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ABSTRACT

Scan strategies for the measurement of--the  e+e- + W+W-. threshold arg
discussed. The most sensitive beam energies (I&) for the measurement of the T/lr
mass (.k!w) and width (I?w are Eb N ik!tv + 0.5 GeV and Eb N &lw - 1 GeV,)
respectively. With a commitment of 250 pb-’ to the measurement of the W-pa.ir
threshold, it appears to be possible measure Mw with a precision SMw 2 160 MeV.
The corresponding precision on the width, 0’w = 400-500 MeV, is not competitive
with recent indirect determinations from the CDF and UA2 collaborations.
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1. Introduction

The recent precise measurements[” of the mass of the 2’ boson (Alz) have

completed the tree-level specification of the electroweak parameters of the Stan-
dard Model. Precise measurements of other physical quantities that are related to

the electroweak parameters test the Standard Model at the loop level. A precise
measurement of the W boson mass (Mw) will be an important contribution to this

f i e l d .-- _

Currently, the most precise determination of A1w is extracted from the mea-
surement of the ratio Mbv/Mz by the UA2 Collaboration at the SppS collider,[”

iWw = SO.49 f 0.43(stat)  f 0.24(syst)  GeV.

Future work at the Tevatron collider may improve the precision of this type of
measurement to the level SMw = 100-200 MeV.

The production of IV boson pairs will become possible in the second phase
of LEP operation. The installation of superconducting RF cavities will permit
the beam energy to be increased to a value above the threshold for the process
e+e- + W+W-. The main focus of the LEP200 physics program will be to study
the three gauge boson vertex. It will also be possible to perform measurements of
the mass and width of the W boson.

There are several different techniques that can be used to perform these mea-
surements. It is possible to extract AJbv from measurements of the W pair thresh-
old shape and from measurements of the distributions of jet masses and lepton
energies. These methods are are described in Reference 3.

The purpose of this document is to consider scan strategies that are necessary
for the optimization of the threshold measurement. The small absolute size of the
W pair cross section implies that the threshold measurement will be limited by
event statistics. It will be desirable to use the ava.ilable  luminosity in an optimal
manner.
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2. High Energy e+e- Cross Sections

The character of the total e+e- cross section in the region of the Iv pair
threshold differs somewhat from the more familiar region of center-of-mass energy

&<i&.

2.1. THE CROSS SECTION FOR e+e- -+ ff

_ -T-he  basic e+e- + ff cross section for five quark and three lepton flavors
increases from about 7 units of R at center-of-mass energies below the 2’ pole
to 10 units of R at energies above the 2’ pole. The tree-level cross section is
approximately 34 pb at fi = 160 GeV. Unfortunately, the initial state radiative
corrections increase this number enormously. The cross section for the process
e+e- + 72’ is approximately three times larger than the high mass neutral current
cross section. This is illustrated in Figure 1. The cross section for e+e-  + ff(y) is
plotted as a function of the normalized ff longitudinal momentum ZF and of the
f f center-of-mass energy Efr. The center-of:mass energy of the e+e- system &
is 160 GeV. Note that there is a large peak near the nominal center-of-mass energy
E,p N 6 and XF = 0 and two larger peaks near Efr = Mz and XF = f0.68.
The latter peaks correspond to highly boosted 2’ bosons. At fi = 160 GeV, we
estimate the size of the total cross section to be -150 pb.

2.2. THE W+W- CROSS SECTION

The tree-level cross section for the process e+e- + W+W- has been calculated
by Muta, Najima, and Wakaizumi!’ They incorporate the finite width of the W
by expressing the cross section in the following form,

a,,(s) = j dslp(sl) ‘fijm2ds?p(s2)+, q, s2>,
0 0

(1)

where: s is the square of the center-of-mass energy; sr and sz are the squares of
the invariant masses of the W bosons; CJ(S,  sr, ~2) is the tree-level cross section for
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the production of W bosons of masses 6 and 6; and the function p(s) is a
normalized Breit-Wigner distribution function,

p(s) = -L * srw
7rMpv (s - lug)” + sr& ’

where I’w is the W boson width.

We incorporate initial state radiation into the calculation using the structure
fur&ion approach of Nicrosini and Trentaduer’

B

oww so=J dxldx2D(xl, s)D(xz, s )  dsp(sl) dszp(s+(xlx2s, sl,s& (2)i? J
0 0

where D(x,s) is the electron structure function and A, B are limits: A = X~X~S,

B : (dG - Jq2.

The cross section CJ(S,  sr, ~2) has contributions from s-channel photon and 2,:
subprocesses and a t-channel neutrino subprocess. The form of the cross section
is too complex to reproduce here and the reader is referred to Appendix A for
the gory details. The result of the four-dimensional integration given in equation
(2) is plotted in Figure 2 as a function of .&, - iI!Iw where Eb is the single beam
energy. The mass and width of the W are assumed to be 80 GeV and 2.1 GeV,
respectively. Note that three curves are plotted: the dashed curve is the basic
tree-level cross section; the dashed-dotted curve is the cross section including the
effect of initial state radiation; and the solid curve is the c.ross section including
initial state radiation and the effect of a finite T;T/ width. The inclusion of initial
state radiation reduces the size of the cross section. The finite W width produces
non-zero cross section at energies below the nominal threshold at ,?& = Mtv.



3. Scanning Theory

The optimization of a threshold or resonance scan requires some a priori knowl-
edge of the lineshape to be measured. In this case, the W mass has been measured
to some reasonable accuracy and the Standard Model predicts the threshold shape
in terms of several parameters (&!w and I’w).

Let us consider a hypothetical scan of N energy-luminosity points:

-- _ Eb = El, Ea, . . . . EN

J Ldt = L1, L2, . . . . LN.

We assume that a cross section gi is measured at each point,

The A4 parameters aj -(j = 1, M) fo our theoretical lineshape o(E) can be
extracted from a x2 fit to the measured points. The quantity x2 is defined as, .-

N [ai - a(
x2 E c

i=l
(6CTi)2  ’ (3) -

where Sai is the error on the jth measurement.

The best estimate of the parameters (ZEN) is the one that minimizes x2. The

parameter errors are found from a Taylor expansion of x2 about the minimum
value,

x2 = x2(G) + f 5 ‘yx2 (aj - tij)(ar; - tik)
- j I;=1 i%dax:

= x2(C) + 5 (CL!-l)j,(aj  - tij)(ak  - iik)
7

j,k=l

(4)

where the matrix C-l is the inverse of the parameter covariance matrix. The error
hyperellipsoid is determined by changing x2 by one unit about the minimum value.
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It is straightforward to show that the parameter errors are given by the diagonal
elements of the covariance matrix C,

(SC&j)’ = Cjj. (5)

Averaging equation (4) over many experiments, the inverse matrix can be expressed
in the following form,

Although equation (6) is quite general, it is useful to express the cross section
errors in terms of the luminosity and the theoretical cross section. Ignoring the
statistical errors on the luminosity measurements: we can express the cross section
errors as (60;)~ = a(&)/&. Equation (6) can then be written as,

(c-l)jk = 5 Li . !qE,)
i=l cr(Ei) daj

* $(Ei) = &ii * S(&,Uj) * q&Q), (7)
- i=l .e

where we define the so-called sensitivity function S(E, ui) as

S(E, Uj) E &q * gp.

If the lineshape is a function of a single parameter or if the off-diagonal elements
of the inverse matrix C-l are small, the parameter errors have a particularly simple

form,

(SU~)-~ II 5 Li - [S(Ei, a,)] ‘. (9)
i=l

Equation (9) implies that the error Saj is minimized when the integrated Euminos-

ity is concentrated in regions of scan en,ergy where IS(E,aj)l is large. Note that

lS(E7aj)l l g his ar e w ere the derivative (ao/saj( is ar1 ge and where the cross section

is small.

* This assumption is quite valid for the measurement of non-resonant cross sections.
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The correlations between the parameters are described by the off-diagonal ele-
ments of the matrices C-l and C (the error ellipsoid is unrotated if they vanish).
The presence of non-zero correlation always increases a parameter error beyond the

value given in equation (9)! It is clearly important to minimize the off-diagonal
elements by our choice of the scan point luminosities.

Equations (7) and (5) predict the complete parameter error matrix in terms of
the theoretical lineshape and the scan point luminosities. Note that it is assumed

that X2 is well-defined (N > M) and that a suficient  number of events is collected

at each point that the errors are Gaussian.
.

Since any cross section measurement has an associated normalization uncer-
tainty, it is important to consider the sensitivity of the final result to systematic
shifts in the measured cross sections. Expanding the theoretical cross section in
parameter space about the best estimates ~j, it is straightforward to derive the
average shift in a parameter Aaj caused by shifts in the measured cross sections

A&, .II

(10) -

It is clear that we would like to choose the energies and luminosities to minimize
the parameter errors and the correlations between the parameters. We can be
guided in this task by examining the energy dependence of the functions S(E, aj).

t The presence of non-zero correlation allows the error associated one parameter to leak into
the error associated with another parameter.
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4. Mass and Width of the W

It was shown in cha.pter  2 that the total e+e- cross section in the region of the
W-pair threshold is dominated by the ordinary ff(r) final state: The isolation of
the W-pair signal requires the application of some selection criteria. The measured

cross section therefore has the following form,

where: eWur is the efficiency to identify a W-pair event; oWW(Eb)  is the cross section
plotted in Figure 2; and B is a constant that represents the residual background
(which presumably scales as l/s).

The sensitivity function for some parameter aj of the W+T/T/-  cross section
therefore has the following form,

S(E, aj) = Eww
&ww~ww(Eb) + B/(2Eb)2

* %(Eb).

The cross section oww and its derivatives* with respect to Mw and I’w are
tabulated as functions of Eb = Eb - fWw in Table I (assuming parameter values:

Mw = 80 GeV, rw = 2.1 GeV). The mass and width derivatives peak at points of
small cross section (5.0 pb and 2.1 pb, respectively). The total cross section in this
region is larger than 150 pb and the large Eff cross section is 35-40 pb. It is clear
from equation (12) that any selection criteria that can reduce the background to
a level that is comparable to or smaller than the W pair cross sections are worth
a modest price in detection efficiency.

* The calculation of the derivative da,,/~Mw assumes that the weak coupling g does not
vary with Mw. See Appendix A for a more complete discussion.
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4 . 1 .  S E L E C T I O N  C R I T E R I A

The background processes produce mostly two- and three-jet hadronic events
or lepton pair events that are often highly boosted along the beam direction. The
visible energy of the background is often small as compared with 2Eb. The W-pair
events appear most often as four-jet events (-44% of W-pairs) or as an energetic

lepton and two jets (-44% of IV-pairs).

- -The authors of Reference 3 have studied a number of selection criteria to reduce
the background cross section to less than -1 pb while retaining -75% of the four-
jet and ~45% of the lepton+two-jet events (we assume that r leptons cannot be
used and that one third of the remaining events are eliminated by the isolation cut
used to suppress heavy flavor events). The net efficiency for the detection of W-pair
events is therefore E ww E 0.53!  Note that the sensitivity functions IS(Eb, Mw)I and
I,!?(,!$, I’w)l are increased greatly by the a,pplication of these criteria (see equation

(W

-
.m

4.2. THE SENSITIVITY FUNCTIONS

The results of the last section can be used to calculate the sensitivity functions
for a real measurement of the W-pair threshold. We assume that the efficiency is

Eww = 0.53 and that the residual background is 1 pb at Eb = Mw (we take the
constant B in equation (11) to be B = 1 pb . (~Mw)~). It is then straightforward
to calculate the sensitivity functions for Mw, I’w, and the background constant
B .

The sensitivity function s(Eb, &?w) is plotted in Figure 3 as a function of
cb = Eb - hfw. Note that the maximum sensitivity occurs at Eb N 0.5 GeV.

The sensitivity function S(Eb, r )w is shown in Figure 4 as a function of Eb. As
one would expect, it peaks just below the nominal threshold (Eb = -1 GeV) where

t The W+W-  final state that consists of a pair of monochromatic acoplanar charged leptons
can presumably be separated from the background with some efficiency. Our estimate of
cwvr is therefore somewhat conservative.
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the width-induced tail in the cross section is largest. The function S(Eb, I’w)
decreases rapidly as Eb is increased. It passes through zero near cb = 1 GeV
and plateaus above Eb = 3 GeV. The sensitivity in the platea,u  region is due to
the reduction in the cross section caused by the finite width (see Figure 2). The
maximum value of I,!?(&, rw)l is smaller than the maximum value of the mass
sensitivity function by a factor of three. A good measurement of l?w will clearly
require a substantial commitment of luminosity to a point of very small cross
section. Note that the product S(Eb,  Mw) . S(Eb,  I’w) is an odd function about
the point eb = 1 GeV. In principle, the Mbv-rw correlation can be cancelled by
measuring the cross section on both sides of this point. The functions S(Eb,  Mw)

and S(Eb, rw) are not large in the region Eb > 1 GeV. The cancellation of the
correlation therefore requires a substantial commitment of luminosity to a relatively
insensitive region.

The function S(.&, B) is plotted as a function of Eb in Figure 5. As one would
expect, the background sensitivity is largest at small beam energy and decreases
dramatically as Eb increases through the W pair threshold. Note that it is possibk
to cancel the B-rw correlation but that it is not possible to cancel the B-Mw

correlation.

4.3. SCAN STRATEGIES

It is clear that precise measurements of iww and I’w require that LEP be
operated in regions of small cross section. Since all other studies of the W-pair
system require a large sample of data, there will be considerable pressure to operate
the machine on the cross section plateau at the largest available energy. In order
to estimate how precisely Mw and rw could be measured in a l-2 year run (500
pb-I), we assume that 50% of the luminosity is dedicated to operating at the largest
available energy (we assume that &b = 15 GeV or fi = 190 GeV is achieved) and
the remaining 50% is dedicated to operation in the threshold region.

It is instructive to first consider an extremely unrealistic scan scenario. We
assume that we will measure only one parameter and that the other para.meters
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are precisely known. In this case, we need only one scan point in the threshold
region for a constrained fit. We choose to allocate the entire 250 pb-’ luminosity
to operation at the most mass-sensitive point (cb = 0.5 GeV) or at the most width-
sensitive point (cb = -1 GeV). Using equation (9) we estimate the precision of
these measurements to be

6h4w = 92 MeV or Srw = 286 MeV.

The kw measurement would be a very desirable result. The I’w measurement is
not competitive with the recent indirect determinations that have been published
by the CDF and UA2 collaborations~“’

rw = (0.85 f 0.08) + rz = 2.19 f 0.20 GeV (CDF)

rw = (0.89 f 0.08). rz = 2.30 f 0.20 GeV (UA2).

Since the width cannot be measured to an interesting level, it is clearly unwise to
design a scan to measure rw. We therefore concentrate on the measurement of

.w
Mw.

A real measurement of Mw will require that the background constant B be
varied as a fit parameter. Unfortunately, the B-M~~ correlation cannot be can-
celed by a clever choice of scan points. It is therefore necessary to measure both
parameters well.

The number of scan points is somewhat arbitrary. A minimum of three points
are required to constrain the two parameter problem. The presence of a high energy
point implies that only two points are needed in the threshold region. Equation (7)
implies that several closely spaced points in a region of large sensitivity are equiva-
lent to a single point in the same region. We can therefore analyze the optimization
of the 1Mw measurement by considering a two-point threshold measurement.

An optimal sca.n must include an energy point in a region of large background
s e n s i t i v i t y  jS(Eb,  B)I d  p  * tan a om near the maximum of the mass sensitivity func-
t i o n  /S(&,&!w)I. We choose the scan point energies to be Eb = -5 GeV and
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Eb = 0.5 GeV, respectively.* The apportionment of the available luminosity be-
tween the two points is a straightforward problem in one-dimensional optimiza-
tion. We find that the error Shilw has a very broad minimum about the ratio of
luminosities, L(O.5 GeV)/L(-5 GeV) 21 2/l. If the luminosities of the -5 GeV
and 0.5 GeV points are 85 pb-’ and 165 pb-I,  respectively, the minimum value of
the error SlMw  is approximately 155 MeV.

A two-point threshold scan is somewhat risky. It is safer to bracket the region
-- _

of maximum Mw sensitivity with several scan points. We therefore construct an
optimal four-point scan (a five-point measurement when the eb = 15 GeV point
is included) by assigning one third of the 165 pb-’ (55 pb-‘) to each of three
points: cb = 0 GeV, 0.5 GeV, and 1.0 GeV. It is instructive to compare this scan
(Scan 1) with a slightly modified version. The modified version (Scan 2) is created
by shifting the luminosity from the Eb = 0 GeV point to eb = -1 GeV. We expect

the second scan strategy to improve the width measurement at the expense of the
mass measurement. Finally, we note that our modified scan strategy is similar
to the scan strategy that was studied in Reference 3 (which we iabel Scan 3r
The authors of Reference 3 assigned 100 pb-’ to each of the following five points:

Eb = -5 GeV, -1 GeV, 0 GeV, 1 GeV, and 15 GeV.

Using equation (7) and the sensitivity functions, the performance of each scan

scenario can be estimated. The expected number of detected events and the ex-
pected precisions  Shlw, SI’w, and 6B are listed in Table II for each of the three

scan strategies. The presence of a high energy point in each strategy reduces the
AJW-I’,  correlation sufficiently that the &fw precision obtained from the three
parameter fit is essentially identical to that obtained from a two-parameter fit.

As one might expect, the third scan strategy which allocates 400 pb-’ to
the threshold measurement provides the most precise Mw measurement, SAJkv =
150 MeV. The iLfw precision obtained from the optimized mass scan (Scan 1) is

* Varying the energy of the second point about 66 = 0.5 GeV verifies that the B-Mw corre-
lation does not shift the point of maximum n/lw  sensitivity.
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worse by 7%. Note however, that Scan 1 produces nearly GO% more events than

does Scan 3. Surprisingly, the second scan strategy provides a slightly better width
measurement than does the third strategy. This occurs because the second scan
produces a smaller B-I’w correlation than does the third scan strategy.

It is clear from equation (12) that the functions S(Eb,  uj) are sensitive to the
level of residual background and to the W-pair detection efficiency. We investigate
these effects by reducing the background constant to B = 0.5 pb . (IMw)~  and
by-increasing the detection efficiency to &ww = 0.70. The results are listed in
Table II. The error SMw is improved by approximately 20 MeV in the case that
the background is reduced by a factor of two. The mass error is improved by
approximately 30 MeV when the efficiency is increased. Note that the optimal
luminosity ratio L(0.5 GeV)/L(-5 GeV) is nominally sensitive to both effects.
However, the optimal region is so broad that the use of a 2/l ratio degrades the
result by less than 1%.

4.4. SYSTEMATIC ERRORS .m

The measurement of the W-pair threshold is affected by systematic uncer-
tainties on the energy scale and cross section normalization. The energy scale
uncertainty affects the Mw measurement directly. Assuming that the fractional
error on the beam energy scale is constant, the uncertainty on lllrw should be com-
parable to the one that applies to the Mz measurement. By 1994, this uncertainty
is expected to be -20 MeV.

The sensitivity of the results given in Table II to normalization errors can
be estimated from equation (10). Taking the first scan strategy as an example,
we estimate that the uncertainties on the parameters are related to an overall
normalization uncertainty Sa/f~ as follows,

SMw = - 2.26 GeV. k
0

Srw = - 19.3 GeV. k.
0
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The normalization error must be controlled to the 3% level to avoid inflating the
Mw error.

4.5. SENSITIVITY TO ASSUMPTIONS

Our analysis assumes that we have complete a priori knowledge of the IV

resonance parameters. Although the characteristic width in Eb space of the Mw-

sensitive region is larger than the current uncertainty on hfw, our precision esti--- _
mates are likely to be somewhat optimistic. It is possible to alter the results by

210% by varying the resonance parameters over reasonable intervals.

5. Conclusions

Despite the uncertainties on the ultimate W-pair detection efficiency and resid-
ual background contamination, several conclusions can be drawn from this analysis:

1. The most sensitive scan region for the measurement of Mw is cb = O-l GeV.
The mapping of the entire threshold shape would produce a less p,recise  mea-

surement.

2. It is not possible to remove the correlation between the background parameter
and Mw by a clever choice of scan point energies. This implies that a scan
point of energy below the nominal threshold is quite important. If the energy
is chosen to be cb = -5 GeV (Eb = 75 GeV), an Mw-optimized scan strategy
would allocate twice as much integrated luminosity to the Mw sensitive
region as is allocated to the low energy point.

3. A measurement of Mw at the 5160 MeV level is possible with the dedi-
cation of a large integrated luminosity (250 pb-‘) and good control of the
background contamination.

4. The measurement of I’w to an interesting level is difficult or impossible. It
is probably unwise to attempt anything more than a cursory measurement.
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Table I

The W-pair cross section and its derivatives as functions of beam energy
Eb = Eb - AIw. The W mass and width are assumed to be SO GeV
and 2.1 GeV, respectively. The errors are the statistical -uncertainties
associated with the Monte Carlo integration.

cb (GeV)

-5.0 0.44f0.01
_ --4.0 0.56f0.01

-3.5 0.59f0.01
-3.0 0.6Sf0.01
-2.5 0.84f0.02
-2.0 1.00f0.02
-1.5 1.23f0.02
-1.0 1.56f0.02

- 0 . 5 2.09f0.03
0.0 2 . 9 1 f 0 . 0 3
0.5 3.87ztO.03
1.0 5.01f0.04
1.5 5.99f0.05
2.0 6.99f0.05
2.5 7.Slf0.05
3.0 S.59f0.06
3.5 9.42f0.06
4.0 10.06f0.07
4.5 10.55f0.07
5.0 11.19f0.07
5.5 11.65f0.07
6.0 12.1sf0.0s
7.0 12.96f0.08
8.0 13.59f0.08

10.0 14.74f0.09
15.0 16.31f0.10

gww (Pb) d~,,/6Mw  (pb/GeV) daww/drw (pb/GeV)
-0.102f0.004
-0.153f0.005
-0.188f0.005
-0.239f0.006
-0.310f0.006
-0.407f0.007
-0.591f0.008
-0.s59f0.010

-1.34f0.01
-1.91f0.01
-2.27f0.02
-2.29f0.02
-2.17f0.02
-2.05f0.02
-1.SSf0.03
-1.7Sf0.03
-1.67f0.03
-1.50f0.03
-1.4Sf0.03
-1.43f0.03
-1.34f0.04
-1.29f0.04
-1.19f0.04
-1.Olf0.04

-0.902f0.043
-0.623f0.047

0.195f0.005
0.241f0.004
0.275f0.004
0.318f0.004
0.375f0.005
0.424f0.005
0.500f0.005
0.567f0.006
0.603f0.006
0.491f0.007
0.223f0.008
-0.026f0.010
-0.215f0.011
-0.336f0.012
-0.415f0.013
-0.464f0.014
-0.501f0.015
-0.546f0.016
-0.533f0.016
-0.573f0.017
-0.550f0.017
-0.567fO.OlS
-0.537f0.020
-0.571f0.020
-0.509f0.021
-0.495f0.023
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Table II

The predicted results of three different five-point measurements of the W-
pair threshold. Scan 1 is optimized for the measurement of Mw. Scan 2 is
an attempt to improve the measurement of l?w. Scan 3 is identical to the
threshold scan used in Reference 3. The results are presented for several
assumptions about the level of residual background B and the W-pair
detection efficiency.

Quantity

L[-5 GeV] (pb-r)
L[-1 GeV] (pb-r)
LIO GeV] (pb-r)

L[O.5 GeV] (pb-‘)
L[l GeV] (pb-‘)

L[15 GeV] (pb-‘)

B = 1.0 pb . [2Mw12
& wu, = 0.53

Number of Events
Siklw (MeV)
Sl?w (MeV)

SB (pb . [2AIw]“)

B = 0.5 pb . [2Mw12
& ww = 0.53

Number of Events
SMpy (MeV)
SI’w (MeV)

SB (pb . [2A&12)

B = 1.0 pb . [2AIw12
& ww = 0.70

Number of Events
SA4w (MeV)
SI’W (MeV)

SB (pb - [2Mv12>

Scan 1 Scan 2 Scan 3

85 85 100
0 55 100

55 0 100
55 55 0
55 55 100

250 250 100

2951 2912 1863
-160 176 150

531 482 492
0.12 0.12 0.12

2737 2698 1627
137 154 130
50s 450 44s

0.096 0.09s 0.09s

3760 3709 2309
130 144 123
453 407 410
0.12 0.13 0.13
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FIGURE CAPTIONS

1) The cross section for the process e+e-  + ff(r) is plotted as a function of
the normalized ff longitudinal momentum XF and of the ,f center-of-mass
energy Eff. The center-of-mass energy of the e+e- system is 160 GeV.

2) The cross section for the process e+e- + w+w- as a function of Eb - Mw.
The mass and width of the W are assumed to be SO GeV and 2.1 GeV,

- - -respectively. Note that three curves are plotted: the dashed curve is the
basic tree-level cross section; the dashed-dotted curve is the cross section
including the effect of initial state radiation; and the solid curve is the cross
section including initial state radiation and the effect of a finite T/T/  width.

3) The sensitivity function for Mw as a function of the single beam energy
about the W pair threshold .&, - Mw.

4) The sensitivity function for rw as a function of the single beam energy about
the W pair threshold Eb - Mw.

5) The sensitivity function for the background parameter B as a function of the
single beam energy about the W pair threshold Eb - Mw.
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Appendix A

The form of the cross section ~(s, ~1, ~2) is reproduced from Reference 4 as
follows,

U(S, Sl, 4 = UAA + UZZ + gvv  + aAZ + ~Au  + OZv,

where the partial cross sections are:

1 e4- -
uAA  = 64rs2  c$

1 g4
aZZ = myg (s - AQ’

Gz(s,  sl,sz),

1 e’g’ v
uAZ = 64Ks22s(s  - A$) G(s,  Sl, s2>,

1 e2g2 1 2
aAu =  64~s~ 2  s sls2----G3(s,  ~1, s2),

1 g4 v - a 2 -
UZ” =  - - -------3(% sl, s2).641r.s~ 8 s - ill; s1s2

The constants v and a are the vector and axial-vector couplings of the electron
to the Z’,

v = l-4sin”$,,

a =  - 1 .

The functions G1, G2 and G3 are given as follows:

Gl = - x3’“(s,  ~1, ~2) {X(s, ~1, s2)/6 + 2 [s(sl + ~2) + s1s2]} ,

G2 = - x1/2(s,  ~1, ~2) {A(s,  ~1, s2)/6 + 2 [s(sl + ~2) - 4sls2]}

+ 4sls2(s  - ~1 - s2)111 [f(s, ~1, ~a)],

G3 = - X1/2(s,~l,~2)  [(s + 11~1 + ll~z)X(~,  ~1, ~2)/6

+ 2(s? + 3.~1~2 + s;)s - 2(s; + s;)]

- 4~1~2  [+I + ~2) + ~1~21  In [f(s, ~1, s2)] ,
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and the auxiliary functions X and f are defined as,

+71,s2) =  s2 +  s:: +  s; - 2(SlS +  s2.s +  SlSZ),

f(s, Sl, S2) =
s - Sl - s2 - N2(s, Sl, S2)

s - Sl - $2 + N2(s, Sl, 4’

The W-pair cross section ~(s, sr, ~2) is sensitive to the wea.k  coupling constant g
and is relatively insensitive to the parameter sin’ 8,. At tree-level, the parameters
g-a&l sin2 6, can be expressed in terms of Mw as follows,

g2 = 4fiGFhf$,

sin2 8, = AZ/M&.

The precise measurement of Mz has, in principle, fixed g and sin2 0, except for
loop-level corrections. If we assume that the Standard Model is correct, the Mw

dependence of these quantities is much smaller than the tree-level expressions in-
dicate. The full set of electroweak radiative corrections for CJ(S, sr, 32) is necessar.y
to understand the Alw dependence.

For testing the Standard Model, it may not be desirable to use Mz-constrained
expressions for g and sin2 BW. The parameters appearing in CT(S, sr, ~2) can be

expressed as functions of Mw or allowed to vary as free parameters.

To investigate these effects, we have calculated the mass derivative &r,,/dMw

for two cases:

1. The parameters g and sin2 O,, are fixed to reasonable values (g = 0.65 and
sin2 8, = 0.230).

2. The parameters g and sin2 QU, are allowed to vary with Mw according to the
tree-level expressions (a.bout 0.65 and 0.230).

Although one might expect the A4r,v sensitivity of the second procedure to
exceed that of the first, the magnitude of the derivative da,,/BM/v is smaller in

the second case (by -IO% at its peak value). This occurs because the presence of
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the threshold causes crWW to decrease with increasing Mw and the weak coupling
causes it to increase with increasing Mbv.  The use of the second fitting procedure
would increase the errors SMw listed in Table II by approximately 10%.

In the case that g is allowed to vary as a free parameter, the Mw derivative
is equal to the fixed-g case. A fifth scan energy is then essential (our hypothetical
scans do contain five points: four threshold points and one high energy point).
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