

 1

THE REASON PROJECT*

William Atwood †, Richard Blankenbecler,
 Paul F. Kunz, Benoit Mours‡, Andrew Weir

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94309

Gary Word

Vanderbilt University
Nashville TN 37235-1807

ABSTRACT

Reason is a software package to allow one to do physics analysis with the look and
feel of the Apple Macintosh. It was implemented on a NeXT computer which does not
yet support the standard HEP packages for graphics and histogramming. This paper will
review our experiences and the program.

INTRODUCTION

The goal of the Reason project is to develop a software package to allow one to do
a physics analysis with the look and feel of the Apple Macintosh. The authors feel that
the Macintosh has set the standards for a user friendly interface with its pop-up menus,
mouse driven interaction, and little need for users to consult manuals. The Reason
project is a three part experiment. The first experiment is an attempt to achieve the look
and feel of the Macintosh for physics analysis. The second is to see if physicists would
like to do their analysis this way. And finally, Reason is an exploration into the world
of UNIX and its tools, which are not commonly used in high energy physics.

THE CHOICE OF A NeXT COMPUTER

The target of the Reason project is the analysis of summary physics data where the
storage and CPU requirements are well matched to affordable workstations. In consid-
ering the needs for doing this kind of analysis, the authors considered the following list
of desirable attributes:

• Enough CPU performance to do simple physics analyses interactively.

• Enough memory to hold the program and data.

• High I/O throughput, since data will be frequently read from disk.

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.
† Currently at CERN, Geneva.
‡ Permanent Address: LAPP, Annecy.
Copyright (c) 1990 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

SLAC–PUB–5242
April 1990
(T/E)

Invited paper presented at Rencontres de Moriond, Les Arcs 1600, France, March 12-16, 1990, contrib-
uted paper presented at International Workshop on Software Engineering, Artificial Intelligence and Ex-
pert Systems for High Energy and Nuclear Physics, Lyon Villeurbanne, France, March 19-24, 1990, and
contributed paper presented at Computing in High Energy Physics, Santa Fe, N.M., April 9-13, 1990.

 2

• A large amount of disk storage to hold the data sets.
• Good networking capabilities in order to transfer data sets from mainframe com-

puters where they are most likely to be produced.
• Megapixel graphics for display of results and user interface.
• A good programming environment to develop analysis code; generally one thinks

of a good FORTRAN environment.
• A good programming environment to develop the Graphical User Interface (GUI).

A number of workstation platforms were considered with these features in mind.
Clearly, if one wanted to achieve the look and feel of a Macintosh, then it would have
seemed logical to choose a Macintosh computer to be the platform. However, the au-
thors felt that the Macintosh was weak in the areas of memory space, I/O throughput,
disk space, networking, the standard display, and the GUI programming environment.
UNIX workstations, such as an Apollo, SUN, or Silicon Graphics were also considered.
These workstations are strong contenders except in the area of the GUI, where we felt
they were just as weak, if not weaker, than the Macintosh. A VAX/VMS workstation was
also considered, especially since it has a well known FORTRAN environment. However,
it also was poor in the area of developing the GUI. Only a NeXT computer with its
unique GUI, introduced in the fall of 1988, seemed to match our requirements.

 Although weak on CPU performance compared to RISC UNIX workstations, the
NeXT was at least equal to other UNIX or VAX/VMS workstations in other areas of hard-
ware capabilities. Its main hardware attributes are listed in Table I. Only one require-
ment was initially missing from the NeXT computer: a FORTRAN compiler. Its absence
led the authors to consider doing physics analysis without FORTRAN and a discussion
of our conclusions is treated in a separate section below. A very important feature of the
NeXT, however, is the object oriented environment for developing the GUI: NextStep.
It is this feature along with the power of a UNIX workstation that led the authors to
choose a NeXT as the best platform for the project.

 The NeXT is rather a strange computer. Some people consider it as competitor to
the Macintosh, while others consider it as a UNIX workstation. When compared to a
Macintosh, one generally looks at the Macintosh-style software that is available. There
are many useful software packages that come bundled with each NeXT system. Having

Table I. Main attributes of a NeXT workstation

 CPU 25MHz 68030, 25MHz, 68882, which is about 4 MIPS.

 Memory 8 to 16 MBytes real memory, and virtual memory operating system.

 I/O DMA 4.8MB/s burst rate, 1.4MB/s sustained.

 Disk 330 or 660 MB hard disk and 256MB read/write removable optical disk.

 Networking Ethernet (thin-net), TCP/IP protocol suite with 100 KB/s ASCII, 160
KB/s file transfer rate.

 Graphics PostScript

 Analysis programming environment C, Objective-C.

 GUI programming environment NextStep, an object oriented environment.

 Cost (with academic discount) model with 330MB disk, 8MB RAM $8,500
 model with 660MB disk, 16MB RAM $12,000

 3

these applications on the same workstation that one uses for physics analysis certainly
adds to the desirability of the NeXT platform. Notable amongst the bundled applica-
tions are TeX including a previewer, Mathematica, WriteNow (a word processor),
Sybase SQL database Server, Webster dictionary and thesaurus, a postscript previewer,
a mail program that allows inclusion of voice and graphics, and the Digital Librarian
which does a key word search into all the NeXT and UNIX documentation. At the time
of this writing, the number of third party applications, the so-called “shrink-wrapped
software”, is still very small compared to a Macintosh, but large compared to other
UNIX workstations. The quality of some of the available applications is quite high. The
desktop publishing package, FrameMaker for example, was used to typeset this article.

To develop Reason, we needed a good programming environment, so the software
tools and utilities that come bundled the NeXT were far more important than the shrink-
wrap style software. Of prime importance is the fact that the NeXT is a UNIX machine.
In detail, it is MACH UNIX which is BSD 4.3 compatible. What this means for doing
physics analysis is that the operating system is multi-tasking, multi-user, and has virtual
memory. It also means that standard UNIX utilities are bundled with the system such as
the complete TCP/IP networking protocol suite (FTP, TELNET, TN3270, etc.), NFS and Yel-
low Pages for file sharing across the network, EMACS and VI for editing with remote
logon, a full screen symbolic debugger, RCS and Make for source code and module
management, and hundreds of additional tools, not all of which we used, nor even know
about. In addition, the NeXT system has its own set of utilities which enhance the pro-
grammer's environment. The mouse-based editor, for example, has keyboard driven
commands that mimic the well known EMACS editor. It also has an interesting set of
mouse driven features which are designed to enhance its usefulness when editing pro-
grams.

Of prime importance is the application called the Interface Builder. This program is
used to layout the various windows and panels that are part of the Reason programs.
Since the NextStep environment is object oriented, one is really laying out graphical ob-
jects with Interface Builder and connecting these graphical objects to the objects repre-
sented by the code we have written. This needs to be contrasted with the window layout
applications one typically finds on other systems that merely draw pretty pictures and
then generate C code to reproduce those pictures in a difficult GUI programing environ-
ment.

LIFE WITHOUT FORTRAN

 Before choosing a NeXT computer, the authors had considered the consequences
of not having a FORTRAN compiler with the system. In other words, what would it really
mean not to have FORTRAN in the physics analysis environment, since FORTRAN is gen-
erally considered mandatory in the purchase of any HEP computer. The first thing we
realized is that without FORTRAN we would not have any histogram package such as
SLAC's HandyPak or CERN's HBOOK. Since histogramming is so fundamental in doing
physics analysis, the lack of such a package was a potentially fatal flaw in the system.
Upon closer inspection, however, we saw that such packages have two parts: the defi-
nition and accumulation of histograms, and their display. The first part is relatively sim-

 4

ple and we decided we could re-write this part using the C language without much
difficulty. The second part, the displaying, is a much larger body of code but it depends
on the graphics package. Without FORTRAN meant that one was without the FORTRAN

callable graphics packages such as SLAC’s UGS, or the GKS package which has become
the standard CERN package. The NeXT is supplied with a library of C-callable routines;
one routine corresponding to each PostScript language operator. Since graphics is a fun-
damental part of the program we were about to write, it made much more sense to re-
write all the graphics we needed in PostScript than to spend time trying to port a FOR-

TRAN-callable package to the NeXT environment.

Being without FORTRAN meant that we were also without a data management pack-
age, such as DESY’s BOS, SLAC’s JAZELLE, or CERN’s ZEBRA, which are being frequent-
ly used to organize store the data sets in memory as well as on disk. However, since we
would be writing our new code in C, and C already has the facilities to manage data as
part of the language (namely structures), those FORTRAN packages are not needed for
storing data in memory. For storing the data on disk and for reading and writing the data
from disk to memory, however, we needed to write our own package. This new data
management package is called Cheetah. Finally, being without FORTRAN meant that we
would not have some other utilities that we had become familiar with, that are written
in FORTRAN. One example is that of source language pre-processors such as SLAC’s
MORTRAN. Others are source code management system such as SLAC’s DUCS or CERN’s
CMZ. In all cases, we found native UNIX utilities to replace our old FORTRAN based
packages, which were usually more mature and easier to use anyway.

In summary, we realized that FORTRAN was not necessary for the kinds of packages
described above. In fact, since all these packages were going to be fundamental to our
Reason programs, it was far better to get a fresh start on them, than to spend time port-
ing old code, with its batch-orientation. In practice, we found we needed to extend the
features of these types of packages, which meant it was valuable to us to have our own
newly written code. We also found it quite easy to make these extensions in the C lan-
guage, while it would have been more difficult in the FORTRAN language.

Every member of the Reason development team came from a mainframe-based
FORTRAN environment, without any previous experience in either C or UNIX. Thus all
the team members had a lot of learning to do, and this learning can be considered part
of the experiment with the UNIX environment. It is thus worthy of summarizing what it
was like:

• C: No one in the Reason team found C difficult to learn. We used Kernighan &
Ritchie's book 1 (which is the book that defined the language) and found it quite ad-
equate for people with prior experience with FORTRAN programming. Most of the
team would now prefer to program in C than in FORTRAN for all our programming
tasks.

• Objective-C: Since the NextStep toolkit is written in Objective-C, we also had to
learn object oriented programming. We found a relatively high threshold to learn
these techniques, but once learned we found it quite easy to use. The cause of the

 5

high threshold is that the concepts are so different from traditional languages such
as FORTRAN. However, once learned, programming in Objective-C was not diffi-
cult at all.

• NextStep: Once Objective-C was understood, learning NextStep was not difficult
at all. In fact, with the Interface Builder application available to build our GUI, it
was extremely quick and easy to build our applications.

• PostScript: We were pleasantly surprised to find that PostScript, when used as a
set of C-callable graphic functions, was an easy to learn and use 2-D graphics
package. It has all the utility of the FORTRAN based packages we had previously
used and much more.

• UNIX: It would be unfair to say that all members of the Reason development team
truly experienced the UNIX environment because the NeXT graphical user inter-
face to UNIX protects users from many aspects of UNIX. However, one member of
the team, the principal author of Cheetah, did all his work from his home by log-
ging into a NeXT at 2400 baud. Thus he saw a pure UNIX environment, without
aid of a GUI, and was able to learn the environment and accomplish his tasks with
few problems.

Although there was a lot to learn, members of the development team felt comfortable
with the adage: “if you have to learn something, learn something useful.”

For some other standard HEP packages, however, it would not be practical to re-
write in C. For these packages, we have obtained a FORTRAN compiler from a third par-
ty vendor, Absoft. With this compiler, we have incorporated such standard FORTRAN

packages as the LUND Monte Carlo, the MINUIT minimization program, and code from
some of SLAC’s detector groups.

REASON - THE HISTOGRAMMER

Reason is an application which allows the user to perform sophisticated analyses of
high energy physics data in an interactive, user-friendly environment. All aspects of the
analysis are performed in a highly graphical and intuitive way, by means of input from
the mouse and keyboard. The user is able to completely specify the analysis, including
input files, cuts, loops over tracks, arbitrary logical or numerical expressions, histo-
grams etc. by making selections from a palette of objects. The application can accomo-
date user code to perform specific operations, e.g. jet finding, which allow it to be used
in many different situations.

The application was written on the NeXT computer mainly in Objective-C, with
some parts written in C and FORTRAN, and makes extensive use of the many features of
the NextStep computing environment.

 Specific features of interest:
The application uses object-oriented programming techniques throughout to

achieve flexibility, modularity, simplicity of coding and reusability of code. The graph-
ical user interface was written using the NeXT program “Interface Builder”, which al-
lowed rapid prototyping of many of the graphical elements of the application.

 6

Because the user is able to specify the analysis chain in a graphical, as opposed to
a lexical format (i.e. a FORTRAN or C program), the possibility of coding bugs and syn-
tax errors is greatly reduced. This enables the user to concentrate on the important as-
pects of the analysis without wasting time on frustrating debugging of code.

The data is readily accessible by means of a “data browser”; a window which allows
the user to examine the values of variables within events, including structures such as
individual tracks, vertices etc. An important aspect of the Cheetah data format that is
used as input is that it allows structure within an event.

Specific features have been incorporated which make the application “user friend-
ly”. These include the ability to redefine the features of a histogram (e.g. bin width, x
and y scales) without needing to rerun the analysis; recalling definitions for cuts, ex-
pressions, histograms etc. by “double-clicking” on the relevant graphical object; error
checking which brings up the definition panel for objects with illegal definitions to al-
low the user to make the necessary corrections; multiple histograms allow the user to
use one histogram definition for many histograms, e.g. in making a distinct histogram
of the momentum of particle tracks for each particle type. The histogram object checks
to see if a histogram has been defined for the current track. If it has been defined, it ac-
cumulates the histogram. If not, it defines the histogram according to the specified def-
inition and then accumulates it.

Fig. 1. Screen dump showing Reason - the histogrammer.

 7

Sophisticated fits to the data are made possible by an interface to the fitting appli-
cation which uses the CERN program MINUIT as the fitting engine.

Program Structure:
The application is structured around the concept of Objective-C “objects” which

perform specific functions within the analysis chain. Examples of such objects are his-
tograms, do-loops and if-thens (cuts). When the analysis is to be performed, each object
in the chain receives the message “go” in the order specified by its position in the chain.
The first object is usually the “Input” object, which, on receipt of the “go” message in-
puts the next event. Subsequent objects then make cuts on the data, accumulate histo-
grams etc. until the end of the chain is reached. The procedure is repeated for the
number of events specified by the user. The user is able to update histograms while the
analysis is being performed, or to stop the analysis at any time.

Several objects are reused many times within the application in different contexts.
An example of a heavily used object is the “Inspector” which provides a window in
which data values for a given event are displayed. In the definition of a histogram, for
example, it is necessary for the user to specify which variable is to be histogrammed.
The “Inspector” window appears within the histogram definition panel to enable the
user to choose the variable to be histogrammed by mouse-clicking on the relevant entry.
Similarly, the object which performs cuts on the data uses the inspector window within
its definition panel to enable the user to specify which variable is to be cut upon. When
the analysis is being performed, the object which uses the inspector sends a message to
the inspector object asking for value of the selected variable for the given event. The
returned value can then be cut upon, histogrammed, or whatever operation the calling
object requires.

It is possible for the user to interface his/her own code with the application in cases
when user-specific operations need to be performed on the data. An example of such a
“User Object” is a jet-finder, which takes tracks from the event and finds jets according
to a specified algorithm. We interfaced the event analysis package VECSUB (which, in-
cidentally, is written in FORTRAN) within the application by creating an object called
“Jet”. When this object is initially placed in the chain by the user it creates a data struc-
ture called “Jets” into which the output of the jet finder will be placed at run time. Vari-
ables within this structure are accessible to all subsequent objects in the analysis chain,
including the “Output” object which writes events to a specified disk file. On receipt of
the “go” message the Jet object packs the tracks into its FORTRAN COMMON blocks,
finds jets, and returns the variables of interest into the “Jets” data structure. By interfac-
ing objects in this way, the user can build upon the basic set of objects to provide an
application tailored to his/her needs.

 Description of operation:
An example of a session using Reason is shown in Figure 1. The main windows

which can be seen are (in clockwise direction from upper left) the main application
menu panel, the "Setup window" which contains the analysis chain, a Histogram win-
dow, the "Run panel" which controls the number of events to be analyzed, the "User pal-
ette" which contains objects written by the user to accomodate operations specific to
his/her interests (e.g. a Jet finding object), and finally the Object Palette.

 8

To create an analysis chain, or “Setup”, the user selects the “Setup” item from the
main menu (upper left menu in Figure 1.), and then “New setup”. The analysis chain
can be constructed by mouse-clicking on the following objects in the Object Palette
(seen in the center-left in Fig 1.)

• Input: this is usually the first object in any analysis chain. It allows the user to
specify the source of the events to be analyzed. Files of events in Cheetah format*

can be read in, or an event generator, such as the LUND Monte Carlo can be used
to generate events.

• Browser: this object does not perform any operation on the data, but provides a
window with which the user can examine the data within a given event. It is possi-
ble to “browse” through the data, examining the available data structures and the
values of variables within these structures.

• Scaler: this object simply counts the number of times it has been called. It can be
reset to zero at the beginning of each event, if desired. It is useful, for example, for
counting the number of events which have been read in, or the number of itera-
tions around a do-loop. This data is available to other objects since the scaler cre-
ates a data structure in which it places its current value.

• Expression: this object enables the user to define arbitrary numerical or logical ex-
pressions which can be constructed from variables within the data structures. A
definition panel appears when this item is selected in which the user types an ex-
pression using either C or FORTRAN language syntax. Data values can be easily in-
cluded by means of the “Inspector” window which is part of the expression
definition panel. Expressions can include any standard C function, or even other
expressions. A new data structure is created which contains the resultant value of
the expression.

• Hist: this object provides the user with one-dimensional histograms. When this ob-
ject is selected from the Palette, a definition panel is produced in which the user
specifies the title, lower limit, upper limit and bin-size for the histogram. The vari-
able to be histogrammed is selected from the “Inspector” window within the defini-
tion panel. This variable can be from any available data structure within the event,
including scalers, expressions, cuts or other user-defined objects. It is possible for
the user to make distinct histograms based on a single definition, e.g. residuals for
hits on each wire in a drift chamber. There are several display options including
points with error bars, joined points etc. Histograms can be saved to disk files, or
be fit using a quick and dirty fitter, or the sophisticated MINUIT driven fitter.

• Hist2: in analogy with the “Hist” object, this object provides two-dimensional his-
tograms. Two inspector windows appear in the definition panel, one to define the x-
variable, and one for the y-variable. Possible display options include levels of gray-
scale which are proportional to the number of entries in given bins, scatter-plots,
or simply the number of events in each bin.

* A utility for converting files in other formats to Cheetah format is available.

 9

• If...: in analogy with the “If...then” statement in C or FORTRAN, this object allows
the user to specify the conditions under which certain objects should be called.
The definition panel contains an “Inspector” window which selects the variable to
be cut upon. There are various conditions under which the “cut” is satisfied, includ-
ing x > value, x < value, x = value, x != value, low_value < x < high_value and (x
< low_value or x > high_value) where x is the selected variable and value,
low_value and high_value are specified by the user.

• Loop: in analogy with the “do-loop” of C or FORTRAN, this object allows the anal-
ysis chain to loop over structures within the event (e.g. tracks, jets). For nested
loops, it is possible for the inner loop to start looping at the outer loop index, if re-
quired. The loop index is available to objects within the loop to enable, for exam-
ple, the calculation of the invariant mass of two particles whose indices are the
loop indices of two nested loops.

• Output: this object writes out events to disk files, including all the data structures
within the events. It is possible to specify the data structures which are written out,
and any new structures defined by objects such as the expression object can also
be written. Output files can be concatenated.

Note that none of the objects in the palette described above are related only to physics.
That is, these objects are completely general and can be used with any kind of data that
has a record structure. The physics objects are contained in a User Palette which is
shown in the lower left of Figure 1. In this way, Reason can be customized for different
applications.

REASON - THE FITTER

The second part of the Reason project is currently a separate application which per-
forms fits to the data in one-dimensional histograms. This application is a graphical in-
terface with the CERN program MINUIT (7800 lines of FORTRAN) which has been widely
used within the HEP community over the last 20 years. A screen dump of the MINUIT

application is shown in Figure 2. Since this application and the main Reason application
share the same histogramming package, it is straightforward to export a histogram file
from Reason into the fitting package and back.

The fitting application attempts to make the process of fitting functions to data more
interactive and graphical. The traditional approach requires the user to specify the func-
tion to be fit in the form of a FORTRAN function, the fit parameters being specified in a
“runcard” file read in by the MINUIT program. The output of the fit was generally in the
form of columns of numbers, although the user could interface the program with his/her
favorite graphics package to provide graphical output to a terminal or printer.

Our approach involves drawing the function on the histogram in a re-sizable win-
dow on the screen. Each of the parameters of the fit can, in turn, be connected to a slider,
and the user can interactively redraw the function on the screen by moving the slider.
The chi-squared per degree of freedom interactively updates as the slider is moved. This
approach enables the user to examine the extent to which the function depends on the
parameter in question. The user can, by adjusting each parameter in turn, usually get

 10

very close to the optimal solution. This simplifies the job of the main MINUIT routines,
and minimizes the possibility of convergence to an incorrect solution.

After the MINUIT routines have converged to a solution it is possible to display the
errors on each fit parameter in various ways, including shaded regions on either side of
the curve and by animating the slider between the plus and minus 1-sigma limits. It is
also possible to plot the correlation between any two of the parameters in a two-dimen-
sional gray-scale plot in which the density of the gray at a given x-y point represents the
value of the chi-squared when the two parameters have the values x and y, respectively.

In cases where the function changes rapidly across individual bins, the fit can be
performed to the integral of the function over the bin, and the integral can be displayed
as a transparent gray-scale histogram, superimposed on the data.

The exact form of the fit function is currently specified by the user selecting a func-
tion from several simple available functions. These simple functions can be added to-
gether to form linear combinations (e.g. gaussian on a polynomial background). We are
currently implementing a scheme in which the user can define the fit function using the
same expression object as in the main Reason application. This will enable the user to
interactively define his/her own fit function, which will be able to be saved in the histo-
gram file, if desired. These defined functions could also become part of a reusable li-
brary of function objects.

A screen dump of a typical session is shown in Figure 2. The slider which is con-
nected to one of the parameters can be seen in the "parameter panel" in the upper central
region. In the histogram window can be seen a fit containing two gaussians (shown in-
dividually as gray curves, and their sum as the black curve), and the integral of the fit
function shown as the gray scale histogram. In this example, the fit was performed to

Fig. 2. Screen dump showing Reason - the fitter.

 11

the value of the fit function at the center of the histogram bins. Clearly, the fit should
have been performed to the integral of the function over the bins.

We also plan to incorporate the full functionality of the SLAC package BWG, 2 which
has been used for several years by the Mark III collaboration to perform sophisticated
fits to coherent, multiparticle decays of various charmed and strange mesons.

CONCLUSIONS

The Reason project has succeeded in developing prototype applications to do phys-
ics analysis with the “look and feel” of the Apple Macintosh. It has been tested using a
number of different data sets. It has even been used to re-do the analysis for one of the
author’s thesis. In writing these applications, the authors needed to learn programming
languages and tools not commonly used in high energy physics and they found that
these tools form a very good environment for program development. In fact, the authors
are quite surprised in how much has been accomplished in the first nine months of the
project. The Reason applications are a product of these very good tools in the hands of
a few physicists.

There is currently much work that yet needs to be done before Reason is a fully
functional application to do all sorts of physics analysis. Some of this work will be rath-
er routine, like completing the histogram package for all types of display options that
are available in mature packages. Other work will be more challenging, such as provid-
ing all the visual programming objects to do sophisticated analyses. Reason is perhaps
the first example of the NeXT Generation of physics analysis software.

 ACKNOWLEDGMENTS

 The authors would like to thank Charles Prescott for his support, encouragement
and financing of the Reason project. The authors would also like to thank Mike Fero (of
MIT), Tom Markiewicz, and Leon Rochester for the encouragement and advice. If it
were not for other commitments, each of them would have had an active role in devel-
oping the software.

REFERENCES

1 B. Kernighan and D. Ritchie, The C Programming Language, Second Edition,
Prentice Hall.

2 William Lockman, BWGNEW 2.0 User’s Guide, SCIPP 89/08, March 1989.

