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ABSTRACT 

- We find that topological invariants, isomorphic to Donaldson Polynomials, exist in 

chiral superfield theories. Twists between these invariants and those of the corresponding 

: TQFT are given. In the topological sigma model, anti-commuting charges of integer spin 

are found which together with the BRST charge, fill out a D=2, N=2 supersymmetry 

algebra. 
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Sr$ersymmetric quantum mechanics has been used to study the topology of manifolds. 

- For example, the calculation of the index Z’r(-)F leads to proofs of the Atiyah-Singer 
s .- 

index theorem [ 11 and the Morse inequalities [2]. Th is connection between topology and 
-: 

quantum field theory has been furthered through the introduction of a class of theories 

known as topological quantum field theories (TQFT’s) [3]. Correlators of observables in 

these theories depend on the topological class of the field configuration under consideration 

(i.e. on the choice of in and out vacua). They are independent of the differentiable structure 

of the manifold. In chiral superfield theories (xST’S) a similar situation arises. In Ref. [4] 

it has been shown that the correlators of the lowest components of chiral superfields a.re 

independent of the positions of the operators. 

_ . In this letter we will discuss how to make the connection between xST’S and TQFT’s 

precise. We will look at the examples of D=2, N=2 supersymmetric non-linear sigma, 

model and D=4, N=2 supersymmetric Yang-Mills theory. 

TQFT’s can be constructed as the BRST gauge fixing of a local shift (topologica.1) 

symmetry under which only the homotopy class of a field configuration is preserved [5,6]. 

Schematically, one’has 62?(x) = F(X). In the BRST q uantized theory, F carries opposite 

Grassmann statistics to L?. If B is a commuting boson then F is Grassmann odd. In one and 

two space-time dimensions where spin is of no physical consequence, the anti-commuting 

ghost t+ fermion identification becomes meaningful. Then the topological transformation 

L 

. is suggestive of a supersymmetry transformation. 

The actions of TQFT’s are of the form Stop = s,[Q, K}. M is the space-time 

manifold. The quantity K depends on the metric on the manifold through the defintion 

of inner products of the fields. These fields constitute positive and negative ghost number 

multiplets under a BRST charge, Q. A BRST invariant vacuum is constructed by inserting 

ghost zero-modes into the naive vacuum as is done in string theory. By differentia.ting the 

partition function 2 with respect to the metric one finds 
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^. for some Rab. Correlation functions of the metric independent observables in the theory - 

may be shown [3] to to be topological invariants. This proof employs the BRST inva.ria.nce 

of the vacuum and the transformation laws of the various fields. It also assumes that the 

measure of 2 is independent of the metric. 

Let us now look at supersymmetric field theories. We quickly find an analogous result 

to eqn. (1). C onsider, for example, D=4, N=l supersymmetry with supercharge QO. It is 

well known that the energy-momentum tensor may be written as T& = - &tr(y(,l [Q, $,)}) 

so that for a super-translationally invariant vacuum, (Tab) = 0 [7]. As in (l), one takes - 

2. to be metric independent. Next consider a chiral superfield theory with o,+ = 0. Let 

@] = 4 and D,@] = +O. Th en f or correlation functions of 4: 

&&(4(~1>-4(GJ) = (~(21)“‘[&~,~,)...~(2,)) = 0 . (2) 

This result holds for general chiral superfields [4]. As th e metric on the manifold was not - 

used, and the partition function is metric independent, such a correlation function is a 

topological invariant. 

The presence of topological invariants stem from the fact that the energy-momentum 

tensors of these theories are given by the action of the super-charge on something. A 

-- general argument proceeds as follows. Consider an action for bosonic and fermionic fields 

with canonical kinetic terms. Let the action, S, be constructed to be invariant under the 

action of a charge Q: [Q,S] = 0. Al so require that the energy-momentum tensor, Tab, - 

may be written as Tab = [Q, Aab}. This is immediate if S = [Q, XP} for some gauge fixing - - 

fermion Xl?. Applying the rules of canonical quantization we arrive at 
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-- 
where+4 E Y x RI, <p is a generic field and V, is covariant with respect to some local 

-. symmetry which will not concern us. Construct an observable, 0, which is a singlet of 
z .- 

the local symmetry and is independent of the metric on M. Furthermore, let it be a C” 

function in any of the fields @ for which [Q, @} = 0 and for k large enough. It then follows 

that 

Thus the vev of 0 is independent of the differentiable structure on the manifold M. In 

general, it will depend on the topological class of M. Note that if As, is a conserved current, - 

eqn. (3) yields a supersymmetry algebra, albeit unconventional. In supersymmetry we will 

_ see that the mechanism which allows for topological invariants (more general than (2)) is 

the existence of a propagating field which transforms chirally under the supersymmetry 

algebra. 

Given that topological invariants exist in xST’S, we are led to inquire if the latter are 

related to the observables of TQFT’s. By relationship we will mean a morphism, termed 

- a “twist” 7, which makes the diagram 

7 
WTOP - WSUP 

f T 
TQFT 5 N =2 xST 

~. commutative. Here WTop(sup) is the space of topological invariants constructed as cor- 

relation functions in the TQFT (xST). H enceforth, we will refer to this diagram as the 

Twist Diagram. We remark that 7 is purely a mathematical operation. Its pl1ysica.l 

interpretation, if any, has yet to be unveiled. 

The physical states of a TQFT [8] comprise a BRST complex and are the ground 

states of the Hamiltonian. They will be in one to one correspondence with the ground 

states of the corresponding supersymmetric theory. 
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W&-will now illustrate these general remarks with examples in D=2 and D=4. 

c 

-. D=2 

At tree level, topological sigma models [3] (TSM’ s can be formulated on an arbitrary ) 

almost complex manifold. In the case of Kahler manifolds, there is a relation to N=2 

supersymmetric sigma models. Prior to our work, this was realized by twisting the two 

dimensional Lorentz algebra (U( 1)) with th e internal U(1) of the N = 2 algebra and 

discarding two of the four super-charges. This gave a construction of the world-sheet 

scalar BRST charge in terms of two of the remaining supersymmetry generators [3,9]. We 

find that the TSM is invariant under vector charges which form a full supersymmetry 

algebra with the BRST charge. Furthermore, certain correlators in the supersymmetric 

theory are shown to be topological and may be twisted into those of the TSM. 

The superspace action for an N = 2 model for maps from the world-sheet to a IG.hle~ 

manifold m is Ssup = $ J d2ad481i’(@, (a) w h ere the @I are chiral superfields and I<(@, 6) - 

is the Kahler potential on A4. This action reduces to the component expression 

(5) 

The N=2 supersymmetry algebra in two dimensions contains two left-handed super-charges 

Qh, two right-handed super-charges Qf. We use the standard superconformal notation 

with the f indices denoting R-symmetry weights and the barred/unbarred denoting hand- 

edness. In this way the charges satisfy the algebra 

[&+,&-I = i2& , [&+,&-} = i2& ) 
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-- 
where41 other commutators are zero. 5’s~~ is invariant under the non-trivial N=2 super- 

-. symmetry transformations for the left-handed fields 
z [Q+, #I = +I , [Q-,4’) = it)’ , 

The transformations for the right handed fields are obtained by interchanging barred and 

unbarred indices. The actions of the Lorentz U(1) generator J and the U(1) R-symmetry 

generators on the fields can be summarized in the form Q(R, R, J), 

~(v40) ; ti’(l,o?;~ ; &l,O, f, ; 4’(0,1, -f, ; lp(0, -1, -;, ) 

-- Q+W,;l ; Q+(O, 1, -;I ; Q-4-L 0, ;, ; Q-(0, -1, -i) . 
(8) 

The topological sigma model action for maps from the world sheet, C, to a Kahler 

manifold M [3] is given by 

- - ~RIjK~xIxJ~:P~] , (9) 

y&g E a,xJ + &p-r;& , T&XI E &XI + dZqsKT‘:;LXL . 

The fields x and p are anti-commuting world-sheet scalars and vectors, respectively. The 
: 

TSM action is invariant with respect to the following non-trivial BRST transformations 

[Qd’} = ix’ , [Qd) = ixr , 

[Q[,p[} = -ir$KxfpF , [Q&} = 2&# . 

We have found that the action is also invariant under the new vector charges QZ and QS 

with 
[Qz, $‘} = ipi , [Qz,41> = id , 

[Qz,xi} = irf,xJpf , [&ax’> = %#J’ . 
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The EH%3T and vector charges satisfy the supersymmetry algebra 

_- 
t [&I,&~} = i2& , [&T-,&Z} = i2& , (12) 

with all other anti-commutators being zero. In particular each Q is nilpotent. This is an 

on-shell closure of the algebra. Presumably, with the introduction of the BRST auxiliary 

field, this algebra will close off-shell much as a supersymmetry algebra closes off-shell with 

- the appropriate introduction of auxiliary fields. The left and right ghost number (GI, S,) 

and Lorentz (J) weights of the various fields and operators are as follows with the notation 

W-h, k-h-, J> 

w,w ; PWA 1) ; P20, -1, -1) ; xv4 170) ; Xf(LO, 0) , (13) 
- -. Qr(l,O,O) ; Qr(OJ,O) ; Q&4-1,-1) ; Qr(-LO,l) . 

Now re-define the Lorentz generator to be 

and identify R E -gl and R G 6,. Then eqns. (12) and (13) become identical to eqns. 
-- 

(6) and (8), respectively, with the renamings 

I &I = Q- , &I- = &+ , Qf E&- , Qz -Q+ . 

One also verifies that STOP --) S.g~p. 

We have defined the map in the lower branch of the Twist Diagram. Let us now find 

the topological invariants of the N=2 supersymmetric sigma model. One can show that, 

for example, that given an element A,J of H(‘yl)(M), the operator 

is an element of a &+ $ Q- cohomolgy. (Th is means it is a twisted chiral operator in the 

language of ref. [lo].) Our notation is Oi$” where k denotes the real degree of 0 on C 
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with exterior derviative d. Furthermore, the ascent equations 

do(O’l) = 
(1) 

&-ho) = 
(1) 

imply that the correlation functions of i&cycle integrals of the 0 operators are independent 

of the points on the manifolds. Equations (16-17) may be generalized to elements of 

@‘yQ)(M). In fact given such a form, there are two complexes of operators 0 which may 

be formed. For example, in addition to OtG”‘), there is also c3iij-r) E AI~~T$J which is 

- an element of a Q+ @Q- cohomology. Under the twisting, the set of operators O(B) ma.ps 

into the BRST (anti-BRST) observables of ref. [3] with positive (negative) ghost number. 

Thus at-least at tree level, the Twist Diagram commutes. Also note that eqn. (16) is 

the zero-momentum limit of the vertex operator for the axion-like field in the A/r” x I< 

compactification of the superstring [ll]. 
- 

Having discussed the two-dimensional theories, we now make the following remarks 

about the D=l topological sigma model [12] and its relationship to N=2 supersymmetric 

I -- quantum mechanics. The lower branch of the Twist Diagram between topologica.1 quaatum 

mechanics and N=2 supersymmetric quantum mechanics was discussed at length in ref. 

~. [8]. Th e su er c ar p - h g es were realized as linear combinations of the BRST and a,nti-BRST 

charges. Based on this or by dimensional reduction of our D=2 results, it is trivial to 

see that there are topological invariants of the form 0, = Aal...a,(x) n,“=, Gai in both 

theories. The ai are vector indices on M and Al, E H”(M). The fields $J”; a,re ghosts for 

the TQFT and fermions for the supersymmetric theory and are interpreted as sections of 

the pull-back $*(TM) of the tangent bundle on M ((7: E C$ : R --f M). The twist of ref. [S] 

relates them and allows us to conclude that the Twist Diagram is commutative. 
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c Gaugino condensates of D=4, N=l SYM are known to form topological invariants 

[4]. However, these invariants are unrelated to the Donaldson Polynomials of TYM. The 

relationship is between D=4, N=2 SYM and TYM. The twisting, at the lagrangian level, 

between these theories has been discussed in refs. [3,13]. We will show that topological 

- invariants exist in the untwisted supersymmetric theory. If one chooses, these may be 

twisted to the Donaldson Polynomials. 

The D=4, N=2 SYM multiplet [14,15] contains one spin-l field, A,, two spin-0 fields, 

C and C*, two spin-g fields, X, and an auxiliary field, Bab. Apart from the gauge group, - 

- the bosons are singlets under a rigid, internal SU(2)r group for which the gaugino is a 

doublet (labelled by the “a” index, e G oa) and B is a triplet. Additionally, the theory is 

invariant under a rigid U(1) group f or which the charges of the set of fields (A,, C, X,) arc 

(0,2,1). The supersymmetry transformation laws which will be relevant to our discussion 

are 
-. 

Let us, for simplicity, take the Yang-Mills gauge group to be SU(2). Take the object 

~. fits) zz Tr(C2). From eqn. (18) one immediately sees that [ok-, sZto)} = 0. Given this, the 

following ascent equations may be derived: 

(19) 



where- 

R(O) = -- 
c 

Q(l)& = 

.L. 

f-+,)&j - 

n 
a(2) = 

6 (2)&j = 

,. 
f-$3)& = 

R(3)yg = 

e 
q‘q = 

- ti . . (4)&j = 

fi(2)Q + fl(,)e&i 7 - - 

;Tr(FtiC + &&)dx% dxb , 

;Tr(o abb/jXYaX,b)dxE A dxb , - 

?;Tr(Ftia,,#)dx A dxb A dx” , 

+(E&+(,‘,Q~~,~, XY(bC”)c)dx’ A dxb A dx” , I 

Te2) 7 

(20) 

ATr ( FtiFti)dx” A dxb A dx” A dxd , 

Here Ca is the complex conjugate of the anti-symmetric symbol of SL(4, C) > SU(2) @ 
- 

SL(2, C) defined by C&p E C,bC”“. a&, is defined as O&aP E ial,l,&ag’P with {ga, ab} = - - -- 

-27 bSauP. These expressions were derivable, in part, because C is chiral. It is the lowest a 

component of a chiral superfield (in N=2 superspace), W [15] : o&W = 0. The entire - 

geometry of D=4, N=2 SYM superspace may be specified in terms of this superfield and 

its hermitian conjugate. This leads us to conjecture that eqns. (19-20) (which carry 

topological information only) may be obtained from Tr(W2) by the standard superspa.ce 

projection techniques in the spirit of the construction of the Donaldson Polynomials fol 

TYM given in ref. [8]. Furth ermore, although we have not checked it, we do expect, 

that the alto) may be generalized to Tr(C2”) f or a rank n group. There will be a similar 

generalization for the remaining 52ck)‘s. The U( 1) charge of each 52(k) is (4 - k). The space, 

Wsup, of topological invariants for D=4, N=2 SYM is composed of various Lorentz scalar 

products of homology k-cycles of the fltk) ‘s in a analgous manner to the construction of 

the Donaldson maps given in ref. [3]. It would be interesting to understand the comlection 

between these invariants, moduli space, supersymmetry breaking, etc. 
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T&e twisting to D=4 TYM is achieved by first identifying the X7(2)1 index a with 

-. the dotted sum index &. That is, with SO(4) N sum @ SU(2)R as the Lorentz 
c 

-. 

group on the four-manifold (with Euclidean signature), the symmetry group of DA, N=2 

supersymmetry SO(4) 63 SU(2)1 ~3 U(1) b ecomes SU(2),5 8 sum @ U( 1) [3]. Here 

SU(2)o is the diagonal part of SU(2)R @ SU(2)I. This means that the super-charge 

becomes ok = &ha + &b’. The latter is then identified as the anti-commuting, Scala.1 

- BRST charge. Similarly, the spin-; gaugino field is identified as an anti-commuting vcct,or 

field, $J~, through the twisting caabP = ~~~~~~~ -+ ge(ybXacu * + $a _. Accordingly, the 

supersymmetry transformations (18) become 

where we have identified the spin-0 field C as the commuting, scalar field 4 of the TIW 

ghost mnltiplet. The ghost numbers of the TYM fields are the same as the U(1) cl~aqq~s 

of the corresponding fields in the SYM multiplet. As the construction of the Donalsdon 

Polynomials is based solely on eqn. (21), it is clear that the twisting leads to them. 

One may also explicitly check that under this twisting, eqn. (20) leads to the Donaldson 

polynomials of the TYM theory. For example, the most complicated expression in (20), 

namely f+3)+5j evaluates to (up to a normalization) Tr(ill, A F) which is I/T/c3, in ref. [3]. 
-- 

Thus we have found the twisting 7 : Wsup --f WTQFT from the space of topological 

invariants of D=4, N=2 SYM to the corresponding space in TYM. Given the construction, 

in refs. [13], of the D=4 TYM action from that of D=4, N=2 SYM, we have found strong 

evidence that the Twist Diagram is commutative. 

In taking only the diagonal sum of the SU(2)’ s, we have disposed of the extra charges. 

However, these may be recycled in the following way. Generally, with the identifica.tion of 

the SU( 2)1 index as a SU( 2)~ index, we will have Qq + Q $ Q& and Q% --f Qn where Qd 

is anti-symmetric and self-dual. Based on our experience with the vector charges of the 
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TSM (&-ct. III), we expect that these will also generate a symmetry of the TYM theory 

- and form a supersymmetry algebra. 
c .- 

Our discussion of the twist diagram has been at the tree level. The TSM is conformally 

invariant at the one-loop level only if the target manifold is Ricci scalar flat [16]. Ricci flat, 

Kahler manifolds meet this criterion. This is the condition for the vanishing of the one-loop 

,&function of the N=2 supersymmetric sigma model [17]. This constraint on the geometry 

of the target manifold of the TSM, a theory which is supposed to be topologically invariant, 

is surprising. It arises from the metric dependence of the measure of the partition function. 

Nevertheless, it suggests that the Twist Diagram is commutative also at one-loop ordcl 

for Ricci flat Kahler manifolds. For the D=4 TYM theory, the one-loop ,&function fol 

- the gauge coupling is p(g) = - &Cld”( G) [6]. Th’ 1s is exactly the one-loop &function 

of D=4, N=2 pure SYM (no hypermultiplets) [18] and the result also suggests that the 

Yang-Mills Twist Diagram is commutative at one-loop order. 

In conclusion, we would like to stress the following points. There are general classes 

of topological invariants in D=2, N=2 non-linear sigma model and pure D=4, N=2 SYM. 

These invariants are isomorphic to the generalized Donaldson Polynomials of TQFT’s. 

Twists between the respective xSFT’S and TQFT’s h ave been defined. Ground states 

L -- of xSFT’S are in one to one correspondece with the physical states of the corresponding 

TQFT’s. It is an interesting question as to how the twisting procedure implements the 

~. restrictions on the physical Hilbert spaces. 
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