the background parameter B as a function of the single beam energy about the W pair threshold $E_{b}-M_{W}$.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Appendix A

The form of the cross section $\sigma\left(s, s_{1}, s_{2}\right)$ is reproduced from Reference 4 as follows,

$$
\sigma\left(s, s_{1}, s_{2}\right)=\sigma_{A A}+\sigma_{Z Z}+\sigma_{\nu \nu}+\sigma_{A Z}+\sigma_{A \nu}+\sigma_{Z \nu}
$$

where the partial cross sections are:

$$
\begin{aligned}
& \sigma_{A A}=\underset{64 \pi s^{2}}{\mathbf{1}} e^{2}\left(-\frac{2}{s_{1} s_{2}}\right) G_{1}\left(s, s_{1}, s_{2}\right), \\
& \sigma_{Z Z}=\frac{1}{64 \pi s^{2}} \frac{g^{4}}{16} \frac{v^{2}+a^{2}}{\left(s-M_{Z}^{2}\right)^{2}}\left(-\frac{2}{s_{1} s_{2}}\right) G_{1}\left(s, s_{1}, s_{2}\right), \\
& \sigma_{\nu \nu}=\frac{1}{64 \pi s^{2}} \frac{g^{4}}{8}\left(-\frac{2}{s_{1} s_{2}}\right) G_{2}\left(s, s_{1}, s_{2}\right), \\
& \sigma_{A Z}=\frac{1}{64 \pi s^{2}} \frac{e^{2} g^{2}}{2} \frac{v}{s\left(s-M_{Z}^{2}\right)}\left(-\frac{2}{s_{1} s_{2}}\right) G_{1}\left(s, s_{1}, s_{2}\right), \\
& \sigma_{A \nu}=\frac{1}{{ }^{1} \mathrm{v} 4 \pi^{2} s^{2}{ }^{2}<} e^{2}-\frac{1}{s s_{1} s_{2}} G_{3}\left(s, s_{1}, s_{2}\right), \\
& \sigma_{Z \nu}=\begin{array}{c}
1-g^{4} \frac{v-a}{64 \pi s^{2}} 8-\frac{2}{s-M_{Z}^{2}}-s_{1} s_{2}\left(\% s_{1}, s_{2}\right) .
\end{array}
\end{aligned}
$$

The constants v and a are the vector and axial-vector couplings of the electron to the Z^{0},

$$
\begin{aligned}
& \mathrm{v}=1-4 \sin ^{2} \theta_{w} \\
& a=-1 .
\end{aligned}
$$

The functions G_{1}, G_{2} and G_{3} are given as follows:

$$
\begin{aligned}
G_{1}= & -\lambda^{3 / 2}\left(s, s_{1}, s_{2}\right)\left\{\lambda\left(s, s_{1}, s_{2}\right) / 6+2\left[s\left(s_{1}+s_{2}\right)+s_{1} s_{2}\right]\right\} \\
G_{2}= & -\lambda^{1 / 2}\left(s, s_{1}, s_{2}\right)\left\{\lambda\left(s, s_{1}, s_{2}\right) / 6+2\left[s\left(s_{1}+s_{2}\right)-4 s_{1} s_{2}\right]\right\} \\
& +4 s_{1} s_{2}\left(s-s_{1}-s_{2}\right) \ln \left[f\left(s, s_{1}, s_{2}\right)\right] \\
G_{3}= & -\lambda^{1 / 2}\left(s, s_{1}, s_{2}\right)\left[\left(\mathbf{s}+11 s_{1}+11 s_{2}\right) \lambda\left(s, s_{1}, s_{2}\right) / 6\right. \\
& \left.+2\left(s_{1}^{2}+3 s_{1} s_{2}+s_{2}^{2}\right) s-2\left(s_{1}^{3}+s_{2}^{3}\right)\right] \\
& -4 s_{1} s_{2}\left[s\left(s_{1}+s_{2}\right)+s_{1} s_{2}\right] \ln \left[f\left(s, s_{1}, s_{2}\right)\right]
\end{aligned}
$$

and the auxiliary functions λ and f are defined as,

$$
\begin{aligned}
& \lambda\left(s, s_{1}, s_{2}\right)=s^{2}+s_{1}^{2}+s_{2}^{2}-2\left(s_{1} s+s_{2} s+s_{1} s_{2}\right) \\
& f\left(s, s_{1}, s_{2}\right)=\frac{s-s_{1}-s_{2}-\lambda^{1 / 2}\left(s, s_{1}, s_{2}\right)}{s-s_{1}-s_{2}+\lambda^{1 / 2}\left(s, s_{1}, s_{2}\right)}
\end{aligned}
$$

The W-pair cross section $\sigma\left(s, s_{1}, s_{2}\right)$ is sensitive to the weak coupling constant g and is relatively insensitive to the parameter $\sin ^{2} \theta_{w}$. At tree-level, the parameters g and $\sin ^{2} \theta_{w}$ can be expressed in terms of M_{W} as follows,

$$
\begin{aligned}
& g^{2}=4 \sqrt{2} G_{F} M_{W}^{2} \\
& \sin ^{2} 8,=A^{2} / M_{W}^{2}
\end{aligned}
$$

The precise measurement of M_{Z} has, in principle, fixed g and $\sin ^{2} 0$, except for loop-level corrections. If we assume that the Standard Model is correct, the M_{W} dependence of these quantities is much smaller than the tree-level expressions indicate. The full set of electroweak radiative corrections for $\sigma\left(s, s_{1}, s_{2}\right)$ is necessary to understand the M_{W} dependence.

For testing the Standard Model, it may not be desirable to use M_{Z}-constrained expressions for g and $\sin ^{2} \theta_{\boldsymbol{w}}$. The parameters appearing in $\sigma\left(s, s_{1}, s_{2}\right)$ can be expressed as functions of M_{W} or allowed to vary as free parameters.

To investigate these effects, we have calculated the mass derivative $\partial \sigma_{w w} / \partial M_{W}$ for two cases:

1. The parameters g and $\sin ^{2} \theta_{w}$ are fixed to reasonable values ($g=0.65$ and $\sin ^{2} \theta_{w}=0.230$).
2. The parameters g and $\sin ^{2} \theta_{w}$ are allowed to vary with M_{W} according to the tree-level expressions (about 0.65 and 0.230).

Although one might expect the M_{W} sensitivity of the second procedure to exceed that of the first, the magnitude of the derivative $\partial \sigma_{w w} / \partial M_{W}$ is smaller in the second case (by $\sim 10 \%$ at its peak value). This occurs because the presence of
the threshold causes $\sigma_{w w}$ to decrease with increasing M_{W} and the weak coupling causes it to increase with increasing M_{W}. The use of the second fitting procedure would increase the errors δM_{W} listed in Table II by approximately 10%.

In the case that g is allowed to vary as a free parameter, the M_{W} derivative is equal to the fixed-g case. A fifth scan energy is then essential (our hypothetical scans do contain five points: four threshold points and one high energy point).

[^0]: * Work supported by the Department of Energy, contractDE-AC03-76SF00515.

[^1]: \dagger The presence of non-zero correlation allows the error associated one parameter to leak into the error associated with another parameter.

[^2]: \star The calculation of the derivative $\mathrm{da}_{w w} / \partial M_{W}$ assumes that the weak coupling g does not vary with M_{W}. See Appendix A for a more complete discussion.

[^3]: \dagger The $W^{+} W^{-}$final state that consists of a pair of monochromatic acoplanar charged leptons can presumably be separated from the background with some efficiency. Our estimate of $\varepsilon_{w w}$ is therefore somewhat conservative.

[^4]: \star Varying the energy of the second point about $\epsilon_{b}=0.5 \mathrm{GeV}$ verifies that the $B-M_{W}$ correlation does not shift the point of maximum M_{W} sensitivity.

