
SLAC-PUB 523 1
April 1990

CM)

JAZELLE

An Enhanced Data Management System for High Energy Physicst

A.S. Johnson
Boston University, Dept. of Physics, 590 Commonwealth Ave., Boston, MA 02215

M.I. Breidenbach, H. Hissen, P.F. Kunz and D.J. Sherden
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

T. Burnett
University of Washington, Dept. of Physics, FM 15, Seattle, WA 98195

Abstract
The- data management system JAZELLE has been created as a successor to ear-

lier HEP data managers such as YBOS and ZEBRA. While it has many similarities with
these systems it also has many enhancements such as self-documenting data descriptions,
mnemonic access to all data, relational data structures, powerful machine independent IO-
facilities including network IO, and many mechanisms for presenting data to the physicist in
an intuitive manner. The emphasis has been on producing a powerful, user friendly, data
management system which can be accessed from many languages as a natural extension
of those languages.

Within the SLD collaboration JAZELLE has been used to manage the experimental
data all the way from the SLD online VAX to the end of the reconstruction chain and physics
analysis. Beyond this, JAZELLE is also used to store calibration constants and correction
factors, detector geometry, physics parameters (such as particles masses and branching
ratios) and program control parameters. JAZELLE has also been interfaced to the interactive
data analysis program IDA. The uniform usage of JAZELLE throughout SLD coupled with its
interface to IDA has produced an environment in which rapid interactive access to data is
greatly simplified.

JAZELLE and IDA together provide an analysis environment greatly superior to any
standard programming language.

Presented at the 8th Computing in High Energy Physics conference,
Santa Fe, New Mexico, April 9-13, 1990.

t This work was supported in part by the Department of Energy contracts DE-AC02-89ER40609
and DE-AC03-76SF00515

Introduction

From a software perspective the most important aspect of any high-energy physics
experiment is the data. The data include both raw and reconstructed event data, cal-
ibration data such as detector gains, drift velocities etc., and data which describe the
experiment, such as detector geometry descriptions. During analysis and reconstruction
the data must typically be processed through several programs, often moved between
several different types of computers, and at all stages the experimenters must have easy
and efficient access to the data. The various different types of data may vary dramati-
cally in size, from several 100 kbtyes of raw data per event, to several bytes per event in
the final stages of analysis. Therefore an essential part of any high energy physics ex-
periment’s software should be a data management system capable of handling the varied
needs outlined above.

When beginning the SLD experiment we looked for a system which would be able
to handle all of these requirements. We looked at many different languages, but while
many existing languages have very powerful mechanisms for defining and manipulating
data structures within a program they do not in general have good facilities for moving
data between programs or for providing easy interactive access to the data. Similarly
there are many commercial database type programs available, but in general they are
not well suited to handling the range of different data types and sizes needed and do not
provide sufficiently efficient and easy to use program interfaces.

Finally we looked at other-data management systems developed specifically for
HEP applications, specifically ZBOOK, ZEBRA1 and YBOS. While these systems are_
well suited to handling the data processing needs of HEP experiments they generally
fall short in the area of user friendliness, forcing users to memorize numeric offsets
within data structures thus making programs rather hard to read and understand.

For these reasons it was decided to develop an entirely new data management
system for the SLD experiment, called JAZELLE. JAZELLE has been in use by SLD now
for over three years and currently runs on both VM/XA and VMS operating systems. In
addition work is underway to transfer it to several UNIX based workstations.

JAZELLE has many similarities with the earlier HEP data managers described
above and has adopted many of the best features of these systems. Data are stored in
contiguous structures called bunks. Banks may be dynamically created, motied and
destroyed during program execution, and may be read in or written out from programs.
Some of the more novel features of JAZELLE include:

l The structure of each JAZELLE bank is defined in a template file. In the template
file each element is typed (REAL, INTEGER etc.) and named. The template file
allows a description to be attached to each element and therefore fulfills an important
documentation function as well. Elements of different types can be freely mixed within
banks.

.. JAZELLE elements are always referenced by name. A preprocessor is used which au-
tomatically calculates the offset of each element within a bank (using the information
in the template file) and generates a suitable target-language expression corresponding
to each element reference.

l JAZELLE contains utilities for presenting data to the user in many different formats.
The name of each element and the description from the template can optionally be
included along with the data itself.

2

l JAZELLE is fully integrated into SLAC’s interactive data analysis program, IDA.
A complete set of interactive commands are available for manipulating and viewing
JAZELLE structures, and data stored in JAZELLE banks can be freely accessed from
IDA’s interactive analysis language, IDAL.

l Debugging facilities are provided by making the entire set of interactive commands
also available from within the VMS debugger.

l JAZELLE contains facilities for describing data structures using a relational tech-
nique, in addition to the more common hierarchical data descriptions.

l JAZELLE obviates the need for the large pre-assigned common block found in other
systems by using the virtual memory services of the host operating system. Data
can be partitioned into different virtual memory zones (called contexts in JAZELLE
parlance).

l JAZELLE includes IO facilities to handle input and output of data to both sequential
and indexed files. Data written on either VM or VMS can be read back on either
system.

l The VAX version of JAZELLE includes features of use with online systems such as
asynchronous inter-process IO and data sharing via global sections.

Many of these points will be covered in more detail in the following sections.

Defining d&a structures - TEMPLATES

The basic element from which JAZELLE data structures are built is called a bank:
A bank is a contiguous piece of memory consisting of two parts, a 16-byte header section
containing JAZELLE system data, and a user area where the data associated with the
bank are stored. The structure of the user area is defined in a user supplied template
file. The syntax of the template file allows each element within the bank to be named
and typed, and also allows for initial values and descriptions to be attached to each
element. Well written templates contain all the information needed to document the
data structure. Figure 1 shows an example of a template file, and Table 1 lists all of the
variable types allowed within a template.

Table 1: Data types supported in JAZELLE templates

Types’

INTEGER’4 REAL*4 HEX*4 LOGICAL”1 POINTER KEY STRING”4 STRING20

INTEGERS REAL*8 HEX*2 LOGICAL*8 COMPLEX TIME STRING*8 PARTID

’ Jazelle also supports user defined data types

Jazelle banks are grouped into families, each of which has a unique family name.
All banks in a family share a single template, and hence a single structure. To distinguish
banks within a family each bank is assigned a unique ID in the range O-65535.

Banks may contain arbitrary combinations of data types in any order, including
both scaler and vector elements. Banks can also contain constants (declared using a
parameter statement). In addition elements within a bank may be grouped into blocks.
Blocks themselves may be dimensioned to create an arbitrary number of repetitions of
the elements within the block. Blocks may be nested up to ten deep.

3

Figure 1: Example of a template file
!---
1
! Template NONSENSE: This is an example template to illustrate features

-! of the template syntax.
!
! Note that any text following an ! is treated as a comment
1

BANK NONSENSE CONTEXT=JUNK NOMAXID "This is the title of bank nonsense"

I N T E G E R A "Dndimensioned uninitialized variable 11
R E A L C "Another variable II

INTEGER NELEMS "Variable used later as a variable dimension "
REAL*8 D (10) "Dimensioned array II
LOGICAL"1 X(0:7) "First/last dimensioning II
INTEGER Y/O/ "Initial value assigned ,I

PARAMETER SIZE=8 ! Definition of a constant parameter II
INTEGER N(SIZE)/SIZE*7/ "Example of use of parameter 11

BLOCK VBLK(NELEMS) "Local block (with variable dimension) "

STRING F(80) "80 character string 11
INTEGER I
BLOCK INNER(2) "Nested block 11

REAL x
REAL Y

ENDBLOCK

ENDBLOCK
e

ENDBANK

In addition to the fixed dimensions already described, the last element or block
in each bank may be given a variable dimension. Figure 1 contains an example of a
variably dimensioned block, VBLK. Variable dimensions are created by specifying the
dimension of a block or element as an integer element declared previously in the bank
(NELEMS in the example). The amount of memory allocated for variably dimensioned
elements can be increased or decreased dynamically

Manipulating Banks and Accessing Data
Jazelle provides many routines to allow banks to be created, deleted, copied,

expanded or contracted etc. Some of the most commonly used routines are summarized
in Table 2.

4

Table 2: Frequently used JAZELLE routines

Routine Usage

JZBADD
JZBDEL

JZBEXP
JZBFND

JZBLOC
JZBCPY-

JZBDMP
JZBTBL

JZI-DEF

JZIOPN

JZIOCL

JZIOWR

JZIOWC

JZIORD
JZINDX

JZSTAT

JZTSCN
JZXWIP

--

Create a bank
Delete a bank

Expand or contract a bank

Obtain a pointer to an existing bank

Obtain a pointer to a family of banks

Create a copy of a bank
Dump a bank or family of banks

Tabulate a bank or family of .banks

Add a column to a table or create a new table
Open a file for JAZELLE IO

Close a file

Write a record using a list of banks

Write a record using a context

Read a record
Produce an index of all existing banks

Produce a summary of JAZELLE virtual memory usage

Scan a relational table

Delete an entire context

One of the main aims of designing JAZELLE was to make it fit elegantly into the
programming language(s) used to write code for the experiment, in effect to give the user
the impression that access to JAZELLE data is a natural extension of the language. SLD
chose to use an existing preprocessor, MORTRAN, and to extend it to provide access to
JAZELLE2 . However the same features can be made available in almost any language,
and JAZELLE has been interfaced to Fortran- (using the JFORT3 preprocessor), and
C4 , in addition to MORTRAN. In the case of C no pre-processor is required since the
JAZELLE structures can be mapped directly onto C-structs and the native C syntax used
to access data from JAZELLE banks. In this paper we choose to illustrate the use of
JAZELLE in Fortran.

Since JAZELLE banks are dynamic in nature, in order to access data from a bank
it is first necessary to obtain a pointer to the bank. The JFORT preprocessor extends
native Fortran- by introducing a new variable-type, POINTER, and allowing variables
of this type to be declared using the POINTER declaration in a manner analogous to any
other Fortran declaration. The pointer statement also requires the pointer to be cast to
-a particular family: e.g.

POINTER KAON-->MCPART
POINTER DECAY_PRODUCTS(6)-->MCPART
POINTER BPTR-->NONSENSE

Variables declared as pointers may be used anywhere a normal variable could
be used, for example as a local variable, as an element of a common block, or as an
argument of a function or subroutine. Arrays of pointers can also be declared (for example
DECAY-PRODUCTS in the above example).

Once a pointer declared in this way has been assigned a value, for example by
using it as an argument to one of the many JAZELLE routines which return pointers
such as JZBADD, then it can be used to access elements of a bank using an expression
of the form:

BPTR%(A)
BPTR%(D(5))
BPTR%(X(K-1))
BPTR%(VBLK(3),1)
BPTR%(vBLK(3),INNER(l),X)

The percent sign (%) is used to indicate pointer dereferencing, and to distinguish
JAZELLE data references from normal Fortran array references. Of course any Fortran
expression can be used as the index of a pointer array, or as the index of any JAZELLE
vector or block index. Expressions of this form can be used anywhere that a common block
element can be used in standard Fortran, for example on either side of an assignment
statement, as an argument to a function or subroutine etc. Elements in the bank header
and parameters declared in banks can also be accessed using a similar syntax.

Note that the preprocessor converts all references to JAZELLE data elements into
references to elements of a dummy common block. AI1 offset are calculated inline so that
no function or subroutine calls are necessary to access JAZELLE data. Care has been
taken to generate expressions which do not inhibit the normal ability of code optimizers
to optimize code processed through the JAZELLE preprocessor. Real applications making
extensive use of JAZELLE show that the typical CPU time overhead incurred by using
JAZELLE as opposed to common blocks is only about 5%.

One disadvantage of using a preprocessor is that when using symbolic debuggers-
the code seen by the user is not the original code written. To lessen the impact of this the
JAZELLE preprocessor always generates comments in the output code showing where
and how it has made code substitutions. In addition, in the case of the VMS debugger, it
has been possible to extend the debugger to accept interactive commands to enable the
direct examination and modification of data in JAZELLE banks.

Using JAZELLE for Interactive Data Analysis
One program that has influenced the way data analysis is performed at SLAC

more than any other is IDA6 , originally written for the MARKIII collaboration. IDA,
which stands for Interactive Data Analysis, is a program which allows physicists to
very rapidly experiment with cuts and histograms by providing them with a powerful,
semi-interpretive, programming language tailored specifically to the requirements of data
analysis. In its MARKIII incantation IDA required a special data file to be created
containing data to be analysed. This file had to be created by each user to contain
the data that he was interested in, and each time some previously unneeded data was
required, or the sample of events of interest changed this file had to be rewritten.

SLD’s use of JAZELLE and the complete integration of JAZELLE and IDA has
removed the need for this special data file. IDA now provides complete interactive access
to all of the functionality of JAZELLE. Inside IDA a user has the ability to look at any
data contained in JAZELLE banks; create and display tables of any quantities; create,
modify or delete banks; or read in and write out data at will. Since all of the calibration
and geometry constants are also stored in JAZELLE banks users can also examine and/or
change these interactively.

Within IDA’s programming language, IDAL, users can also access data from,
or store data into, JAZELLE banks using a syntax very similar to that used in the
FORTRAN examples above. Thus any data in JAZELLE banks can be immediately used

6

in calculations or to form the basis of cuts, and can be histogrammed. New banks can also
be created, and new data calculated and stored in them. Special constructs have been
incorporated into IDAL to allow easier access to JAZELLE data, such as the BANKLOOP
construct for looping over banks in a family, and the TABLELOOP construct for accessing
data from relational tables (described in the next section). Whilst the emphasis in
designing the Fortran interface to JAZELLE was to provide a robust programming
language, requiring for example the declaration and strong typing of all pointers, in
IDA the emphasis has been placed on rapid and informal program development, thus
pointers need not be declared gaming their casting automatically from the context in
which they are used.

Since JAZELLE and IDA together provide such a powerful tool, SLD has adopted
IDA as the shell for all of their offline jobs, from initial filtering of the data, through
reconstruction, to final DST analysis. In this way the power of IDA to examine and
histogram data is available in a uniform way at all stages of analysis.

All of the main sections of SLD Monte-Carlo and reconstruction code are written
as processors callable from IDAL. Thus the main event loop is always written as an
IDAL routine (see for example Figure 2). All of the control parameters for each of these
processors are stored in JAZELLE banks and can therefore be viewed and modified
from IDA. Although MC and reconstruction jobs are normally far too slow to be termed
“interactive”, using a uniform framework for all programs is still very worthwhile. ‘*

Figure 2: Example of an Event Loop Written using IDAL
Def Evanal ! Event loop

Call LUND ! Generate a LUND event
Call GSIM ! Simulate the experiment using GEANT
Call RECSLD ! REconstruct the entire event

Hist BankCnt(-Phtrk) From 0 to 50 Title "Number of charged tracks found"

EndDef ! End event loop

Poke Mclundp.sin2thw=.220 ! Set a control parameter for the LUND generator
Peek Mclundp ! Examine all of the parameters of the LUND generator
Go 100 ! Run the event loop for 100 events

The combination of IDA and JAZELLE provides the user with a extremely powerful
tool for performing physics analysis. It is possible to histogram events and decide on a
set of cuts to select an interesting subset of events; create a new bank or set of banks
representing a nano-DST containing those quantities of interest for a particular analysis;
write an IDAL program to apply the cuts and then create and fill the nano-dst banks and
write them out; and then continue further analysis of the nano-dst without once having
to leave the IDA program. Within the IDA environment the computer really becomes a
toll for data analysis.

Within SLD the power of IDA as a data analysis system has been further enhanced
by integrating the SLD event display into IDA. Work is also underway to provide a
complete graphical X-window interface to IDA and JAZELLE to further increase the
user-friendliness of the program.

7

Figure 3: Example of a data-structure built using JAZELLE

p”““““‘““”*......... ~, .., ..,., ,, . I
y-A.. .\.... .c........F.z y...+,

:~.+ii?
.:

<$ F~---/I
. ..

:“’
PiEeEAZ Explanation of Symbols j 1 DST

. .
Sinde Jazelle

i ij Structuse :
“Bank a-y ff

j
F
t
i
:t . .

; jj
:....... ‘:~~ :,,, i !; Summi:: .., .._ _.... :.

Pointa

Jazelle Relational
Table

.x. .,,. .,.I /. .,. .,. .,..i ~ ;g .:,:
\.5.L..,. .,. .,..,. .,. .,. .,.. i. i :;,: :,,

GY
. % . i

A S J 25 Ott 1 9 8 8

8

Using JAZELLE to construct complex data structures

So far we have discussed how JAZELLE allows data to be represented in banks.
_In practice there are many reasons for individual banks to be kept small and to compose
complex data structures by linking together many small banks. JAZELLE provides
mechanisms for linking banks together to make arbitrarily complex data structures.

The simplest of these mechanisms is to imbed pointers to banks inside other banks.
A typical use of pointers is to create hierarchies of banks with a top level bank pointing
to other banks which contain more detailed information. For example in the SLD DST
data structure (Figure 3) a particle summary bank (PHPAKT) contains pointers to lower
level banks-which contain detailed information from each of the detector elements in
which the particle was reconstructed. Some of these in turn point to still lower level
banks containing even greater detail. Arranging the data in this way, rather than in one
huge bank, allows efficient representation of the fact that not all particles are seen in
all detector elements; unnecessary banks are simply not created and the pointer which
would otherwise point to them is assigned a null value. In addition such a structure
allows the user to drop some or all of the more detailed information if it is not required
for a particular analysis.

A second, and more innovative, way of representing relationships between
JAZELLE- banks is by the use of relational tables. A relational table is a family of
JAZELLE banks whose structure contains one or more elements of type KEY. Within a
relational table each bank represents a relationship, with the KEY(s) pointing to the
bank(s) being related, and with the bank itself able to store additional information-
concerning each relationship. For example in the SLD DST structure it was desired
to represent the relationship between vertices and particles. Given that vertices were
not reconstructed unambiguously each vertex could be associated with any number of
particles, and each particle could be attached to an arbitrary number of vertices. Thus
it was required to represent a completely arbitrary NxM relationship. The bank used to
create the relational table to represent the particle-vertex relationship is called PHPTVX,
shown in Figure 4. The example illustrates how properties of the relationship between a
measured particle trajectory and a vertex, such as the distance of closest approach, can
be stored in the bank along with the keys which point to the banks being related.

Keys are implemented in such a way as to make scanning a relational table very
efficient. Thus tools are available to answer the question, ‘Which particles are attached to
this vertex?” as well as the symmetric question, ‘Which vertices is this particle connected
to?” very efficiently.

Conclusion

It has ofZen been assumed in the past that memory management tools are only
necessary in HEP to compensate for the lack of adequate language constructs in the
de-facto HEP standard language Fortran. During the development of JAZELLE it has
become apparent that it is possible to develop tools which have considerable advantages
over those provided by any programming language alone. Examples of these advantages
are the ability to transport complex data-structures easily and flexibly between programs
and between different machines, tools to allow easy examination of the data, and
perhaps most importantly the ability to access and manipulate the data interactively
from programs such as IDA. Although JAZELLE was developed originally for use with
Fortran, almost all of the code written for JAZELLE would be needed for a similar system

9

Figure 4: Example of a template for a relational table
! Each PHPTVX bank represents one particle attached to one geometric
! vertex. The bank summarizes the quality of the fit and contains a
! pointer to a PHPFIT bank which contains particle parameters either

-! calculated at or constrained to the vertex.

Hank PHPTVX Context=DST NoMaxid "Particle-Geometric Vertex table"

Real DOCA "Distance of closest approach of unfit track to vertex"
Real DDOCA "Error on distance of closest approach"

Real CH12 "Chi2 contribution to fit from this particle"
Real NDF "Number of degrees of freedom for this particle"

Key PHPART-->PHPART "Pointer to associated particle"
Key --PHVERT-->PHVERT "Pointer to associated vertex"
Pointer PHPFIT-->PHPFIT "Pointer to particle parameters at vertex"

Endbank

intended for use with a language already supporting more advanced language constructs
such as ADA or C. In this paper if has only been possible to outline very briefly some of
the most important features of JAZELLE. For a complete description see the JAZELLE
Users Guide6 .

Acknowledgments
We would like to acknowledge the members of the SLD collaboration who have

helped with many original ideas during the development of JAZELLE. We would also
like to acknowledge the diligent work performed by visiting students Brian Anderson;-
Will Ballantyne and Sean Sterner.

References
1. R.Brun, M.Goosens, J.Zoll, CERN DD/EE/85-6; VBlobel, DESY-Rl-88-01

2. A.S. Johnson, Comput. Phys. Commun. 45 (1987) 275-281.

3. The JFORT preprocessor was inspired by the PREPFORT preprocessor developed by D&ton,
M.Gravina and P.Kunz.

4. The experimental interface of JAZELLE to the C language was performed by G.Word.

5. T.Burnett, Comput. Phys. Commun. 45 (1987) 195-199.

6. A.S.Johnson and D.J.Sherden, SLAC-PUB-263.

10

