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helicity formalism. 
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1. btroduction 

c Recently there has been interest in searching for CP violation with 

neutral B meson decays. The classic decay mode is B,+ YKs.ll 2 The decay 
-z 

mode B,+ I&C- has also been studied in some detail.2 

Here we suggest that decay modes, discussed earlier in the 

literature,s11,49s of the type B,+ D”Xo or B,+ D’OXO--generated by the quark 

process b+ c+u d--may offer experimental sensitivity comparable to YK, 

when the Do or D*O particle decays into a CP eigenstate, (f)U6 As in the YKs 

case, the large amplitude due to the direct decay (Bd+ D(*)OXO+ (f),XO) 

interferes with the large amplitude due to B, - Bd mixing (Bd phys+ B,+ I 
.- . . D(*)OXO+ (f),XO) to yield a sizeable asymmetry.7 

Furthermore, the prediction for this asymmetry is theoretically clean. Akin 

to the B,+ YK, mode, Section 2 shows that uncertainties in hadronic matrix 
- 

elements and final state phases do not enter. Within the standard model of the 

electroweak interactions, in which CP violation arises from the complex 

Cabibbo-Kobayashi-Maskawa (CKM) matrix,8 the interference term for 

B,+ (f)DXo is the same as for B,+ YKS, namely jlm hi = sin(28), and satisfies9 

0.08 s sin(2/3) 5 1. (l-1) 

The angle 8 is the angle between L& Vtd and V-,.i Vd, 

-. 

P = -arg - 
( 

$b hd 

hb hd 

To increase the data sample many different modes of the type (f),XO can 

be summed over.5 Since the asymmetries of final states with opposite CP 

parities differ by a minus sign, it will be crucial to distinguish between final 

states with different CP parities, so as not to dilute the signal.10 Section 3 

discusses how to extract CP parities of two body final states within ihe helicity 
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Formalism. Equipped with this knowledge, Section 4 lists the relevant decay 

modes of the form (f),XO. 

-- 
Whether the decays Ed+ D(*)OXO+ (f),XO are a realistic complement 

to the YKs mode depends on their branching ratios. Section 5 estimates their 

branching ratios within the framework of the BSW model,11 but cautions the 

reader that final state interactions and other uncalculable effects render such 

estimates unreliable. Ultimately, measurements of the final states will 

determine whether those decays can substantially complement the YKS mode. 

Even if the (f), X0 modes are not competitive with the YKs one, 

important information will be obtained by pursuing them. The standard model 

predicts the same CP violating interference term Im h, for the (f)DXo, YKS and 
. . 

D+D- modes. If new physics were to occur within the Do - Do complex, the 

interference term of the (f),XO modes could differ from the Y/KS and D+D- 

oies,Q and would present a violation of the standard model. Section 6 

concludes. 

-. 2. Discussion 

A detailed discussion of the decay B,+ Dono+ (x+x-),, no clarifies our idea. 

Unless otherwise indicated, the discussion will hold true for other decay modes, 

listed in Section 4. Consider the process, B,+ Dono+ (x+x-),, x0. Here the 

CP asymmetry to measure is 

Asym = 
r( B, @ ,@ (IF+“-),, x0) - r( Ed phys+ (n+n-)~ no) , 

r( Bd,phys-+ (~+K-)D x0) + r( -&jphys+ b+K-)o no) ’ 
(2.1) 

Four amplitudes give rise to the decay Bd,-,hys+ (x+x-),, x0, when Do - Do 

mixing is neglected. Those amplitudes are: 

1) B,-+ Dolt’+ (7C+lT-),, A’, 

2) B,-+ D”xo-+ (x+x-&, k”, 

3) i$jphys+ i&j Doze+ (K+7L-)p no, 

P-2) 

P-3) 

P-4) 
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- 4 E+jphys+ iii,+ DO?cO+ (x+f-),, x0. (2.5) 
.- 

f 
The amplitudes 2) and 4) are doubly Cabibbo-Kobayashi-Maskawa (CKM) 

suppressed in relation to 1) and 3), respectively. 

A large interference between the main amplitudes 1) and 3) occurs, and 

the CP violating interference term is given by: 

Im h = 7 sin(2b). (2.6) 
The sign of Im h depends on whether the final state, (f),XO, is CP even or odd. 

For CP even (odd) states, Im h = - sin(2p) (lm h = + sin(2P)).lo The final state of 

our example (x+xJ, x0 is CP odd. 

Eq. (2.6) is derived as follows: The pure B, decay, ES,-+ DOJKO, can be 

parametrized as . 
A@,-+ DoIF’) = $, vud la[ 8. P-7) 

Because only one CKM combination, $., V”(j, contributes to this decay, the 

hadronic matrix elements and final state interaction phases can be represented 

as a complex number, laj ei6. Notice that this complex number includes final 

- state interaction effects, such as the rescattering, B,+ D-x+ -+ Dono. The CP- 

conjugated mode leaves the final state phases unchanged and complex 

conjugates the CKM elements, 

A( B,+ Dono) = Vch $j laj ei6. (2.8) 

The doubly CKM suppressed amplitudes will in general have different 

final state phases, but are negligible. 13 The uncertainty due to final state 

phases is removed, because those amplitudes, where different final 

state phases could occur, have tiny CKM elements and are 

negligible. 

The amplitudes for the subsequent neutral D decays are given by 

A(D”+ x+x- ) N $j Vud, (2.9a) 

A( Do+ x+x- ) m Vcd \G*d , (2.9b) 
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where a common factor is suppressed (see Appendix A). Thus, the amplitudes 

-. for the decay chains are 
f 

A( B,+ (7C+k-)p X0) N \; V”d &j yl*d. (2.1 Oa) 
-. 

A( Ed+ (n+7t-)D x0) cI - V& K; v,c, &J . (2.1 Ob) 

The minus sign in Eq. (2.1Ob) arises because the final state is CP odd.10 The 

interference term Im h is1-5 

Imh Elm 
v;, vtd A( i$.,+ (X+X-)p X0) 

vtb v;, A( t$j-+ (7C+X-)r, X0) * 
(2.11) 

Henceforth we choose to work with the Wolfenstein parametrization,14 where 

Im h =-lm !!td 
%d - 

(2.12) 

Since in the Wolfenstein parametrization the four CKM elements, . 

bdj %s* bd~ vcs, bdj %s* bd~ vcs, 

are real to excellent approximation, any Do+ (f),, decay satisfies15 are real to excellent approximation, any Do+ (f),, decay satisfies15 
- - 

APO-, (f)D) APO-, (f)D) 
A( Do+ (f)p) = * ” A( Do+ (f)p) = * ” 

(2.13) (2.13) 

(2.14) (2.14) 

- 
The sign is plus (minus) for a CP even (odd) final state (&lo For any hadronic 

CP eigenstate (f&,, the interference term is 

Im h hd =flm 7. 
Vtd 

(2.15) 

The sign is determined as discussed in the paragraph following Eq. (2.6). 

Similar arguments hold for DO(excited)+ (f),. 

A note about the neglect of Do - Do mixing is in order. If Do - Do were 

present, then for each of the decay chains (2.2)-(2.5) there exists another one, 

where the time evolved Do or Do mixes into its antiparticle. For instance, in 

addition to 

Do - Do mixing yields 

(2.2) 
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.- - B,-+ D”7Co+ DOIKO-, (x+x-)p K”. (2.16) 

-. Present limits on the square of the Do - Do mixing amplitude are rp < 0.37% 

i 
(90% CL),‘6 and for our purposes can be neglected.17 

-- To conclude the section, we recapitulate on the sign of Im h. Final states 

(f).XO which are CP even (odd) eigenstates have an interference term Im h = 

- 

- 

- sin2P (+ sin2p). 

3. CP Parities 

The asymmetries of final states with opposite CP parities differ by a 

minus sign. It is crucial to distinguish between final states with different CP 

parities, so as not to dilute the signal. Then one can attempt to sum over many 

final states, bearing in mind their respective CP parities.5 

We discuss generalities first and draw upon the helicity formalism.l8 

Denote X,, X2 as arbitrary particles with spins s,, s2, helicities h,, h,, and 

intrinsic parities nl, *, ?I: respectively. Consider the process 

A + X, X2, (3.1) 

where A has spin j and spin projection m along an arbitrarily defined z-axis. 

Within the CM frame the state vector of the final state X, X2 is 

Parity upon this final state gives 

P 1 j, m; h,, &> = x1 x2 (-l)j-sl-s2 1 j, m; -h,, -Q 

j, m; Xl, x2>. 

(3.2) 

Denote the following linear superpositions of helicity eigenstatesls as 

ljm;LS>= C Ij,m;h,,+ <j,m;h,,h1j,m;L,S>, (3.3) 

w2 

where 

<j,m;h,,h)j,m;L,S>= ( 
2L+l 1’2 
2j + 1 1 

C(LSj; 0, L h) C(s,s2S; h,, -A,, h), 

and 

(3.4) 
X=X,-Q. (3.5) 
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Here C denotes the Clebsch-Gordan coefficients. 
-. 

f The state 1 j, m; L, S> describes a state with orbital angular momentum L 

and spin S. This was shown in the non-relativistic limit by Jacob and Wick and 

generalized to the relativistic case by McKerrell.19 We do not dwell on the 

meaning of relativistic spin S in this report. All we need to appreciate is that the 

special linear superpositions of the helicity states, as given in Eq. (3.3), make 

sense relativistically. The states 1 j, m; L, S> possess the following property: 

P I j, m; L, S> = xl x2 (-l)L I j, m; L, S> . (3.6) 

We now turn to discuss CP parities. For that, we concentrate on two 

cases for the decay modes X,X, of a neutral parent particle A: 

(1) The particles Xl and X2 are either CP eigenstates (such as, p”, no, Y . . .) 

or themselves are not CP eigenstates but are observed in their decay 
- 

into CP eigenstates (such as, Do + A+z-, Do + (f)D, K*O + no Ks + 

KO (K+x-)K, K” 4 K+K-, :. .). Their observed CP parities are denoted by 

n{X,}, n{X2}, respectively. So, if the particle X (Xl and/or X2) does not 

have an intrinsic CP parity, such as K*O or Do, then n(X) denotes the CP 

parity of the final state, such as n°KS or (f),,. Sometimes we will be more 

explicit and denote, for instance, the CP parity of a Do + (f)D as n{(f)p}. 

(2) X, is the antiparticle of Xl, which can be charged or neutral. 

Whereas the helicity eigenstates, I j, m; h,, x2>, are in general not CP 

eigenstates, the LS-eigenstates, I j, m; L, S>, are. Before showing this, we note 

that for the final state X,X, to be a CP eigenstate, case (2) does not demand Xl 

or X2 to decay into a CP eigenstate when they are neutral (such as DO), in 

contrast to case (1). Now we are ready to discuss CP parities. 
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.- 

case (1): 

The helicity eigenstates do not have, in general, a definite CP parity, 

since 

CP I j, m; h,, I+ = n{X,} n{X2} (-l)j-s1-s2 I j, m; -h,, -+ . (3.7) 

On the other hand, the LS-eigenstates do have a definite CP parity, 

because 

Case (2): 

CP 1 j, m; L, S> = q{X,} n{X2} (-l)L I j, m; L, S> . (3.8) 

The state X,X, is a particle-antiparticle system. The intrinsic (reflection) 

parity of the system x is -1 (+l) for fermions (bosons). Again, CP 

transforms the helicity eigenstates according to 

CPIj,m;h,,+=~t(-l)2sl Ij,m;-h,-h,>. W) 

In contrast the LS-eigenstates have a CP parity: - 
CP I j, m; L, S> = n: (-l)s I j, m; L, S> . (3.10) 

This concludes the general discussion. 

To highlight several consequences, some less known than others, the 

remainder of this section focuses on a parent particle A that is spinless (such as 

B,, B,, Do, . . . ). Since the LS-eigenstates have definite CP parity, we choose 

them as basis states. Because the parent particle is spinless A (j = m = 0), L = 

S. Thus the CP parity for case (1) is n{X,} n{X2} (-1 )L, and that for case (2) is 

K (-1)L. If the parent particle A predominantly decays into states that differ by 

even units of L, then the final state Xl X, has a dominant CP parity. 

Consequences: 

0) If the decay A+ V,V,, where the two final particles are vectors, is 

dominated by the L = 0 and 2 states versus the L = 1 state (or vice versa), then it 
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will have a dominant CP parity. Denote the helicities of V, (V,) as h, (h2). Ref. 
-. 

f 20 points out that the mode into the helicity component ( h,, X2) = (0, 0) is a CP 

eigenstate, and can be isolated by measuring the O* dependence. Here we -. 
stress that more can be learnt. For instance, if the helicity component (0, 0) 

were negligible, the state V,V, might still be a prevalent CP eigenstate, 

because the S and D waves might dominate over the P one (or vice versa). 

Furthermore, even in the most general case, when no CP dominates, a detailed 

study of all the angular correlations, including the angle of the two decay 

planes, makes those V,V, decay modes competitive with definite CP eigenstate 

ones.21 

- . One example, which we are currently investigating, is the decays Bd + 

D*+D*- , D*O D*o 9 D*OpO, D’Oo, YK*O.21 Another example is the decays Do -+ 

V,V,, which occur close to threshold. One might argue that P- and D-waves are 
- 

- 

suppressed close to threshold. Then the V,V, modes have a dominant CP 

parity. However, recent data suggests not only a large S-wave component, but 

also a large D-wave one in Do + K*Op” decay.22 Still the P-wave has been 

found to be much smaller than the S- and D- waves and, therefore, the final 

state has a dominant CP parity when K*O is observed in its CP eigenmode 

Ref. 22 teaches us an important lesson. Suppose we want to study CP 

violation in the mode B, + YK*O. This requires the K*O to decay into its a°KS 

mode, as the K%c- mode is not accessible via the mixing-amplitude, 

ii&jphys -+ i!$, + y K*‘-k y (K+x-),, . 

In addition, we must also know the B, + YK*O amplitudes into the various LS- 

states. Fortunately, the LS-amplitudes can be analyzed using a much larger 

data sample, namely all the available decay modes of the two vectors, including 

the K*O --+ K+K- one. Actually, simplifications arise when the K*O + K%t- mode 
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is-used to extract the various LS-amplitudes, as the amplitude that involves B, - 

-. Bd mixing does not occur. 
f 

-- 
Similar arguments can be made for the decays Bd + D*OXO. Angular 

correlation studies to determine the LS-amplitudes can be performed on the 

much larger data sample, where the D’O is allowed to decay into non-CP 

eigenstates.23 Here B, - Bd mixing would not interfere. 

(ii) Consider case (1). If one of the particles is spinless (say s, = 0), then L = 

s = s2. The final state has a definite CP parity of n{X,} n{X2} (-1)‘2. An 

example is 

i$.,+ D”Xo + (&X0. (3.11) 

The CP parity of this final state is ~~{(f)p} q{X”} (-1)‘x. Here and henceforth, X0 

- 

denotes a particle with spin sx that is either a CP eigenstate or decays into a CP 

eigenstate, with CP parity n{XO}. 

(iii) A nontrivial consequence are the two decay chains, where X0 is spinless: 

(a) Ed+ D*O X0 -+ [y Dolo, X0 + [y (f)& X0 (3.12) 

(b) i+ D*O X0 + [no DO],,, X0 + [no (f,& X0 (3.13) 

Appendix B shows that both final states have definite CP parities, and that the 

CP parity of the final state in decay chain (a) is opposite to the one in decay 

chain (b), 

(4 CP 1 [y &I~ X0> = + rlV”) rlWD) 1 ir &Iv X0>, (3.14) 

(W CP 1 [no (f)dm X0> = -4X0) M(f)d 1 [no (f& X0>- (3.15) 

Thus it is crucial to distinguish the mode D*O + TCO Do from D*O -+ y Do. This is 

possible if the detector has good calorimetry, such as the Csl detector recently 

installed by CLE0.24 

(iv) Consider case (2) where both final state particles are spinless. The CP 

parity of the final state X,X, (such as, D+D-, DoDo, &A-, K” K”, K+K-,..) is 

even.25 
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.- 
f 4. Relevant 

We first discuss the decays B, + (f)d<O, when the final state is a CP 
_-. 

eigenstate. We concentrate on two possibilities: 

(1) The B, decays into the lowest lying meson with &I quantum numbers, 

the Do, via B,+ D”Xo+ (&X0. The meson X0 can be one of the 

following: 

(a) pseudoscalars (Jpc = O-) no, n, n’, 

(b) vectors (Jpc = l-) p, o, o, 

(c) the Jpc = I* resonances a,(1260), f,(1285), f,(1420), 

(d) the Jpc = O* resonances a,(980), fo(975), fo(1400), 

(e) the Jpc = It resonances b,(1235), h,(l170), 

(f ) the Jpc = 2* resonances a,(l320), f;(l525), f2(1 270). 

The above-mentioned D0 decays into a CP eigenstate, go+ (f)p. The 

CP parity of the final state in the process 

B,-+ D”xo+ (f). x0, (4-l 1 

is 

WV)D X01 = - W&l if X0 belongs to set (a)-(c), 

= + W(f)~l if X0 belongs to set (d)-(f). 

Whereas X0 from set (a)-(c) contributes with the same sign to the CP 

asymmetry, the X0 from set (d)-(f) contributes with the opposite sign, for a 

given (f)p Note that all the particles and resonances X0 below -900 

MeV enter with the same sign to the CP asymmetry. 

(2) The B, decays into D*O, or higher resonances with cu quantum 

numbers. Consider, thus, B,+ DO(excited) X0+ (f)d(“. For a spinless, 
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- 
excited Do, we allow the meson X0 to be anything listed in (a)-(f). For 

excited Do with higher spin, such as D’O, the meson X0 must be 

spinless, to allow a definite CP panty for the final state. Then the meson 

X0 must be from (a) or (d) with J = 0. 

Since a definite CP parity is required for the final state of a B, 

meson, by necessity the (f), mode --arising from DO(excited) + (f)a- 

must have a definite CP parity too. This report focuses on the D*O,26 

which has two main decay modes,27 

BR( D*O + Don+) = BR( D*O + boy) = 50%. P-2) 

Here both the D”xo and the nor are in a P-wave (see Appendix B). 

.- . Thus if the subsequent Do decays into a CP eigenstate, the final state of 

Dt” + (&. is a CP eigenstate. 

To summarize, two possibilities (1) and (2) for large clean CP violation - 
were discussed. The remainder of this section lists the Do modes (f),, into CP 

eigenstates: 

(Dl) Final states which include one neutral kaon, such as, K”xo, Ron, 

xoq*, xop, Koo, X0@, @(c)-(f),28 WW, K*on, K*on’, 

K*O (d)? 

(02) Final states which include an gs quark pair, such as, $I?, on, 

K+K-, K°Ko, i?OKO, KOK’O. 

(D3) Final states which include flavor neutral decays, such as, x+x-, 

{ti, q, q’, aos fo> {no, rl, rl’, p, 0, (c)-(f)l.2g~ 28 

The two vector modes of a Do might have a dominant CP parity as discussed in 

consequence (i) of Section 3. If the modes in (D4) and (05) below are 

experimentally found to be predominant CP eigenstates, then they could also 

be used for (f),,: 

(D4) Final states, such as, p”o, o 9, o K*O, p PO. 
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- 

(D5) Final states which are a particle-antiparticle system, such as, 
- 

f 
K*OK*O, K*-K’+, p+p-, pope, 00 . . . 

For cases (Dl)-(D4) the neutral kaon K” is seen in its X+X- decay, and 
-. 

the K*O in its K”no mode. In contrast, case (D5) allows K’O to be seen in its 

K”7co and K+~c- modes, and K*+ in its Ken+ and K+n” modes, because the final 

state (& is a particle-antiparticle system. In the next section, we estimate the 

combined B, branching ratio to final states of the form (1) or (2). 
. 5. Rate Fstlmates 

We now wish to compare the statistical power of the B,-+ (f)d<O modes 

to that of the classic B,+ YKS one. This requires estimates of branching ratios 

.- . and efficiencies. For purposes of the paper efficiency refers to the branching 

fraction to visible modes. We do not discuss the ability to vertex those modes, 

which is an important requirement for an asymmetric I’(4S) machine but not for 
- 

a symmetric I’(4S)+ or polarized Z” one. Specifically the efficiencies in Table 1 

are obtained as follows. The neutral kaon is K, half of the time, and K, decays 

to X+X- 2/3 of the time. The neutral K*O decays to K”no l/3 of the time. We 

assume the p” is seen in its ‘1c+5t- decay, the n in its 2yand X+IK-XO decays, the 

o in its &c7c” decay, the n’ in its pay decay, and the $I in its K+K- mode. The 

D’O is seen in its Dono and Day decays, and the Do in all its possible CP 

- 

eigenstate modes. 

We attempt to estimate the efficiency of Do, E,,. The measured rates for 

the definite CP eigenstates, 

Do -$ X+X-, K+K-, K”lco, K”po, K”@, p” K*O, (5.1) 

yield a total branching rate of 5%. 2722 However, when each of the decay 

modes is weighed by its efficiency (as given in Table l), the visible rate is 

lowered to Ed = 2%. We included the p” K*O mode, since it was shown to have 

a dominant CP parity (see consequence (i) of Section 3). 
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.- 
- 

If experiment were to reveal that each of the V,V, modes are dominated 
-. 

f by a single CP parity, then we ought to include them in our analysis. As no 

experimental data is yet available, we use the BSW model--with al = 1.3, a2 = 
-. 

-0.55 and a Do lifetime of To = 0.42 ps--for the following modes: 

Do + o o, 6.1 i?O, pope, K-K*+, p+p-, 00. (5.2) 

We estimate a total branching rate of 5%, and a visible rate of E,, = 2%, for the 

V,V, modes in Eq. (5.2). A note about efficiencies used in the calculation is in 

order. Whereas the efficiencies of the particles involved in modes from cases 

(Dl)-(D4) are given in Table 1, the efficiencies for the ones from (D5) differ, as 

explained in the previous section. For (D5), the K’+ is seen in its )<OIC+ mode 

2/3 of the time and in its K+KO mode l/3 of the time, E= 5/9. The K*O is seen in . 

its KOII? mode l/3 of the time and in its K+n- mode 2/3 of the time, E = 7/9. 

To summarize our findings about the Do efficiencies. When definite CP 

eigenstates are used (Eq. (5.1)) Ed = 2%. When the V,V, modes of Eq. (5.2) 

are proven to have dominant CP parities and are added, the efficiency of a Do 

- into CP eigenstates doubles to &p = 4%, but is still 3% if vertexing of the Do is 

required. 

Bauer, Stech and Wirbelll obtained the rates of decays of B, into the 

modes from sets (1) and (2) shown in Table 2. They calculated within the 

factorization approximation and obtained small branching ratios, neglecting 

annihilation diagrams and final state interactions. The modes in Table 2 have a 

combined “branching ratio X efficiency” of 3.1 X 10m4. Folding in the efficiency 

of the D*O and Do of -4%, a visible rate of 1.2 X 1O-5 results for the decays of 

the form B,+ (f)DXo. Since the visible rate of 1.2 X 10s5 for the modes (f)d<” 

arises by the summation of many channels, a careful analysis is required to 

determine the CP parity and backgrounds of the individual final states (f),XO. 

In contrast, the Y/K, is a single mode with definite CP parity, simple topology, 
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minimal background and a large “branching ratio X efficiency” of (3 X 10m4) X 
-. 0.14 X 2/3 = 2.8 X 10-5. It appears that the YK, mode is much favored over the 

i 
(&X0 ones. 

-. 
Is the situation as hopeless for CP violation in the quark process 

b-, c+u d? Not really, since the branching rates into modes of sets (1) and (2) 

could be enhanced over BSW estimates. Final state interactions can play a role 

in making the D(*)OXO modes. For instance, if at first mainly the D-K+ mode is 

made, final state interactions can still mix the D-K+ t) Dono. It is conceivable30 

that BR(B,+ D”7co) is of the same order as the measured31 

- 

- 

BR(B,+ D-K+) = 0.25%. (5.3) 

It is thus possible that one of the many modes from sets (1) or (2) could be 

enhanced. Ultimately, experiments will answer which modes are enhanced 

and which ones can be used for the asymmetry measurements. 
- 

A final comment. We are intrigued by the possibility that some of the 

D*OXO(J=l) modes, such as D*Op” or D*Oo, could have large branching 

ratios. Those modes have no definite CP parity. However, the (0, 0) helicity 

component has a definite CP parity and can be extracted as advocated in Ref. 

20. Even in the most general case, when no CP dominates, a detailed study of 

all the angular correlations, including the angle of the two decay planes, makes 

those decay modes competitive with definite CP eigenstate ones.*l 
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. 6. ~clus~o~ 
-. 

i 
Large CP violating effects are predicted with the decays Bd -+ (f),XO-- 

generated by the quark process b+ c+u 3. Similar to the YKS mode, Section L. 

2 showed that uncertainties in hadronic matrix elements and final state phases 

do not enter in calculating the CP violating interference term Im h. To increase 

statistics one could sum over many modes (f),XO, listed in Section 4. Because 

the asymmetries flip sign for final states with different CP parities, we devoted 

Section 3 to discussions of CP parities of two body final states within the helicity 

formalism. 

Section 5 compared the (f)DXo modes to the classic YKs one. Whereas 

.- . a visible rate within the BSW model of -10m5 for the (j)d<O modes arises by the 

summation of many channels, the YKS mode--a single mode with definite CP 

parity and simple topology--has a visible rate of -3 X 10m5. The BSW model 

predicts that the (j)d(O modes are not competitive with the YK, one. Final state 

interactions may enhance some.of the D(*)OXO modes, and may make the (f), 

X0 modes more competitive. Only future experiments will tell. This note 

focused on final states (f), X0 that are CP eigenstates. We can increase 

- 

statistics by including final states that do not have a definite CP parity, but are 

mixtures of CP even and odd eigenstates. This increment can be achieved by 

utilizing all the information one could gain from angular correlations.*Ol*l 

Even if the (f), X0 modes are not competitive with the YK6 one, 

important information will be obtained by pursuing them. The standard model 

predicts the same CP violating interference term Im h, for the (f),XO, YKS and 

D+D- modes. If new physics were to occur within the Do - Do complex, the 

interference term of the (f),X” modes could differ from the YK, and D+D- 

ones,‘* and would present a violation of the standard model. This idea will be 

pursued in the future. 
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. pendlx A 

In principle, three weak phases ki = Vi V,i contribute to the Do+ n+lc- 

decay. Unitarity of the 3 X 3 CKM matrix, however, reduces the number of 

independent weak phases to two, 

- A( Do+ &c-) = & ladI ei6d + ci [asI ei6s , (Al) . 

- 

A(D’+ &c-) = cd ladI ei6d + 5, Ias1 ei6s , VW 

where Iail, 6i (i = d, s) are the respective hadronic matrix elements and final state 
- 

interaction phases. Experiment informs us thatl‘Q7 

cs / td =-I + i C&z), I5&jW~ w 
where hc = 0.22 is the Cabibbo angle. 

The s-term, 4, Ia,1 ei6s, represents rescattering effects, such as Do+ 

K+K-+ &c-, and penguin diagrams, c+ u g. Clearly, the decay Do+ 7~+7t-, is 

dominated by the d-term, kc ladi ei% Even without this physical insight, we 

show that32 

A( Do+ x+x- ) 
* 

bd bd 

A( Do+ x+x- ) = %d hd 
(W 

holds--barring a fine tuning--because the weak phases of the d- and s-terms are 

almost the same. The amplitudes for the K+K- mode of the Do and Do are 



.- 
- 

.- A( Do+ X+IC-) = G ( d18 [$I la,1 ei’(jp (A5) la I ei6d + 

f 

A(D’--+ ~c+Jc-) = cd 
t 

ladI ei6d + ss. -. 5d Ia,1 ei6s 
1 

. VW 

Because of Eq. (A3), the large parentheses in Eqs. (A5)-(A6) cancel to excellent 

approximation when the ratio A( Do+ A+IC- ) / A( Do+ K+K- ) is taken. Thus, 

Eq. (A4) holds. 

Since the asymmetries that we expect for B,+ (f)DXo are of the order of 

Im h= 1 O%-lOO%, we neglect the small asymmetries in the Do modes 

advocated by Golden and Grinstein,ss 

.- 1 A( Do+ x+x- ) I f I A( Do+ x+x- ) I . VW 

Those small DO-asymmetries arise precisely because of the imaginary part of 

6s I &j- 
- 

&mendix B 

- Consider the decay chains 

(a) i&-+ D*O X0 + [y DoID, X0 + [y (f)d,, X0 

w i$,+ D’O X0 -+ [a0 DO],,. X0 + [a0 (f,.&. X0. 

X0 is a spinless particle that is either a CP eigenstate or decays into a CP 

eigenstate with CP parity q{XO}. This appendix proves that the final states of the 

former decay chain have a CP parity of +n{XO} ~{(f)~}, the latter have 

-q{XO} n{(f)p}. It will be necessary to determine whether the D* mode was a 

a0 Do or a y Do, else the asymmetry will be washed out. 

First, let us focus on the D*O + y Do -+ y (f)p decay chain. The mode 

D*O + y Do occurs via the parity conserving electromagnetic interaction. 

Since the intrinsic parity of a D*O is (-1) the state y Do must be in the 

combination: 
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- 
1 yDO>=$ { 1 ~(-1) Do> - P 1 ~(-1) Do> }. W) 

.- 
f Here the state vector 1 y(h) Do> = I j = 1, m; 3c, h, = O> is given within the helicity 

basis, where j = 1 is the spin of the vector D*O, and h = fl is the helicity of the 

photon. With the aid of Eq. (3.2), parity gives 

Ply(li)D IyI--3L)DO>. W) 

The configuration in which the y Do finds itself is given by 

lyD%=+ { 1 ~(-1) Do> - 1 y(+l) Do> }. (83) 

Even though the subsequent Do modes into CP eigenstates (f)p occur through 

the parity non-conserving weak interactions, still the final state y (f),, has the 

configuration 
. 

I r(f)g=- ;5 { I YW (f)D> - I y(+‘) (f)D> } * w 

Eq. (3.7) shows that this configuration has definite CP parity 

cp I Y (f)D> = - W)& I Y (f)D>P (85) 

where the observed CP parities. are n{y} = 1 and n{(f),,}. As a result, the final 

- state in the decay chain (a) has the CP parity 

CP 1 [Y W& X0> = + W”l W)D) I [Y (f)& X0>. w 
Let us turn now to decay chain (b). In contrast to (a), the decay D*O + 

x”Do + x0 (f),, yields the CP parity 

cp I x0 (f)g = +71I&J I 39 (f)D>* WI 
Thus, the CP parity of the final state of decay chain (b) is 

CP 1 [x0 (f)& X0> = - rl{X”l W)o) 1 ho &Iv X0>- W3) 

We see it differs by a minus sign from Eq. (B6), so one must be able to 

distinguish the modes D*O + x0 Do from D*O + y Do. 

Another derivation of the CP parities of decay chains (a)-(b) utilizes the 

LS-formalism. The intermediate state D*OXO of the decay chains (a)-(b) has 
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.- 
- 
spin S = 1. Since the total angular momentum is zero, L = S = 1. This state is 

c represented within the LS-formalism as 

ID*OX”>=Ij,=mB=O;L=S=l>, w I. 
and has a CP parity of 

. 

CP 1 D*OXO> = n{D*O} n{XO} (-1 )L 1 D*OXO>. w 0) 

Now n{D*O} depends on what mode D*O decays into. Because the process 

D*O + y Do is parity conserving, the state y Do must be in a “P-wave”, 

IyDO>=Ij=l,m;L*=l,S*=l>. W’) 

Here, the superscript-stars distinguish the L and S values of the yD” state from 

the D*OX” one. (The transformation rules between helicity and LS-states show 

that the yD” state in Eq. (Bll) is identical to the one in Eq. (B3).) From Eq. (3.8), 

CP on yD” yields 

- 
CP 1 y Do> = n(y) n(V) (-l)L’ 1 y Do> = -n{DO} 1 y Do>, w 2) 

where we used n(y) = +l. Thus, 

W*Ol = -W”l = -rlWD) - P’ 3) 

- When this result is applied to Eq. (BlO), we again obtain Eq. (B6). 

We turn our attention to the other decay mode of the D*O. The state x”Do 

of the process D*O + x0 Do is an LS-eigenstate, 

1~DO>=Ij=l,m;L*=l,S*=O>. P’4 
Apply CP on xoDo to get n{D*O} = n{D”} = + q{(f),,} and we have proven Eq. 

(88) again. 
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‘FABLE 1 

The efficiencies of various final state particles. Here &D is the Do branching 

fraction into visible CP eigenstates (see text). 

E, efficiency 

100% 

33% 

1 1% 

100% 

60% 

90% 

30% 

50% 

G-3 

100% x E, 
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TABLE 2 
-. 

Branching rates for various CP eigenstate modes of a B,. The theoretical decay 

widths (second column) are taken from BSW (Ref. 11). The theoretical 
branching rates (third column) use a2 = -0.24 and a B, lifetime of 1.2 ps. The 
visible branching rates into CP eigenstates, B,+ (f),XO, (fourth column) is 

obtained by multiplying the theoretical branching rate (third column) with the 
efficiencies given in Table 1. 

B, decay 

. 

B d -+ Dono 

B;+ D*Ox” 

B,+ Dope 

B,-+ D*‘Tj’ 

B,-+ D”6J 

Width (BSW) 

1 Ol” set-l 

0.11 a$ 

0.16 a: 

0.06 a: 

0.07 a: 

0.06 a: 

0.03 a: 

0.04 a2, 

BR (BSW) BR visible 

7.6 X lO-5 

1.1 x 10-4 

4.1 x 10-5 

4.8 X 1 O-5 

4.1 x 10-S 

2.1 x 10-S 

2.8 X lO-5 

7.6 X lO-5 

1.1 x 10-4 

4.1 x 10-5 

2.9 x 10-S 

3.7 x 10-S 

6.2 X 1 O-6 

8.3 X lO-6 


