
SLAC-PUB 5230
April 1990

0-W

DUCS - A Fully Automated Code and Documentation Distribution System?

AS. Johnson
Boston University, Dept. of Physics, 590 Commonwealth Ave., Boston, MA 02215

B. Saitta
Universita di Ferrara, Istituto di Fisica, Via Paradiso 12, I-44100 Ferrara, Italy

0. Gervasi
Universita di Perugia, Dipt di Fisica, Via A. Pascoli, I-06100 Perugia, Italy

G.R Bower and A. Rothenberg
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

AI? Waite
University of Victoria, Dept. of Physics, Victoria, BC, Canada V8W 2Y2

Abstract
The Distributed Update Control System (DUCS) is a code distribution system developed,

for the SLD collaboration to distribute code, documentation and news items between remote
collaborators and SLAC. The system runs on both VM and VMS systems and is currently
running at a total of 18 sites on two different continents, using both BITNET and DECNET
connections.

Software updates and news items can be submitted from any site where DUCS is
installed and are distributed to all other sites. When an update arrives at a remote site it is
installed appropriately without any manual intervention. The details of the installation depend
on the type of file, but for source code, installation includes compilation and the insertion of
the resulting object module into the appropriate library. Whenever an error occurs the error
log is returned to the originator of the update.

DUCS maintains both development and production code, subdivided into an arbitrary
number of sections. A mechanism is provided to move code from the development area to
the production area. DUCS also contains many utilities which enable the status of each node
to be ascertained and any manual intervention necessary to correct unanticipated conditions
to be performed.

The system has been running now for nearly three years and has distributed over
20,000 code updates. It is proving a valuable tool for remote collaborators who are now able
to participate in code development as easily as if they were at SLAC.

Presented at the 8th Computing in High Energy Physics conference,
Santa Fe, New Mexico, April 9-13, 1990.

t This work was supported in part by the Department of Energy contracts DE-AC0249ER40609
and DE-AC03-76SF00515  and NSERC, Canada.



Introduction

Most large High Energy Physics collaborations consist of many collaborating in-
stitutes, with the majority of physicists spending a large fraction of their time at their

-home institutes. In order to make it possible for these physicists to make a significant
contribution to both the analysis of data and to the development of reconstruction and
analysis software it is essential that they be given ready access to up-to-date software.

In the past this has often been achieved by making it possible for remote collabora-
tors to log into the computers located at the laboratory where the experiment is located,
either using a network connection, or by using a dedicated satellite link. This type of con-
nection is ideal for some types of work but for using 3-d graphics and windowing systems
such asX-Windows,  or for printing large output files or graphics output the bandwidth
provided by this sort of connection is far from adequate. In addition this mode of working
leaves valuable computer resources at home institutes unused.

An alternative approach is to periodically transfer software to home institutes on
magnetic tape. While this makes remote computers, printers and graphics devices avail-
able, it suffers from the disadvantage that software transferred in this way rapidly be-
comes out-of-date, especially during code development and early stages of analysis when
software is changing rapidly. This in turn often leads to duplication of effort or work
which is obsolete before it is even finished.

To overcome these problems the SLD collaboration has developed the Distributed
Update Control System (DUCS) described here. The main objectives of the DUCS system
are: .L .*.
l To make all offline code available at home institutes so that code development and use

is as simple at home sites as at the central laboratory.

l To make code changes (updates) possible by authorised users at any site and to make
code changes available at all sites as rapidly as possible.

l ‘I% support many different code sections (e.g. reconstruction, simulation, calorimetry,
drift chamber etc.) and to allow for multiple copies of each section (such as development
and production versions) to be kept at each site.

l ‘Ib accept documentation, help files and news and conference items from any site, and
to redistribute them to all sites.

l ‘Ib support different operating systems and allow for the fact that even sites with the
same computer systems may be running different operating system releases.

l To work using existing networks and bandwidths with no manual intervention required
at home sites.

Implementation

In order to meet the objectives described above the following design decisions were
made early on. First we decided that we would use BITNET as the transport mechanism,
since almost all of our collaborators were already connected to it, including both VM and
VMS sites, and also since the store-and-forward nature of the RSCS protocol employed
by BITNET made the design of the code distribution system simpler. At the same time
we attempted to keep the protocols used by the DUCS system reasonably network in-
dependent so that we could extend the system to other networks and operating systems
later.

2



Next we decided that the primary method of transporting software would be by
transferring source code. This has the advantage that during code updates only routines
which are changed need to be sent across the network, and since individual routines

I tend to be fairly small this reduces the network bandwidth required. In addition source
code can be made operating system independent and system release independent while,
in general, object libraries and executable modules are not.

Finally it was decided that installation of files at home sites should be totally
automated, since the installation of many source files at each site would otherwise require
a prohibitive amount of manpower. This requirement necessitated the design of a system
which would know how to install each type of file sent over the network, be it source
code, documentation, help files etc.-- _

Figure 1: Schematic diagram of the DUCS system

Authorization
Database

SLQCVM $I!! History Database

*History DB 1
il”llLation DB
$ionDB

Section DB.gd Site 11 1d.e Section DB

Figure 1 shows in schematic form the overall organisation of the DUCS system.
The hub of the system is the file distributor which runs at one site. The file distributor
receives updates sent by users from any site. On receipt of a file the code distributor
checks that the user is authorised to install the file and if so forwards the file to each site
at which it should be installed. The file distributor keeps a history of each transaction
and also archives each update so that any file which gets “lost” traversing the network
can be resent. At each site a fYile  installer receives the file and installs it appropriately.
If, for any reason, an error occurs during file installation (for example if a source file
fails to compile correctly) an error log is generated and returned, via the file distributor,
to the update’s originator. Unlike most other code distribution systems1 this results in a
system that is symmetric in that files are installed identically at all sites, including the
central site where the file distributor runs.

Table 1: DUCS network protocols

Format Purpose

DEFAULT Used for all text files such as source code, news, EXEC files etc.



Table 1 (Cont.): DUCS network protocols

Format Purpose

PRINT Used for documentation with carnage-control characters

BINARY Used for binary data

VMSNM Transparent transfer of system dependant files (executable modules, libraries)

-- _ Table 2: Fields associated with DUCS update files

Field Size Use

Section 8 bytes Code section in which file belongs

Mode 1 byte Code version (D=Development,  P=Production)

Group 3 bytes Allows files to be grouped together

Update 4 bytes Ensures file ordering is maintained

User 8 bytes Userid  of update’s originator

Node 8 bytes Node where update originated

Notify 1 byte NOTIFY option

Verify 1 byte VERIFY option

Dist 1 byte Destination system (VM/VMS/Both)

Comment 80 bytes Explanation of update

Figure 2: Schematic diagram of the fle installer

r+l Remove file
from queue I

_. _. _. _. _. _. _. _. _. _. _. -.L-. _. _. _. _. _. _. _. _. _. _. -.~
b L

Install files
Error/Verify

t ._ ._ ._ ._ ,_ ,_ ._ ._ __ ._ ,_ ._ ._ __ ._ ._ ._ ._ ._ ._ ._ ._

Return error log
to user

v
Notify user and

cleanup

4



Whenever files are sent across the network a DUCS specific network protocol is
used. Table 1 summarizes the types of files supported while Table 2 shows the auxiliary
information sent with each file. The use of a store-and-forward network simplifies the

I task of the file distributor since it can send files without having to wait until the network
connection to the target node is complete, but it can also result in tiles arriving in a
different order to that in which they were sent. To solve this problem DUCS files sent
over the network are each assigned a sequential update number. The receiving process
then places the files in a queue (Table 4) and only processes files when the next 6le in
the update sequence is at the front of the queue. The queue mechanism has a number of
other advantages, for example the queue provides protection against “lost” files (which
result in the files becoming “held’ until the missing file is resent), and files can be left in
the queue and only processed at a particular time of day In addition files can be grouped
into blocks and only processed when all of the files in the block are present in the queue.
This provides a useful mechanism for installing sets of files which must all be installed
simultaneously.

An essential part of the DUCS system is the file installer which runs at each site.
Figure 2 shows a schematic diagram of the file installer. Files are removed one at a time
from the input queue and the auxiliary information associated with each file is used,
together with information in the file installer’s databases, to decide what action is to be
taken with each file. The action depends on the filetype  of the file and in which section
it resides. Typical actions include compiling source code and installing the resulting
object file into the appropriate library, installing help flies into libraries, and installing
news and conference items into bulletin boards2 . Additional files generated during the
installation (object or listing files for example) can also be installed under the control of
the action database. If any error occurs during the installation of a file then a complete
error log is generated and returned to the user who originally installed the file.

Two special filetypes are recognised to allow for special actions, such as building
executable modules or manipulating code within sections (Table 3).

The main user interface to the system is via the TODUCS command which allows
users to send individual files, or blocks of files, into the system. Table 5 summarizes some
of the capabilities of the TODUCS command. In addition, a set of interactive commands
can be sent to the file distributor or file installer to allow users to query the status of the
system, and to allow the DUCS manager to correct problems (Table 6).

Operating experience
DUCS has been in use by SLD for over 3 years and has handled over 20,000

updates. At present the DUCS system is running at 15 VMS sites and 3 VM sites
(Table 7). All SLD offline software and some online software is installed and maintained
through DUCS, as are all SLD announcements, meeting minutes, discussion conference,
documentation, help files and support EXEC’s.

Table 3: Commands available inside a DUCSCTRL file

Command Use

DELETE fn ft
DELLIB fn
ACTION fn ft

Delete specified file
Remove specified entry from library
Re-perform appropriate action on file

5



Table 3 (Cont.): Commands available inside a DUCSCTRL file

-Command Use

MOVEPROD fn ft Move file from DEV to PROD
TIDY Delete DEV files which are duplicated in PROD
REBUILD Rebuild library by recompiling all code

Table 4: DUCS input queue
--

Next DUCS update: 1222
DUCS priority: 3

Next update time: 11 -DEC-1986 OO:OO:OO.OO

Status Entry Fllename Filetype Mode Section User Node Received
Waiting 1222 JZBADD PREPMORT DEV JAZELLE TONY SLACSLD lo-DEC 11:14
Waiting 1223 JZBDEL PREPMORT DEV JAZELLE TONY SLACSLD lo-DEC 11:15
Waiting 1?24 JZBDMI PREPMORT DEV JAZELLE TONY SLACSLD lo-DEC 11:15
Held 1226 JZBEXP PREPMORT DEV JAZELLE TONY SLACSLD lo-DEC 11 :15
Held 1227 JZBFND PREPMORT DEV JAZELLE TONY SLACSLD lo-DEC 11 :15
Held 1228 JZBLOC PREPMORT DEV JAZELLE TQNY SLACSLD lo-DEC 11:15
Held 1229 JZBNXT PREPMORT DEV JAZELLE TONY SLACSLD 1 0-DEC 11 :15

Key to Status
Status Meaning
Empty Queue is empty
Active Entry is being processed
Pending Entry is ready to be processed
Waiting Entry would be pending but for scheduler
Held Earlier update is missing
->n First file in block which finishes at entry n

Table 5: The TODUCS command

Format: TODUCS filespec’[,filespec’ . . . ]
Qualifiers Use
/LOG 4 /NOLOG 4 Generates message saying what was sent
./SEND 4 /NOSEND 4 Generates message and inhibits send
/NOTIFY 4 /NONOTIFY 4 Inform uses when installation complete
/VERIFY /NOVERIFY Always return LOG to user
/NEXT Show next update number

1 Filespec may contain wildcards.
4These  qualifiers always apply to all files, others can also be applied to individual files.

6



Table 6 (Cont.): The TODUCS command

Format: TODUCS filespec’[,filespec’ . . . ]

Qualifiers

/UPDATE-n 3
/MODE=mmm
/SECTION=xxx  *
/DIST=sss  *
/CONTROL
/DELETE - -

/ c c
/BINARY
IVMS

/NOCONTROL
/NODELETE
/NOCC
/NOBINARY
IVM

Use

Set next update number
Control file mode (PROD or DEV)
Select section for file
Control destination (VM, VMS or BOTH)
Filespec interpreted as list of files
Delete file after sending
Select netwok protocol

’ Filespec may contain wildcards.
*If this qualifier is not specified TODUCS will scan file for line containing QUALIFIER: VALUE and
use this value.
3This is a privileged command.

Command

HELP
STATUS
QUEUE [site]
RESEND nnnn mmmm [site]
SET UPDATE nnnn [site]
SET NEXT nnnn [site]
DELETE nnnn [site]
HISTORY
DISABLE
ENABLE
FREEZE section 1 mode
THAW section 1 mode
AUTH section user [site [level]]
AUTH/LIST  section user [site [level]]
AUTH/DELETE section user [site]

File distributor commands
Use

Show summary of commands available
Show summary of distributor status
Show input queue for site
Resend specified updates to site
Set update number for files to site
Set update number for files from site
Delete entry from site’s input queue
Send update history
Disable distribution of files
Enable distribution of files
Freeze updates to specified section or mode
Undo FREEZE
Authorize user
List authorized users
Remove user’s authorization

Table 6: DUCS interactive commands



Table 6 (Cont.): DUCS interactive commands

Command

HELP

STATUS

SET NEXT nnnn

SET [NOITIME time-- _
SET PRIORITY n

DELETE nnnn

File installer commands
Use

Show summary of commands available

Show summary of installer status

Set next update number

Set/cancel time at which updates are applied

Set installer process priority

Delete entry from input queue

Table 7: Current list of DUCS sites

VMS - BITNET nodes

CALTECH Padova SLACTBF

Colorado Pisa Tennessee

Frascati Rutgers Vanderbilt

Illinois Santa Barbara Yale

MIT SLACSLD

VM - BITNET
nodes VMS - DECNET nodes

Perugia Ferrara

Pisa

SLACWM .e.

Users adapted quickly to using DUCS and rapidly became used to writing code
which would work on both VM and VMS operating systems. The current implementation
is fairly open and relies on user’s motivation to fix problems. For example if a source file
is submitted which compiles on VM but not on VMS then the code is installed on VM
but not on VMS. An error log is returned to the user and in general people have shown a
willingness to fix such problems rapidly. This has obviated the need for a sophisticated
error treatment within DUCS itself.

Having identical versions of code available on both VM and VMS even at one site
has proved to be extremely useful. Many users prefer to work in a mode where code is
developed and debugged using VMS’s superior code development facilities, and then run
on VM where there is generally more processing power available.

Many people have used DUCS to enable code to be run at home sites and a smaller
number of people have developed significant amount of code at home sites. Only one

home site has made significant use of the ability to install files directly, with most other
users preferring to send code manually to SLAC for installation.

Supporting many remote VAXen has proved fairly easy. Maintenance of the entire
network of 15 sites takes only a small fraction of one person’s time. The only significant
problems have been occasional extended network outages and finding sufficient disk
space at home sites to accommodate SLD’s ever expanding software. A simple and effi-
cient mechanism has been developed for sending the complete software suite, including
DUCS itself, to a home site and then installing it and using DUCS to keep it up-to-date.

8



By comparison supporting multiple VM sites has proved to be considerably more
problematic. Every site seems to modify VM for their own needs, and often this is done so
seamlessly that users (and experienced system programmers) become totally unaware of

_ the distinction between “native” VM features and local modifications. This makes it very
difficult to train people to produce site independent code. In addition, different releases
of CMS and CP often require modifications to application software making support of
different operating system versions very difficult.

Future plans

Inthe future we plan to extend DUCS to other systems, probably including some
UNIX based RISC workstations, and to other networks (we have already implemented a
DECNET version of DUCS working through a BITNET-DECNET gateway process).

Figure 3: The interface of DUCS to a complete code management system

The other extension that we would like to make is in the area of code management.
At present the code management facilities provided by DUCS are rudimentary, for in-
stance if a user changes a common block it is his responsibility to send in a DUCSCTBL
file to recompile all the code which references the common block, and there is no check
that this is done correctly To this end SIAC has purchased a commercial code man-
agement system, CCC3 , and we plan to interface this to DUCS. The idea is to use one
central code management facility to provide code management capabilities at all sites.
The proposed mechanism is shown in Figure 3. Under this scheme when a file is sent in
to the file distributor it would first be sent to the code management process. This would
use the file to update its internal representation of the code and generate a control file to
be sent in addition to the original file to file installers at all sites. Multiple file installers
could be run at a single site to provide shadow copies of different versions of the software
on different disks.

Conclusions

The DUCS system has been used successfully to provide a mechanism for home
collaborators to use and help develop analysis, Monte-Carlo and reconstruction software
for a large HEP collaboration. Such systems should prove very useful for future collabo-
rations and we hope that the experience we have gained in producing the DUCS system
can be of use to others.

9



Acknowledgments
We would like to acknowledge all the members of the SLD collaboration for making

the development of DUCS possible, especially those with the patience to use the system
-and report problems during the early days of the system.

References
1. K. Chadwick, R. Hollebeek, PK. Sinervo; Comput.Phys.Commun.45,1987:409

2. A set of utilities to support machine independent HELP files and conferences have been written
in conjunction with DUCS. Information is available from ASJohnson  (TONYJ@SIACVM.BITNET).

3. CCC isa firoduct of Soft001  Corporation, 340 South Kellogg Avenue, Goleta, CA 93117.

10


