
SLAC-PUB-5251
June 1990
T/E

OBJECT ORIENTED PROGRAMMING

FOR SIMULATION PROBLEMS IN PHYSICS*

RICHARD BLANKENBECLER

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309

A B S T R A C T

In this paper, the use of object oriented programming techniques for physics

simulations is discussed, as well as the type of problem for which OOP offers unique

advantages. It is argued that object oriented programming can be used to efficiently ‘-

treat a general class of simulation problems that are difficult, tedious or inefficient

to program using standard languages. The methodology advocated here is to

represent physical entities (in this case particles) and their dynamical properties by

Objects in the sense of code. The advantages of using object oriented programming

languages will be illustrated. Our detailed example should be considered as an

programming experiment in OOP-an attempt to produce a working template for a

particle production and decay Monte Carlo program. Objective-C from Stepstone

Corporation, which combines OOP with the efficiency of the C language, will be

used in the examples.

Alchemists of old used ciphers to protect their cabal
knowledge, nowadays we simply encode in FORTRAN.

Submitted to Particle World

*Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Introduction and Motivation

The origin of the ideas developed here arose from work on the Reason project at
SLAC.l This effort was aimed at developing an interactive data-analysis program
package on a NeXT computer. This is a UNIX machine, making exclusive use of

n

Objective-C in NextStep, its graphical interface.‘ For a discussion of the general

‘language philosophy see the book by B. J. Cox3 in which an overview (definition)
of Objective-C is given. For an introduction to OOP concepts, read P.F. Kunzf

I will describe an experiment in the use of object oriented programming tech-
niques for certain Monte Carlo simulation problems using Objective-C as a lan-
guage of choice.5 One characterization of simulation problems is whether or not
their ‘active’ elements, the degrees of freedom, are fixed in number and character-
istics,- or whether they vary, even randomly, during the simulation process. I shall
argue that especially in this latter range, OOP can offer many unique advantages.
The features of the language that may seem foreign to FORTRAN programmers _
will be highlighted during this discussion.

The analysis, formulation and organization described here is of general utility;
it can be used in many types of applications. At this time, I have written simu-

lation templates for several different physical problems in an effort to explore the
advantages and disadvantages of OOP. These working templates will also serve as
an example of OOP coding that can be ‘fleshed’ out later by others (those who
are interested in the particular application, know what they are doing, what they
want, and how the output is to be displayed.). One of them, a simulation code
that describes particle production and decay, will be explicitly summarized here;
it actually forms a part of a larger physics simulation package that contains, in
addition, a quark-gluon cascade generator and a detector model.

We will now show that OOP code can be designed to mirror the physics of the
problem rather than a straightjacket forced by the language. The new methodology,
valid for general simulation problems, is one of the essential points; the decay Monte
Carlo problem is a particular important application in particle physics.

2

Physics Analysis - Particle Data Classification

Particles are characterized by data and by actions such as decay, propagate,
flip-spin, interact, etc. A particular elementary particle is described by a set of
simple parameters such as mass, charge, other quantum numbers, space-time posi-
tion, momentum-energy, helicity, etc. These parameters are required for all parti-
‘cles; &hus we are lead to the concept of a minimal or generic ‘particle’ data set, or
class. Unstable particles require more parameters; lifetimes and branching ratios
for particular decay modes must be given. It is clear that both the stable and un-
stable particles actually produced in the decay chain form the fundamental degrees

of freedom of the problem, and we shall concentrate on their description. The nat-
ural way to proceed is one that has been historically efficacious, namely, to classify
the particles into similar groups and analyze their similarities and differences with
a particular eye towards the choice of data classes; i.e. we first consider the elec-
tron, positron, photon, neutrino, piPlus, piZero, Kplus, . . -Jo, etc., as obvious .m
class choices, and then group those with common features.

One very basic physical property, and hence a natural point of division, is
whether a particle is classified as a boson or a fermion. Physics demands that we
be able to treat these types differently. Thus Boson and Fermion will clearly form
a. useful distinction in any classification scheme. The next question is what further
subclasses should be defined under these two basic characteristics?

One natural group classification is that of SU(3). If we make the pseudoscalar
octet a class, for example, we indeed find similarities, but also annoying differences.
The major problem with this choice is that the decay modes of these mesons are
very different. A unified description of the decays of the octet would be overly
complicated. It is more natural to split the octet into particles with similar de-
cay characteristics. After some thought (and trying several possibilities), I have
chosen to classify only the particle pairs directly related by charge conjugation as
immediate relatives. This will lead to a very simple description of the decay chain
process, with the physics and the physical parameters occurring naturally.

3

Implementing This Physical Description

The next task is to find a natural way to express the physical description out-
lined above in terms of code. We would like the code, in generating a new particle
in the chain, to produce a generic particle, add any needed general properties, and
finally add the particular decay parameters specific to the produced particle type.

In addition, we also must add methods to allow a particle to perform an action,
such as decay, in its own way. We may also want particles to propagate through
a detector with or without a magnetic field, interact, lose energy, etc. Methods to
simulate these physical actions will be needed eventually; however for clarity, the
simple example described here will assume a perfect, and large, detector.

How should this programming problem be approached? Fortran does not seem
to be.a natural language to implement the above requirements. C is much better,
particularly its use of pointers, recursion, and allowance for data structs, but as
we shall see, object oriented programming provides a truly natural dialect for this -
problem.

Getting Along with Objects and their Actions

Three key concepts of object oriented programming were discussed in ref. 4 ;
they are encapsulation, messaging, and inheritance. We shall make extensive use
of all three of these features. Encapsulation will allow a simple treatment of the
(different) physics of each particle type. Messaging and polymorphism will clarify
the operation of the code. Inheritance will play a very important role in shortening,
simplifying, and insuring consistency among the physics objects.

The main feature of OOP that we will use is the fact that memory management
and bookkeeping are not the responsibility of the programmer but of the compiler
and the run-time system. Indeed, recall that the methods that generate new in-
stances of a class, termed factory methods, must set aside the proper amount of
memory for each generated class object and set up access to the data for the action
methods of the class; this is handled automatically and efficiently. As mentioned,

to simplify the code, extensive use will be made of inheritance and polymorphism.

4

Decay Monte Carlo Hierarchy

The highest class, a subclass of Object, will be chosen to be Particle. In this
class, all general and universal attributes shared by every particle will be introduced
as instance variables. Action methods of universal applicability and general utility
will also be defined; this will thus be the ‘largest’ class. Two natural subclasses of
the Particle class are then introduced, Boson and Fermion.

-- _
Next, most of the physical particle types, the electron, pion, etc., can now

be introduced as a subclass of one of these two classes. Using charge conjugation
invariance, I have arbitrarily chosen the negatively charged member to be a subclass
of the positively charged member; thus physical parameters will occur in only one
spot in the code-with the relevant positively charged member of the pair. These
pairs possess the same number and values of branching ratios but have charge
conjugate decay modes.!

This completes the discussion of the particle hierarchy which is illustrated in
Figure 1. It is something of a compromise between having many generations for q
reasons of coding simplicity, and few generations for reasons of efficiency.

Explicit Code Examples

Utilities/Tools: Before I present some sample Objective-C code, note that factory
methods may create a number of new instances of any mixture of the defined
classes; a powerful and flexible filing system is needed. This is provided by the
List object predefined in NeXT Objective-C This class can create instances of
itself, and add to, delete from, and send action messages to, a list of object id’s.
Lists will be an important tool in the OOP approach. Indeed, the decay chain is
stored NOT as a linked list, but rather as a list linked by Lists.

In reading the code outline to be given below, the reader should note the
following characteristics of the OOP approach: the program operations mirror the
physics of the process, particle objects respond to familiar physics-type commands
given in English, and parameter values occur only once in the code with the particle
that uses it (no conflicts). There are NO ARRAYS and no exceeding array limits
by accident. Finally, the programmer does no explicit memory management nor

other bookkeeping choirs; hence the writing, modification and extension of the

5

code is considerably simplified.

First, we will insure that all particles can respond to every action message by
utilizing inheritance (overridden where necessary). Inheritance will also be used to
simplify the action methods of each class. For example, consider the action-method
decay; a stable particle will ignore this message. An unstable one will proceed to

-decay by first using its branching ratios to randomly decide which particular mode
to invoke; it would then proceed to create instances of its decay products and to
assign them momenta, etc. The second half of this procedure is the same for all
classes; therefore a generic method, called begat: , will be defined to carry out
this universal task, thus insuring consistency. An alternative and faster scheme for
implementing this entire procedure will also be given.

In contrasting OOP with FORTRAN code, one should compare the cycles
needed for Fortran pointer/array arithmetic and branching (written by the pro-
grammer) with the time required for an intrinsic OOP message process (N 2
subroutine CALLS). At this stage, I have opted--to maximize clarity and maintain- -
ability instead of running efficiency; this issue can be addressed later in a myriad
of obvious ways. The Monte Carlo program uses well-tested FORTRAN routines
(e.g. phase space generators) whenever possible to minimize the coding task. Out-
put is easily made available in several formats and will not be discussed explicitly.

The top ‘generic’ class Particle will have almost all the instance variables and
action methods. This class is defined by giving a finite list of physical parameters
such as charge, mass, energy, space-time position, etc.,8 and a list of methods that
act on these parameters. Action methods will be placed into the hierarchy at a
physically appropriate level, although there is clearly some freedom here. Many
utility methods that are not used in the main code but are useful for examination,
tweaking parameters, debugging, etc. are included here for general availability.

The main difference between particle types, i.e. classes, is the number and
meaning of their branching ratios. These will therefore be defined with the class
that uses them; their precise meaning will then be manifest. The interface (.h) and
implementation (.m) files of Particle, listed on the left and right respectively, will
contain:

6

I I

#import <objc/Object.h>
#import <objc/List.h>

@interface Particle:Object
c
char name[35];
-float charge;
float hypercharge;
float mass;
float E; /* energy */
float px;
. ;
float ptot;
float lifespan;
float lifetime;
BOOL has-decayed;
BOOL is-Stable;
id parent;
id childlist; /* progeny list */
.

3
+ create:sender;
- (char *> name;
- (float) E;
- setE:(float) En;

.
.- decay;
- familyTree;
- begat:(char *> decayNode;
- setParent:(char *> name;
- savelourself;
- (BOOL) is-stable;
- (BOOL) has-decayed;
(Oend

#import "Partic1e.h"

@implementation Particle
+ createzsender
(
self = C super new 1;
parent = sender;
childList = [List new];
lifespan = rando;
return self;

3
- (float) parameter // many
f // utility
return parameter; // methods

3 // such as
- setparameter:(float) qx
<
px = qx; // these.
return self;

3
//etc................

- decay // for stable
< // particles
return self; // only.

3
- familyTree;
1 // go thru object list & prt
1 // name & family affiliation.

- begat:(char *> decayMode
<

//details later...
3

I I

The variables are self-explanatory. The ratio (actual lifetime)/(average lifetime) is
the lifespan and is set at creation time by a call to a random generator with ex-
ponentially distributed output. This sets the propagation distance for an unstable
particle. It is not needed for the relatively few stable particles (but can be used to
set their mean free path if needed). The begat: method will be discussed in detail

7

later. To repeat, this is the largest class (the largest set of data and methods) that
will be defined. Most additions and modifications to the code will-go here. They
will then be inherited by every particle type, an efficient procedure.

All boson objects and its subclasses will inherit, in addition, the new instance
variables and methods introduced by the Boson class. One of the methods here
‘is make-anti; this method charge conjugates the quantum numbers of the Boson-- _
object that it acts upon. The Boson class contains the two files:

I

#import Partic1e.h

@interface Boson:Particle
(// no new variables.
1

- make-anti;

- symmetrize: . . . ; // NOT to be
// discussed
// further.

@end

#import "Boson.h"
I

@implementation Boson

- make-anti
<
charge=-charge;
hypercharge=-hypercharge;
return self;

3

The Fermion class is very similar, and will not be explicitly listed.

Creation: The specific particle classes are more interesting. The piPlus, for exam-
ple, has a class definition containing:

I I

#import Boson.h #import "piP1us.h"

@interface piPlus:Boson @implementation piPlus
(// need to add one
float br-muon; // branching ratio

3 // here. + createzsender
+ createzsender; (

self = [super create:sender];
- decay; strcpy(name,"piPlus");

charge = 1.0;
hypercharge = 0.0;
m a s s = 0 . 1 3 9 ;

br-muon = 0.75; // muon-branch

@end- _

is-stable = NO;
has-decayed = NO;
return self;

3
- decay
(. later..
return self;

3

I I

For the KPlus at least 2 branching ratios must be added, while the KZero needs
5, just for the dominant modes. To set the mass for resonance such as the rho,
one could call a gaussian generator with mass = 0.77 + 0.07 * runguus(). The code
defining the piMinus class as a subcZass of piPlus is now straightforward and short;
no new variables are needed:

#import piP1us.h #import "p0finus.h"

@interface piMinus:piPlus @implementation piMinus
(// no new variables
3 // needed + create:sender
+ createzsender; c

self = [super create:sender];
- decay; strcpy(name,"piNinus");

[self make-anti I;
return self;

3
- decay // . ..still later...

@end
I I

Decaying and Begating: The decay and begat methods are perhaps more interesting;
they are the guts of this version of the code and generate the decay chain. For the
piPlus, the decay method in the class Particle must be overridden. Once the pion
chooses to decay into a particular mode, the instances of the child-objects must
be created, the piPlus childList must be updated, and finally, the children must be
ordered to decay (note the form of the action message to the childList object given
below). These tasks are accomplished by the methods:

9

I 1

@implementation piPlus

- decay
c

char *mode;
-- float rx;

if (has-decayed 11 is-stable > return self;

rx = ranflat(between 0 and I >;

if (rx < br-muon >
mode = "muPlus+nuMuon";

else
mode = "positron+nuElectron";

[self begat:mode I; // create the mode list of particles.

has-decayed = YES;

[childList makeObjectsPerform:@selector(decay);
// sends decay message to each member of the List.

return self;
3

Qend
I I

The begat: method is utilized to create instances of all decay products. It can create
an arbitrary number of new instances of objects from the full set of available classes.
This method must take the (randomly) chosen decay mode, create the offspring,
and add each of them to the childlist. Inside begat, we may also assign them their
dynamic variables, such as momenta, or do it at a later stage. One form of this
action method is:

@implementation Particle

- begat:(char *> decayMode
<

10

char *ptype; // the particle type to be created.
char deCayModeC801; // a disposable copy of the string.
id childid; // the id of the created object.

strcpy(deCayHode,decayMode);
ptype = strtok(deCayMode."+"); // parse out particle

while (ptype != NULL > < // type to be created.

// Find factory method for class 'ptype' 8t then create an instance

childid = [[self findClass:ptype 1 create:sender 1;
- -

// and set its parent's id.

[childList insertObject:childid I; // add to childlist.

ptype = strtok(NULL,"+"); // NeXT!
1

[self SetKinematics];
// childList is nou complete
// so set its kinematics.

return self;
1

@end .- .w
1 I

An alternative form that eliminates both string parsing and the begat method
is by direct messaging; in each decay method, one creates an instance of each
particle class demanded by the chosen mode, sets the parent id, and forms the

childList by invoking the single compound message
C childList addObject:[piPlus create:self 1 1 ,

where self is the parent id parameter passed to the create method. This method
will increase the size of each decay method, but is straightforward and readable.

A perhaps faster method (no class searching) is to define as extern variables
of type (id) PHOTON, ELECTRON, PIPLUS, etc. and to initialize them to the
appropriate factory pointers by code such as

PIPLUS = [self findclass: "piPlus" 1

before invoking the creation of the deca.y chain. To create a particle, one messages
PIPLUS with the create method.

11

Driver: The driver for the program must create the initial state, set its variables
to correspond to the physical situation and then generate the required number of
events. The driver for generating a single 20 decay chain event would contain:

I I

#import <all that is needed>
#import "Partic1e.h"-- _

void main (>
1
id initialstate;

initialState= [zZer0 create:self I;
// create a ZO.

[initialstate setParent:"Original" 1;
// this is the original!

[.initialState setE:92.7 1;

[initialstate setpx:O.Ol;

C . I;

// set its energy in

//' its rest frame, and .

// repeat for py,pz,ptot.

// Now comes the step that starts the entire chaining process:
C initialstate decay I;

// The decay chain formed, and the Linked list generated
i/ using the branching ratios and random coin tosses.

// Add some code to either exhibit the event by tracing the decay chain
// And/Or save it in a file to be examined by Reason.

C initialstate exposeYourself I;
[initialstate saveYourself 1;

exit(O);
3

I I

Several different strategies of event generation can be implemented by simply mod-
ifying the driver. If a loop is added to generate multiple events, the memory used
by the decay chain should be freed after each event is generated.

12

Conclusions

At this point in the experiment, I have found that it is possible to write Monte
Carlo code in a very CLEAR and UNDERSTANDABLE form; indeed, clarity of
code still leaves freedom of choice. This type of code should therefore be easy
to write, maintain, extend, and modify. The work required to add new classes,
‘parameters, or new methods is minimal (by virtue of OOP inheritance).

The particle production and decay simulation program described here forms
the central part of a more useful trio of interrelated hierarchies that could be
labeled: field (quark, gluon, string) +(via hadronization) + particle (production
and decay of named resonances and particles) H detector (simulation of tracking,
secondaries, magnetic fields, energy loss, etc.). The arrows indicate the direction
of message passing between the three separate families.

The output of this particular program can be a data set to be read and ana-
lyzed by the Reason data analysis program. Thus the operation of the program
can be directly and simply visualized using the tools available in Reason. Alterna- ‘-
tively, one can choose to print out, for study and debugging, a ‘family tree’ that
exposes the decay chain for each event separately. Other presentations, graphical
for example, are straightforward.

In summary, when bookkeeping and memory management DOMINATE the cod-
itig tusk, then OOP offers many advantages over conventional languages. Likewise,
when maintainability and expandability are important, then object oriented pro-
gramming techniques may well be the most logical choice. There is a wide range
of interesting and even novel simulation problems that can be formulated natu-
rally and easily using an object oriented programming techniques ; this general
approach will become an essential programming tool, useful for a broad range of
simulation problems in physics and engineering.

ACKNOWLEDGEMENTS

The author wishes to thank all the contributing members of the Reason project
for putting up with a neophyte to group programming and for providing many
helpful criticisms. A special thanks to Paul Kunz.

13

REFERENCES

1. ‘The Reason Project’, by W. B. Atwood, Richard Blankenbecler, Paul F.
Kunz, Benoit Mours, A. Weir (SLAC), G. Word (Vanderbilt U.), SLAC-
PUB-5242, April 1990. llpp. Contributed to the Rencontre de Moriond,
Spring 1990, (by P. F. Kunz), and the Santa Fe conference, see ref. 4 .

2.-See, for example, Doug Clapp, ‘The NeXT Bible,’ Brady Books (1990), and
Bruce F. Webster, ‘The NeXT Book,’ Addison-Wesley (1989).

3. Brad J. Cox, ‘Object-Oriented Programming, An Evolutionary Approach,’
Addison-Wesley (1986). Objective-C is available for many platforms.

4. ‘Object Oriented Programming’, by Paul F. Kunz (SLAC), SLAC-PUB-
5241, Apr 1990. 12pp. Invited paper given at 8th Conference on Computing
in High Energy Physics, Santa Fe, NM, Apr 9-13, 1990.

5. Other efforts that I am aware of, for example K. Wilson, Ohio State, in
Quantum Chemistry calculations, J. Dreitlein, Colorado, and independently .-
P. LePage, Cornell, in field theory simulation, are using C++ . These appli-
cations do not seem to be using the features of object oriented programming
that will be essential here. Indeed, it is perhaps not surprising to find that
the optimum language depends upon the problem of interest.

6. For the neutral K (or D or B) systems, an interesting alternative class
structure is to define a subclass of Boson called NeutralK, with subclasses
KShort and KLong. This can be used to simplify the decay methods by
tossing a coin at create time to determine CP and the relevant subclass.

7. List objects are defined in native Objective-C as well, but with different
names.

8. Recall that a given class may have several instances of itself generated during
execution. The data in each instance, i.e., each object , may be different; a
variable in the data structure is termed an instance variable.

14

1 Boson

r--z---t

ETC. ETC.

MONTE CARLO -- CLASS HIERARCHY
FIGURE 1

