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Abstract

The amplitude for the exclusive nonleptonic decay of a heavy
meson into two light pseudoscalar mesons is analyzed using the fac-
torization formalism of perturbative QCD for exclusive reactions at
large momentum transfer. We show that the leading contribution
to such amplitudes is proportional to (rs(Q2) where Q” scales with

the heavy meson mass squared. Branching ratios for a few B” decay
modes are calculated.
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There is now well-established evidence for the chiral V-A sym-
metry and the Standard Model of weak interactions in leptonic
and semileptonic interactions. However a direct calculation of the

hadronic matrix elements of the quark bilinears which appear in
the effective weak interaction Hamiltonian is difficult due to the
nonperturbative effects arising from the strong interactions. For

-- _ light hadrons, calculations [l] include the one-loop corrections to

the weak Hamiltonian from perturbative QCD [2] in order to un-
derstand the A1 = l/2 rule in kaon decays. The renormalization
procedure usually introduces an additional set of operators of the

gluon monopole or Penguin type [3]. In light-flavored nonleptonic
meson decays both short (perturbative) and long (nonperturbative)

range strong interaction corrections must be taken into account.

The situation is much simpler in the case of a heavy meson decay-
ing into two much lighter mesons. Because of the large momentum.,.

transfers involved, the factorization formula of PQCD for exclusive
reactions becomes applicable: the amplitude can be written as a
convolution of a hard-scattering quark-gluon amplitude Th, similar
to that which appears in meson form factors, and meson distribu-

tion amplitudes $(Ic, Q2) which describe the fractional longitudinal

momentum distribution of the quark and anti-quark in each meson.

An important feature of this formalism is that, at high momentum
transfer, long-range final state interactions between the outgoing
hadrons can be neglected.

As in PQCD calculations of meson form factors [4, 51, the hard
scattering amplitude Th is computed by replacing each hadron by



collinear quarks; to leading order in cr,(Q2) the dominant contribu-
tion is controlled by single gluon exchange. We shall show that in
the case of non-leptonic weak decays the mass of the heavy meson

AI& establishes the relevant momentum scale Q2 - Mi, so that for
a sufficiently massive initial state the decay amplitude is of order
o,(Q2), even without including loop corrections to the weak Hamil-

-- _ tonian.
The approach presented here is distinct from the usual low en-

ergy constituent quark model (CQM) calculations of hadronic ma-

trix elements of the quark current [6, 71, where the heavy mass iVl~
appears only as an explicit flavor symmetry-breaking term in the

wave function.

The unperturbed effective weak Hamiltonian is

H = G”JpJ,t,
-Jz

where
d

Jp = VP - Ap = (E, z, Z)yp(l - y5)V
i 1

s ,
b

and V is the Kobayashi-Maskawa (K-M) mixing matrix. We develop

the formulas for the matrix elements of quark currents and calculate

several hadronic decay rates of the B meson.
As argued above, for the decay of a heavy state into two light

mesons we can use the PQCD factorization of exclusive amplitudes
at high momentum transfer and neglect all final state interactions
between corresponding particles. For one of the currents we can
reduce the full hadronic field of one of the light or heavy mesons to its
weak decay matrix element: e.g., < LiIJ’[O >=< L;IAp[O  >zPr”fi,

2



(i = 1,2). The decay amplitude can be written as

M(H + L1 + L2) = c,f,P,, < LIJ’“IH >

+ ~f2P2~ < LIIJ’IH > +cH.~HPH~ < L,LzlJ’lO  >, (2)

where the ci’s are process dependent coefficients containing a weak
coupling constant with the appropriate K-M matrix elements and

-- _ factors coming from a possible Fierz transformation. The matrix
element of the transition current, e.g. < L;IJplH >=< LiIVj‘lH >,

has to be evaluated between the two remaining hadronic states.

The decays we will consider here are the decays of the B” into two
pseudoscalar mesons : B” + r+r-, li’+r-, DOI<‘, Dtr-, because

in each of these decays there is only one contributing amplitude at

the tree level in the spectator approximation.
As in the analysis of meson form factors < MI V, IM’ > at large

momentum transfer, this matrix element can be written  as (see _

Fig. 1)

where the $J~?‘*“.‘, $za*2... are the amplitudes for finding collinear

on-shell quark, antiquark and gluons with polarizations CY; in the
light and heavy meson, respectively. TiIa2... is the collinear irre-
ducible hard-scattering amplitude [8], which can be calculated sys-
tematically in powers of o,(Q2).  Tr stands for an integration over

momentum fractions and a trace over spin, flavor and color indices

of quarks and gluons. We can neglect Fock states with extra @
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pairs as their contribution to the matrix element is suppressed by at
least two powers of l/Q2 coming from additional quark propagators
[8]. Using the ec mt h ‘ques of Brodsky and Lepage [8], we rewrite the
above equation in the form

< LiIV’IH >= Tr($jT,“$H), (3)

-- _ with II, now representing an effective quark-antiquark distribution

amplitude, and Th a hard scattering amplitude given as a sum of

collinear skeleton graphs (Fig. 2).
The skeletons which appear in Fig. 2 have an identical graphical

representation as those contributing to the pion form factor at high
momentum transfer. Since (PH - Pi)“= Pj” = h!fz(h!i!i, h!fi) << hfi

the off-shellness of the quark and the gluon propagator are propor-
tional to MH, and much larger then all other mass scales. After
renormalization of vertices and propagators, the strong coupling be- _

comes a,(Q2 N M&). For Figs. 2b and 2c we have

Q” = (1 - z)(l - y)M; t (1 - z)2M;

where 1 - 2 and 1 - y are the momentum fractions carried by the
light quarks. Using mean values < 1 - z >N c and < y >N f and
keeping only first order terms in E we obtain

where e is related to the position of the maximum of the distribution

amplitude $H in the heavy meson

E2 N
m2t < kj, >

iv& ’ C-9
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and m is the mass of the light quark. For example, in the decay of
a B, Eq. 5 gives [9, lo] c - 0.05-0.1, Q2 - 1.6GeV2, and by taking

q?CD = 0.01 GeV2 we get o,(Q2)  N 0.38 which we consider small
enough to justify a perturbative expansion.

For light pseudoscalar mesons Li, the required wave function in-
cluding spin factors can be written in the form [5]

QxW(P1 = YwJP2 = (1 - Y>Pi>

where 1, is the identity in color space and we have ignored all terms
proportional to M;. For simplicity we assume the same wave func-
tion for all O- mesons in the lowest octet. For a heavy pseudoscalar
meson the simplest amplitude contains at least two terms

+H = $H(z,pH) = +H(Z)@H t MHq(s)). (6) _

In QCD the integral of the distribution amplitude is related to the

meson decay constant

J c$;(x)dx = &i, / h(x)dx = &-H’

For the scalar distribution amplitudes, we use [8, 111

h(x) N 41 - xc>, f$H(X) N
r&) tli - 112’

with E given by Eq. 5. The form of C$H slightly differs from the one

used in Ref. [8] but the numerical results are not very sensitive to

the specific parametrization.
We expect both terms, in Eq. 6 to be roughly of the same magni-

tude [12]  i.e. g(x) N 1, which corresponds to weakly bound quarks
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(we are neglecting the binding effects, which are of order of few
hundred MeV in comparison with the energy scale set by MH).

At high Q” the effective quark distribution amplitude $(cc, Q”)

satisfies an evolution equation in lnQ2. The general solution of the
evolution equation vanishes as the momentum fraction IC, or 1 - J:
with 0 5 z 2 1 of each constituent approaches the boundary values;

-- _ thus the disconnected diagram in Z’h (Fig. 2a) does not contribute

in Eq. 2. The leading as(Q2) contribution comes from Figs. 2b and
2c. By Lorentz invariance, the decay amplitude can be expressed as

KY

where Pj = PH - P; and FL,*  -denote longitudinal and transverse ,_,
form factors respectively; we have FL(O) = F*(O) and in the limit
of unbroken flavor symmetry F~(pj”)  = F*(P,“). Since we are in-
terested in processes in which squared masses in the final state are
small in comparison with the squared mass of the decaying meson,
we can neglect all mass terms but MH.

To first order in CY, = cys( Q2) (see Eq. 4) Figs. 2b and 2c give
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The integration over momentum fraction of a quark in the light
meson in the interval 1 - E 5 II: 5 1 corresponds to the Drell-Yan-

West [l3] end-point region. It gives only small correction to the

form factors of nominal order c/oys(Q2) N 13%. One also expects
additional suppression from Sudakov form factors in this region.

From Eq. 7,8 the form factors are given by

2 16ra,  ’
1-C

- -  dx= 3 IIf& J J
4/4H(x)

29(x)  - Y - (1 - Y,&

0 0 (1 - x)(1 - y)2(1 - &)

&-
(1 - x)(1 - YIP + &I I h(Y),

-Pjp) < LiIVpjH  >

2 16w, ’
l - t

- -
= 3 iv& J J

dx d!h+>
29(x) - Y - (1 - Y,G

0 0 (1 - x)(1 - y)2(1 - &)2
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+
g(1 - x)(1 - YN - g, 1 h(Y)*

For g(x) = g = i the above expressions simplify considerably. The
dependence of both form factors on g is quite similar, but the mag-
nitude is strongly g-dependent. To see how large this dependence
could be, we examine B” decay modes listed previously. For exam--- _
ple, for B” --+ r-r+, in the Ab = 1, As = AC = 0 sector from Eq. 2

we have

M(BO + 7r-7r+> = K$f,Op,O, < 7T-n-+pyo  > (9)

+ &Pdp GF< r-IV@lB’ >, K = -‘$$V&,,

where we have used the fact that < a+lV’lIB”  >= 0 in a specta-
tor model. The first term in the above expression, corresponding
to the annihilation of the heavy meson is proportional to [(M$ - ‘*
M;-)F,r(M;)  - M;F-(M;)] hw ere F, and F- are the pion form
factors

< n, P’IVc”Ir,  P >= FT((P’-P)2)(P’+P)p+F-((P’-P)2)(P’-P)p.

Because of isospin symmetry F- = 0, and this term gives zero contri-

bution; the only contribution comes from the second term in Eq. 9.

Similarly, in the other decays the matrix element of the current al-
ways vanishes for a transition to one of the two light mesons, whereas
the annihilation contribution is in general very small [6] and can be
neglected. Our predictions for the branching ratios are given in
Table 1. In Fig. 3 the branching ratios are shown as a function of
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Decay mode Width [gM&,]

B0 + 7r+7r-

B"--iK+r

B" + D°Ko

B'--+D+n-.9

Width [104t2  /set] B.R.  [10-‘f2]
g=f g=l g+ 9x1

6.14 180.44 5 . 7 7  1 6 9 . 5 3

0.44 13.37 0.42 12.56

1.40 62.45 1.32 58.67

12.30 576.18 11.56 541.34

Table 1: Decay widths and branching ratios for B” decay modes in terms of
( = loIxb/Kbl. Th e units are given in square brackets.

the parameter g and compared to those obtained from CQM calcula-
tions and the available experimental data. All theoretical results are
upper limits due to the present bound for the ratio ]&,/Vcb(  5 0.1.
We see that the calculated branching ratios lie much below both the,-,

experimental upper limits and other theoretical calculations.
We have shown that in the nonleptonic decays of a heavy meson

the decay amplitude can be separated into long range and hard

(Th) parts, and that QCD perturbative techniques can be used for
Th. We have applied this method to some decays of the B". The
approximations made here are even more valid for To (top quark
meson). We are examining higher order (in crs) corrections to the
B" decays discussed here.

Two of us (A.S and E.M.H) thank W-Y.P. Hwang for useful dis-

cussions; this work was begun with his assistance. We also thank
S. Ellis for helpful comments and his encouragement and interest.
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Figure Captions

Fig. 1 Expansion of < L;IVpIH  > in terms of q?jg” distribution
amplitudes. Solid, wavy and dashed lines represent quarks,
gluons and external current respectively.

Fig. 2 Expansion of !Z’h in powers of aYb(Q2).  Disconnected diagram
vanishes after integration with collinear meson distribution am-
plitudes. *

Fig. 3 Branching Ratios for four B” decay modes. Dots are the
PQCD predictions. Experimental upper limits Ref. [14]; other
theoretical estimations Ref. [6, 71.
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