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ABSTRACT 

We examine the effect of particle compositeness on the importance of “Z- 
diagrams”, i.e., virtual particle-antiparticle states appearing in scattering pro- 
cesses. The examples of positronium in QED, and of the nucleon in the QCD-based 
quark model, are discussed in detail. Generally, if the composite particle consists of 
N constituents, its Z-diagram amplitude involves creation and annihilation of N 
constituent-anticonstituent pairs. This process (which we assume to be governed 
by Coulomb-t ype interactions with the “fine structure constant” cu) must take place 
in a small volume - 1/M3, where M is the particle’s mass; an additional suppres- 
sion is due to the fact that the created system is electrically (or color-) neutral. 
The composite particles’s Z-diagram amplitude is then suppressed, compared to 
that for an elementary particle, by at least a factor fz - (q2/M2)[a2/M3R3]N-1, 
where Q is the momentum transfer to the particle, and R the composite particle’s 
size. The decoupling of the composite Z-diagrams at zero momentum transfer is 
consistent with low-energy theorems. 
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I. I&oduction 

-. 
c The meson-nucleon relativistic quantum field theory, known as various versions of 

Quantum Hadrodynamics (QHD)l h as b ecome a much used tool in nuclear physics. It has -. 

found applications in the nuclear matter problem, the structure of finite nuclei, elastic and 

inelastic interactions of electrons and nucleons with nuclei, etc. (see, e.g., the reviews’). 

One of the basic features of QHD is that, at least to the first approximation, nucleons 

are treated as elementary objects. In the full field-theory context, they are described 

in terms of a local, spin-l/2, Dirac field interacting with meson fields, so that, strictly 

speaking, nucleon structure arises only as a result of radiative corrections in higher orders 

in the perturbation theory (i.e., nucleons become “dressed” in a meson cloud). In the mean- 

-- field-theory limit nucleon wave functions satisfy then the Dirac equation for an elementary 

fermion, with external meson fields. Similarly, in scattering processes, the “Relativistic 

Impulse Approximation” (RIA) 3 assumes local interactions of the projectile nucleon with 

target nucleons, as if they were elementary. 

The fact that nucleons have an internal structure cannot be, on the other hand, 

- reasonably doubted. In principle, QHD can account at least partially for the nucleon 

structure in terms of radiative corrections, i.e., dressing the nucleon in a meson cloud. In 

practice, however, systematic computation of these effects in a strong-coupling field theory 

is prohibitively difficult; the commonly used approach is to simply multiply meson-nucleon 

vertices by phenomenological form-factors. On the one hand, this procedure, although 

somewhat ad hoc, seems reasonable, as the meson-nucleon field theory is, after all, only an 

effective, low-energy, theory wit,h an inherent, cut,-off. On the other hand, the use of form- 

factors is most questionable in processes constitut.ing the crucial difference between the non- 

relativistic and relativistic theories: these are the processes represented by “Z-diagrams”, 

in which virtual NE pairs are created and annihilated (Fig. 1 (a)). Precisely the apparent, 

presence of NN pairs is responsible4 for the improved description of scattering processes 

in the Relativistic Impulse Approximation. The difficulty with the straightforward use of 
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form-factors in the Z-diagrams is the following: The conventional nucleon form-factor, to 

- be applied to meson-nucleon vertices, is a function F(q2) of the meson four-momentum t 

squared, q2, and refers to on-mass-shell nucleons. This, however, is not the situation 
-1 

encountered in the Z-diagrams (Fig. 1 (a)): Th ose diagrams are time-ordered diagrams, in 

which the lines do not have definite four-momenta; when re-expressed in terms of covariant 

Feynman diagrams, they involve integrals over the time components of the four-momenta 

- carried by the internal lines (for more details see Appendix A). The diagram of Fig. 1 (a), 

for instance, can be written as a term in the meson-nucleon scattering amplitude, integrated 

over the time component of the four-momentum p. Such an integral, involving both on- and 

off-mass-shell momenta of the intermediate state nucleon, cannot possibly be expressed in 

-_ terms of nucleon form-fact,ors alone. Only the nucleon-pole contribution to the integral can 

readily be evaluated. It is proportional to the product of the two form-factors at the meson- 

nucleon vertices, taken with large arguments 2 4M2, i.e., is very strongly suppressed. 

There is, however, no reason to neglect other contributions to the integral, and these, 

especially for a composite system, dominate. 

-. The above-mentioned relation between time-ordered and covariant diagrams will be 

discussed later in more detail; at present we may conclude that the Z-diagrams depend in 

an intricate way on the dynamical mechanisms of meson-nucleon interactions, and their 

evaluation requires much more information than just nucleon form-factors. In this paper we 

analyze the Z-diagrams, i.e., the processes of creation and annihilation of virtual nucleon- 

antinucleon pairs, in the framework of a definite dynamical model of a composite nucleon 

- t,lle constitllent qna.rk model. Our ii1t~imat.e aim is to est,al,lisli t.0 w1ia.t. extent are the 

meson-nucleon relativistic models compa.t.ible with the nucleon (and meson) compositeness, 

and what are the limits of their applicability. 

One domain in which the “elementary-” and “composite-” nucleon pictures do au- 

tomatically agree, is, expectedly, the region of momentum transfers small compared to 

the characteristic nucleon excitation energy. Physically, it may be expected that probing 
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t,he nucleon in t,his kinematical regime cannot possibly reveal its internal structure. This 

_ fact can be, more rigorously, expressed in terms of “low-energy theorems”, as discussed c 

-. 
in detail in Ref. 5 for the low-energy (Thomson) limit6 of forward Compton scattering 

on a composite system (see Appendix B for a summary of these results). In the context 

of nuclear physics, the low-energy theorems are applicable to nuclear processes at energy 

scales of tens of MeV. 

The smallness of the momenta involved in the scattering process is, however, not a 

necessary condition for the composite nucleon to behave as if it were elementary. Situations 

in which, theoretically, scattering amplitudes involving nucleons should be insensitive to 

the nucleon’s internal structure may also occur in nucleon scattering on a nucleus for 

._ the laboratory nucleon momenta in the 1 GeV range; in that case, although the three- 

momentum transfer in the laboratory system is small, the energy of the exchanged mesons 

in the nucleon rest system may be substantial (see a more detailed discussion of kinematics 

in the following Section). 

Such processes can be analyzed in -analogy to the so-called “J = 0 fixed-pole” ampli- 

tude for real Compton scattering on composite objects.‘The results for Compton scattering 

have been generalized’ to the case of isoscular mesons interacting with the nucleon, de- 

scribed in the framework of the additive constituent quark model (in which mesons are as- 

sumed to couple locally to approximately point-like constituent quarks). In this model the 

quark Z-diagrams9 (Fig. 1 (b)) re ro p d uce approximately the point-like nucleon Z-diagram 

(Fig. 1 (a)). Th is result follows from the interplay of kinematics and combinatorics of 

diagrams, and can be physically underst.ood as follows: First, the energy denominator in 

Fig. 1 (b) is approximately twice the quark (instead of nucleon) mass, as in Fig. 1 (a); 

since the effective constituent quark mass is about l/3 the nucleon mass, the individual 

quark Z-diagrams are enhanced by the factor N 3. Secondly, there are three distinct. quark 

Z-diagrams; hence an additional enhancement by the factor of 3. Third, however, because 

of additivity of quark interactions, the meson-quark couplings are, for isoscular mesons, 
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equal G l/3 of corresponding meson-nucleon couplings; two meson-quark vertices yield, 

-. therefore, a suppression by the factor of 9. Finally, then, all these factors compensate: 
rc 

(3 x 3)/9 = 1. 
t. 

The quark model may thus explain why, for isoscalar interactions (which is the case 

for nucleon scattering on heavy isospin- or spin-zero nuclei), the Dirac equation (and RIA) 

may be applicable in spite of nucleon compositeness. These arguments break down, how- 

- ever, for isovector meson exchanges, since the group factors relating meson-quark couplings 

to meson-nucleon couplings are then entirely different, and also when the nucleon’s mo- 

mentum is not distributed equally between the three quarks. In any case, the physical 

picture is completely diffeerent than that suggested by the Dirac equation for nucleons: 

bhe relativistic effects manifest themselves through quark Z-diagrams rather than nucleon .- 

Z-diagrams. 

The last statement can be formulated more strongly: it is not true that the Dirac 

equation with elementary nucleons, and the composite quark model, provide two “equiva- 

lent” or “complementary” descriptions of the same reality. On the contrary, even though 

some predictions of these two pictures may be identical or similar, the different physi- 

cal mechanisms involved do give different results for other measurable quantities. Such a 

quantity is, for example, the number of antiquarks in the nucleus, as measured in deep- 

inelastic lepton scattering, or in the Drell-Yan process. In the elementary-nucleon model 

one calculates the Z-diagram amplitude (Fig. 1 (a)) as if the nucleons were point-like; this 
- 

amplitude is a contribution to the probability of finding a NN pair created by meson- 

exclla.ng;e interactinns with dher nllcelons in the mchs. Now, since one 11s to accept. 

that an antinucleon contains at least three (valence) antiquarks, t,he munber of addit,ional 

antiquarks in the nucleus will be at least three times the number of virtual antinucleons. 

In the composite-nucleon model, on the other hand, the Z-diagram amplitude is repro- 

duced (for isoscalar interactions) by quark Z-diagrams (Fig. 1 (b)), so that the number of 
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antiquarks “per Z-diagram” is one instead of three, and the q?j sea enhancement, is much 

-. smaller. 
* 

-. 
In this paper we concentrate on the above-mentioned observable consequences of the 

nucleon compositeness. In the framework of the QCD-based quark model, we consider a 

composite nucleon interacting with an elementary boson field, and estimate the probability 

of finding simultaneously the triplet of virtual quarks and antiquarks which corresponds 

- to the Z-diagram for an elementary nucleon; it is, essentially, the configuration shown in 

Fig 1 (c). W e d fi e ne then the “nucleon Z-diagram suppression factor” fz as the ratio of 

this probability to that for point-like nucleons. 

An alternative concept of the Z-diagram suppression has been introduced previously 

in Ref. 9. We reformulate this concept somewhat more precisely in Appendix A, and show - 

there that it is qualitatively consistent with the suppression factor defined above. 

Another order-of-magnitude estimate of the suppression factor, along the lines of our 

present-approach, has been also given in Ref.% As we discuss later (Appendix A), that 

estimate gives only a weak upper bound on the suppression factor; the reason is that 

it includes a large class of diagrams that cannot be interpreted as contributions to the - 

composite particle Z-diagram. Physically, the stronger suppression we find now is due to 

additional color-weight cancellations. 

The paper is organized as follows: 111 Sec. II we formulate the ideas mentioned above 

in more detail: we describe kinematics of nuclear interactions, discuss time-development of 

nuclear processes in terms of appropriate Fock-space states, and arrive at an expression for 

the Z-diagram suppression factor in terms of time-ordered diagrams involving q?j creation 

due to gluon exchanges. 

In the following we evaluate fi; but, as an introduction to the calculation in the quark 

model, we first consider (Sec. III) Z-diagrams for a simple and well-understood system: the 

positronium in an external (say, Coulomb) field. In that case we are able to easily calculate 

the suppression factor fi, and to express it in terms of the fine structure constant: to the 
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lowest:order, fi - a5 q2/M2, where A.4 is the positronium mass, and Q the momentum 
-. transferred to it in the process of virtual pair creation. That calculation is then extended, 

f 

-. 
in Sec. IV, to a QCD-type quark model, in which qq pairs are created by gluon exchanges. 

We conclude, in Sec. V, with a general discussion of the role of virtual NR pairs in nuclear 

processes. 

II. Statement of the problem 

Although Z-diagrams for composite objects are typically analyzed in the context of 

Compton scattering, we shall rather discuss circumstances typical of nuclear interactions. 

Generally, we consider a composite object of mass M, interacting with an external, static, . 

scalar or vector potential. To be concrete, we may think of it a nucleon in a meson field 

generated by nucleons in a heavy nucleus; that picture is adequate for a nuclear matter 

problem in the mean-field approximation, as well as for nucleon scattering on a heavy 

nucleus in the optical-potential limit. For a vector potential we can then assume that only 

its time component is non-zero. To avoid further complications we will treat the meson 

field as elementary. 

- 

- 

The interaction of the nucleon with the meson field can be now described in terms 

of amplitudes for (virtual) meson scattering on t*he nucleon, so that kinematics of these 

processes has to be considered. Generally, since the meson field is static in the nuclear 

rest system, the four-momentum of t,he meson is Q = (0, {), with +’ small compared t.o 

t.he nllcleon ma.ss M. Tts sq”a.re, q2 = --ff2! is tllrls a.lsn small cnnlpa,rcd t,o Af2. Anot.lirr 

relevant invariant involed in the meson-nucleon amplitudes is s = (K + q)2, t.he total four- 

momentum squared of the meson-nucleon syst.em. It is more convenient to use, instead of 

this quantity, the meson energy o in the nucleon rest system; its relation to s is 

s=M2+q2+2Mo 
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for an%-mass-shell nucleon. At the same time, if the nucleon three-momenturn in the 

-. nuclear rest system is 2, then we also have 
f 

-1 s=M2+g2-2&j+, 

hence, 

w=-217q’ 
M ’ (2.1) 

It follows then from Eq.(2.1) that in the nuclear matter problem, when 12 1 is of the order 

of the Fermi momentum, the equivalent meson energy w is small compared to the nucleon 

excitation energy, and low-energy theorems apply. On the other hand, in intermediate- 

energy nucleon-nucleus scattering (at projectile nucleon laboratory momenta in the GeV 

- range), w may be substantial, and the fixed-pole analysis is applicable. 

To summarize, looking at the meson-nucleon scattering amplitudes in the nucleon rest 

system, we are concerned with slightly space-like meson four-momenta, and with meson - 
energies smaller than or comparable to the typical nucleon excitation energy (few hundred 

MeV). 

- Having specified the kinematics, we must now decide what precisely should be meant 

by a nucleon Z-diagram for a composite nucleon. The definition has to be phrased in 

terms of the time-development of the meson-nucleon system, i.e., in terms of intermediate 

states occuring in the time-ordered diagrams representing the meson-nucleon scattering 

amplitude. loTo be physi c 11 a y acceptable, such a definition should correspond as closely as 

possible to the time evolution of the meson-nucleon system for a point-like nucleon. The 

essential feature of the latter process is that’, in the time interval between the creat.ion and 

annihilation of the NN pair, the nucleons and ant,inucleons do not interact with each other 

(Fig. 1 (a)). Tl ms, if we want to reproduce this physical picture in the quark model, we 

should only take into account diagrams in which every additional qq pair is created by a 

gluon originating from the already existing qq pair, the first qq pair originating from the 

meson; an analogous requirement applies to qq pair annihilation. An example of such a 
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process is shown in Fig. 2 (a), where qij pairs are created in a “cascade” from the first 

-. 

-1 

pair, and all the gluon exchanges take place within the qqq and clgq systems representing 

the nucleons and antinucleons. In contrast, in the diagram of Fig. 2 (b) one of the q?j pairs 

is created by a gluon originating from the nucleon. Because of color, this gluon exchange 

causes the intermediate state (indicated by the vertical broken line in the diagram) to 

be very different than the NR system appearing in the original Z-diagram (Fig. 1 (a)) 

we are trying to simulate. Although the intermediate state in question is an overall color 

singlet, its internal color structure is, in general, completely different than that of the three 
- 

separate color singlets representing the NN state. Another way of looking at the diagram 

of Fig. 2 (b) is to interpret the q?j pair created by the incoming nucleon as a contribution 

to the nucleon’s q?j sea, unrelated to the virtual NN pair creation process, and independent 

of the fact that the nucleon is interacting with the meson field. In any case, the quark 

diagram of Fig. 2 (b), “t ranslated” into a a diagram involving hadronic states, does not 

reprodllce the original hadronic Z-diagram of Fig. 1 (a). 

The last point to be addressed in this Section is our definition of the Z-diagram 

- suppression factor fi in the meson-nucleon interaction. We simply define fi as the absolute 

value of the ratio of two amplitudes: that of the diagrams shown in Fig. 2 (a), and that of 

the diagram of Fig. 1 (a) calculated f or a point-like nucleon. In the following we assume, 

for simplicity, isocalar mesons (for isovector mesons the results remain, qualitatively, the 

same). Now, since for isoscalar mesons (as discussed in the Introduction) the point-like 

nucleon diagram of Fig. 1 ( a is approxima.hely equal to that of Fig. 1 (b), we can equally ) 

well calculate fi as t.he ra.tio of the dia.gra.ms of Fig. 2 (a,) to those of Fig. 1 (b), i.e., 

symbolically, 



.- 

III. Positronium Z-diagram 

-. 
f Before estimating the suppression factor fz in the quark model, let us consider a 

simpler case of QED, and calculate approximately the suppression factor for the Z-diagram L. 

of the positronium. Elements of the calculation for this example will used in the following 

Section. 

The counterpart of the diagram of Fig. 1 (1~) for the positronium is the Z-diagram of 

a single electron, l1 shown in Fig. 3. The relevant parts of the positronium Z-diagrams, 

analogous to those of Fig. 2 (a), are those shown in Fig. 4. In all these diagrams the 

additional e+e- pair is created by a photon emitted from the already existing pair, and 

e+e- pair annihilation processes have an analogous property. 
.- 

. In an approximate calculation of the diagrams of Fig. 4 some simplifications can 

be now made. In analogy to the nuclear-physics problem, we assume that the external 

three-momenta (I’ are small compared to the electron mass m. Consequently, since the 
- 

positronium is a loosely bound system, and all the diagrams considered are ultra-violet 

convergent, we can safely make non-relativistic approximations in the kinematics. A simple 

- analysis shows then that the upper bound on the suppression factor fz can be obtained 

by simply ignoring all spin factors, and calculating the diagrams of Fig. 4 as for scalar 

particles. This approximation can be justified as follows: 

A time-ordered Z-diagram for a spin-l/2 part,icle, with momenta as in Fig. 1 (a), 

is proportional to a matrix element of the negative-energy part of the Dirac propagator, 

taken between spinors of the incoming and outgoing particle, 

IS($) y. + 3-r’ - m. 
+yoG(-)(p’)you =~YO 2E(F)[E+E(p’)j 70’~ 7 (3.1) 

where E is the energy of the incoming and outgoing particle, E(g) z dm, and 

the factors y. appear, because the external potential is assumed to the time-component 
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of a f&-vector. Now, for lp’ls m we can set E N E(p’) N m, and interpret the resulting 

-. approximate expression (3.1) as 

1 . 
4 2m %O 

E(S) +io + F-T - m 
2m YOU 7 

I 

where the factor (2m.)-l is the inverse of the approximate energy denominator associated 

with the intermediate state, and the expression in the square brackets is a dimensionless 

“spin factor”, which would be equal 1 for the analogous diagram with spinless particles 

(we normalize spinors to ‘izu = 1). Now, if all momenta 2 are small compared to m, the 

spin factor is proportional to lc 1 /m < 1. 

Similar estimates can be given for Z-diagrams ordered not in time, but in the light- 

_ plane variable X+ s t + z. In this case we have to use that part of the Dirac propagabor . 

which describes propagation backwards in the variable x+, 

1 -y3 - d-I@) N --y--g ) 

for lp’l << p, 21 m. Consequently, for three-momenta small compared to m, the spin factor 

- is now approximately equal 1. Thus, when we neglect spin, we can only overestimate 

Z-diagrams, both t- and (t + z)-ordered. 

We can proceed now to evaluating the diagrams of Fig. 4, including all possible, topo- 

logically distinct, orderings of vertices. Each of these diagrams, compared to the diagram 

of Fig. 3, involves two extra energy denominators, equal approximately 2m. Besides, the 

original energy denominator (- 2m) of the diagram of Fig. 3 is replaced now by N 4m. 

In atltlit,ion to these fact.ors, the diagrams of Pig. 4 involve plint,on-exchauga interactions, 

which, for a nonrelativistic bound syst,em, such as the positronium, can be described by 

the Coulomb potential. Integrating over positions of the vert,ices can be then also simpli- 

fied: We may note that, because of short life-times (N l/m) of the intermediate stat,es, 

the coordinates of the electron and the positron remain practically unchanged during the 

pair creation/annihilation process, i.e., ?I 2 T1, and 7, 2 7, (Fig. 4 (al)). Thus, the 
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expression corresponding to the sum of diagrams of Fig. 4 has simply to be averaged with 

_ the positronium wave functions squared, I$(?)[“, where r’ z F12 z <r - F2. 
f 

-. 
Now, by looking at the diagrams of Fig. 4, we realize that there are systematic partial 

cancellations between them. The physical reason is that, say, the pair at the position N c2 

is created by a photon emitted from the first pair - which is a system of zero charge, 

and similarly for annihilation. Therefore, the diagram (al) is partially cancelled by (a2) 

- and (a3), (a2) is partially cancelled by (al) and (a4), etc. Physically, the additional pair 

is created (annihilated) by photons emitted ( a Isorbed) 1 by an electric dipole of a varying 

orientation, and, consequently, the photon-exchange interaction has a limited range. The 

resulting effective short-range potential can be approximately evaluated as follows (see 

- Fig. 5): 

Let us consider, in momentum space, a Coulomb photon of momentum p’ emitted from 

an e+e- pair of vanishing initial total momentum (in our diagrams we assume small 4’). 

The relevant part of the diagram involves thus an energy denominator corresponding to the 

e+e- intermediate state, and the photon-exchange potential V(g). The Fourier transform 

of this expression can be then interpreted as the effective “dipole” potential U(c) divided - 

by the approximate energy denominator 2m. For a given momentum z of the positron in 

the e+e- pair we have thus 

/-!J& [ (,,+z&)-‘- (2m+2(zlz)2)-1] v($)=&ug(+‘) 7 (3.2) 

with V(p’) = 47fo~/p’~. The potential U defined in this way depends, of course, on the 

momentum Z; in particular, for L = 0’ we have 

ufj (3 = s (3.3) 
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with p= = 2m. 2. Alternatively, since the three-momenta are assumed to be small compared 

_ to the mass m, we can expand the integrand in Eq.(3.2) up to terms - g2/m2 and c$/rn’, 
f 

and obtain 
-1 

v,(F) = J d3p 21&?+$~ - 2ncY 
c243 2m2 V(9) = 2 

Generally, UIc (?) has the range - l/m, its integral over a small volume about the origin is 

_ and its g-dependence is, to the lowest order in l/m, negligible. In the following we take 

thus, for simplicity, 
- . U(g) = f eWpLr . (3.4) 

In terms of the effective short-range potential U(C) we can then represent all the 

diagrams of Fig. 4 as a sum of just two terms (Fig. 6). There is also a partial cancellation 

between these two diagrams, simply because in one of them the outgoing external photon 

is attached to the e-, and in the other to the e+ line. Their sum is thus proportional to 
- 

the factor 1 - exp(i$r’12) E 1 - exp(i$r’). 

Collecting all the factors discussed above, we find, then, 

1 
fz<2”- 

- 4m (2m)2 J d”r I$(?)/” U2(F’) (1 - e’$“) . (3.5) 

After expanding the exponent in powers of $, and substituting the positronium wave 

function llr,(r)I” = (a3m3/8n) exp(-cwnr), we find, for q2 E p << m2, 

2 

fz 5 (4,2)2 J 2 + 27& 
d3r I$@‘>I” ~2e-2pr = & ld@)l p3 7 

or 
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We can_ also write, in terms of the positronimn Bohr radius R = 2 (am.)-’ , and positronirrm 

-. mass M 21 2m, 
f cY2 

fz 5 2% &13R3 ’ (3.7) 
-1 

Let us stress again that the smallness of fi is only in part due directly to the weakness 

bf the electromagnetic interaction. In Eq.(3.6) the exchange of two photons yields only 

the factor 02. The remaining three powers of cr are due to two reasons: first, the original 

e+e- pair, created by the external photon, and the secondary et-e- pair both have spatial 

extent - l/m; secondly, the secondary pair is created by a photon emitted by the first pair, 

which is a neutral object. Consequently, all the creation and annihilation processes must 

take place in a small volume - 1/M3, much smaller than the overall positronium volume 

- (7 R3). Thus, the Z-diagram for the positronium can be represented as in Fig. 7, which 

emphasizes the spatial relationships between the extent of the positronium wave function, 

and the pair creation volume. The factor (MR)-3 - o3 in Eq.(3.7) represents then (up 
- 

to a numerical coefficient) t,he probability of finding the electron and the positron in the 

positronium at a relative distance - l/M. 

- Finally, let us clarify the origin of the factor q2/M2 in fi. As seen from Fig. 6, it is 

due to a partial cancellation of diagrams with different ordering of pair annihilation (or 

creation) vertices, the cancellation being almost complete when the external photon has 

zero momentum (q = 0). In that case two relevant parts of the diagrams are shown in 

Fig. 8 for given three-momenta of the electrons and positrons. These two comributions 

enter with opposite signs, because the internal photon couples either to the electron or 

a positron line, so that the sum is proportional to t,he difference of the inverses of the 

corresponding energy denominators, 

1 1 

2E(L2) - 2E(&) ’ 
(3.8) 

with .s(ic’) = dz. S’ mce the three-momenta are small, g2 - Re2, the difference (3.8) 

is also small, of the order m-l (mR)-2. In other words, for q = 0, the suppression factor 

14 



.- 

is of hhe order (.MR)-2 relative to the leading contribution (i.e., that for q # 0). Since our 

- estimates give only the leading term in (MR)-‘, consistency requires that this nonleading 
i 

term should be neglected. As we shall discuss later, the vanishing of the composite Z- 
-: 

diagram at q = 0 is in agreement with low-energy theorems. 

- IV. Nucleon Z-diagram in a QCD-based quark model 

Of most interest for nuclear physics is, clearly, to determine the Z-diagram suppression 

factor for a nucleon. We give below an estimate of fi, based on a simple model of a nucleon 

as a nonrelativistic bound state of constituent quarks, having (within the confinement 

radius) effective masses m p M/3. We assume that the interaction responsible for creation . 

of qq pairs is a Coulomb-type one-gluon-exchange potential, whose spatial dependence is 

V(r) = (us/~. Tl le as 1 t assumption does not imply that we believe the confining forces to be 
- 

- 

of the same type. In fact, our results should be independent of the confinement mechanism, 

and other nonperturbative phenomena. The reason is that the process of creation of a 

triplet of qq pairs can only take place when all the quarks involved are located in a small 

volume, of size less than l/M, and therefore smaller than the confinement radius. It is then 

plausible that, well within the confinement region, qq creation can treated perturbatively. 

An essential assumption made here is that the interaction potential V(r) has the color 

structure corresponding to the standard coupling of a gluon to quarks in SU(3),. 

Although it is a simplification that we concentrate on the effects of nucleon compos- 

it,eness, and consider mesons as point-like objects, coupled locally to constitllent. quarks, it 

is justified, to some extent, by the phenomenologically successful “addit.ive quark model” 

based on just this assumption. Also, our treatment, of quarks (including created qq pairs) 

as massive, “dressed”, constituent quarks, and not almost massless current quarks, is in 

line with the treatment of baryon-meson couplings in the 3Po and similar quark models. 
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Some elements of the analysis have been discussed in the case of the QED example. 

The case of the QCD is, however, significantly more difficult, primarily because of a much 

larger set of diagrams that have to be included, because of the color group structure, and 

because of the obvious fact that the diagrams considered are six-loop diagrams. We do not 

-attempt, therefore, a precise evaluation of fi, and rather stress the physical mechanisms, 

similar to those operating on the QED case, that tend to inhibit virtual qq creation within 

the nucleon. By extrapolating the result for the positronium (two constituents) to the case 

of three constituents, we expect that 

- and that expectation is confirmed. Although our estimate is only approximate, we take 

care to include relevant numerical factors, and make sure that the numerical coefficient in 

the above proportionality is not anomalously large. 

It would take too much space to list explicitly all the diagrams contributing to fi. We 

can, however, organize them in a way exhibiting partial cancellations, and introduce an 

effective short-range potential as in the QED case. With this in mind, let us look at some 

diagrams, shown in Fig. 9. The first one, (a), f or example, is partially cancelled by the 

second, (b), etc. More precisely, the color group weights of all the diagrams in question 

are identical in absolute values. For example, the diagra,m (a) has the group structure 

shown in Fig. IO, where the quark-gluon vert,ices represent Cell-Mann mat,rices i “~j, and 

to the point where three quark lines meet, there corresponds the antisymmet.ric symbol 

-. 

‘ijk, coupling three quarks t.o a color singlet; ;, j, k here are quark cnlor indices, and n is 

an octet gluon index. By utilizing the usual group identities for the X-mat.rices we find, as 

indicated in Fig. 10, that the color weight. of the diagram (a) is (2/3)4 of the group weight 

of the corresponding diagram with no gluons, in particular for the single-quark Z-diagram. 

Therefore, the factor (2/3)4 will appear as one of coefficients in the Z-diagram suppression 

factor fi. 
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F& each diagram shown in Fig. 9 we have indicated in parantheses the sign of its group 

-. weight relative to the group weight of the diagram (a). It is these signs that determine 

-1 
the cancellation pattern. For example, since the diagrams (a) and (b) enter with opposite 

signs, the gluon emitted from the color-singlet system at Cl, and creating a q?j pair at 

T2, can be represented as the “color dipole” potential U,, G U(i”,,) of Eq.(3.4). It is 

less obvious that, since the diagrams (a) and ( ) 1 c a so have opposite color weights, the 

- gluon exchange between the quark systems at +‘z and i;‘a can be, similarly, represented as 

u 23’ Further, adding the diagrams (d) and (e) yields the short-range potential U,, acting 

between the subsystems at T1 and C3. [Actually, the effective potential responsible for 

creation of “second generation” q?j pairs (at F3), has a shorter range than the potential 

_ U for the “first generation” pairs; if we use the same range, we only overestimate fi.] 

- 

Next, since the diagrams (a) and (d) h ave the Same sign, then, if we add (a), (b), . . . , 

(e), and other 11 diagrams needed to complete the sum, the result will be proportional 

to +U,, (U23 + ul3). S’ mrilarly, since the diagrams (a) and (f) have the same sign of the 

goup weights, while (f) and (g) have opposite signs, their sum, after adding another set 

of necessary diagrams, will yield +U,, (U,, - Uz3). The last set of diagrams shown in 

Fig. 9, complemented with other necessary diagrams, gives -U,, (U,, + U,,), where the 

signs result from the relative signs of (a) and (h), and (11) and (i). 

The diagrams considered above can be then symbolically represented as in Fig. 11 (al), 

(a2), and (a3). These comprise one-half of all possible and distinct vertex orderings and 

gluon line arrangements . The other half, shown in Fig. 11 (bl), (b2), and (b3), have 

opposite group weights, and partly (or exactly, if < = 0) cancels the previous set, in 

analogy to the cancellation exhibited in Fig. 7. Summing all these diagrams, including 

the group weight, the factor 2m/6m (b ecause t.he original energy denominator 2m in the 

single-quark Z-diagram is replaced by 6m), and the factor 1/(2m 4m)2 (resulting from 
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additional energy denominators), we obtain, finally, 
-. 

i 
U12(U,3 + U23) [u12(~13 + U23) (1 - eifepl~) 

-1 
+&3 PI2 - u,,) (1 - ei~"13) 

-u,, (u,, + u,,) (eF+12 - eiq*'13 . (4.1) 

- Because of our special choice of the ordering of vertices, this expression is not manifestly 

symmetric in the three quark coordinates, but it has to be averaged with a symmetric 

wave function. After taking permutations of some variables we obtain, then, 

1 1 
fz 5 j (am2)2 Q12 [G2(U123 + G3) + G3 G31) 7 (4.2) 

- 
. 

where &;j Z 1 - COS(QT;j). 

Eq.(4.2) exhibits now the dependence on relative coordinates ~;j G Ti - ~j in a 

factorized form. Calculation of the averages is relatively simple, if we also assume a 

factorized Hulthdn-type wave function, 

- 
1cItr 12, r23, r31) = $* e-Phz+%+r31w ) 

normalized such that 

s d3rr d3r2 d3rs S3(r’r + P’2 + +'3) /$(~12, ~23, r31)12 = I . 

We can use then the formula 

s 
d3rl d3r, d3r, h3(r', + ++2 + ~g)f12(~12)f23(+23) f31(;31) 

= f (2~)-~ / d3k &zt@ .fktrc’) .&,C~, 7 

where the Fourier transforms are defined as 

T(C) E [f(F)],- = / d3reiZSr’ f(g) . 
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With the approximation 1 - cos(qr) 21 q2 r2/2 in Eq.(4.2), the Fourier transforms we 

-. need are c -. r FP 1 8703 
k = (~2 + 1~212 ’ 

-. 

[ 
.p e-P’ 9671-p (p” - k2) 

]k= (pz+,y 7 

[r” u2(r)eep’Jk = a2 8Tp2 s (p; + k2)2 ’ 
[U2(r) eCP’] k = (x2 * arctan A 

’ k P2 ’ 
with ,O, = p + np. Eq.(4.2) can be then written as 

- 

4 128 fz 5 5 $2)’ (5) 3 PP2k 

(,8” + k2)2 (/3; + k2)2 arctan ; 

- . tV (P” - k2) 
(P” + k2)4 

(arctank,‘] . (4.6) 

In the limit p < p the integral appearing here can be calculated in an elementary way, - 

and the two terms give contributions - 1/p4, 

co 
s dk [. . . ] = m-?-- 

vP.)4 [1+0($)] 
0 

tw 

[in fact, for the nucleon, ,B is smaller than /A, but not much smaller; therefore our estimate 

is only approximate]. 

Further, the coefficient T+!J~ in the wave function (4.3) can be related to mean-square 

radius of the nucleon, R2, defined by 

- 1 - i R2 cj2 + o($) . - (4.8) 

With the wave function (4.3) we find the relations 
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* 

.- 
- 

and 

(4.9) 

After substituting Eqs. (4.7) and (4.9) into Eq.(4.6), we find, in terms of the nucleon mass L. 

(4.10) 

_ Since, experimentally, the isoscalar charge radius of the proton is R N 0.72 fm 21 

3.6 GeV-l, the dimensionless expansion parameter appearing in fz is MR “Y 3.4. Thus, 

numerically, 

(4.11) 

- i.e., for any reasonable values of the momentum transfer and the strong coupling constant, 

composite nucleon Z-diagrams are suppressed, compared to either elementary nucleon- or 

single quark Z-diagrams, by at least a factor of 100. Physically, this suppression is mainly 
- 

due to color cancellations, inhibiting creation of qq pairs by a color singlet object. Because 

of these cancellations, qq pair creation processes required in the nucleon Z-diagram can only 

- take place when all quarks are located at relative distances smaller than the nucleon size. 

That physical picture is thus entirely analogous to that for the positronium Z-diagrams 

(see discussion at the end of Sec. III, and Fig. 7). 

V. Conclusion 

Let us summarize the resuhs of this paper by emphasizing again t,hat although the 

Dirac equation may be, in some special circmnstances, used to describe scattering of nu- 

cleans (or other composite objects), its applicability is quite limit,ed: 

First, the approximate numerical equivalence between the quark and point-like nucleon 

Z-diagrams is not universal’; it depends on the properties of interactions. 
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Secondly, even when quark Z-diagrams do reproduce point-like nucleon Z-diagrams 

i 
-. in small momentum-transfer nuclear scattering, the physical mechanism of interaction 

-- 
is completely different than implied by the Dirac equation. That difference is not only 

the matter of interpretation, so that the elementary-nucleon and quark pictures are not 

equivalent (“dual”) d escriptions of the same reality. In contrast, they lead to different 

observable consequences in other processes. For example, in a picture of composite nucleons 

- relativistic effects in nuclear matter are due almost entirely to virtual q?j pairs, not NE 

pairs. Therefore, the number of antiquarks in the nucleus (which can be measured, e.g., 

in the Drell-Yan process) increases, due to relativistic effects, much less than if nucleons 

were treated as point-like. It is exactly the square of our nucleon Z-diagram suppression 

factor fz which gives the relative probability of finding in the nucleus virtual NR-like 3(q?j) 

states, compared to qjj states. 

As we have mentioned before, the smallness of the suppression factor fz is essentially 

of geometrical origin. It is due mostly to the fact that the virtual q?j pairs have to be created 

and annihilated in the small volume (k l/M3) occupied by the fluctuation. Besides, the 

- created system of virtual quarks and antiquarks is an overall color singlet, and it has 

to originate from color-singlet hadrons, which leads to a significant suppression due to 

the color weights. It is also reassuring to note that the estimates obtained here in the 

framework of the quark model are qualitatively consistent with a different concept of Z- 

diagram suppression, considered in Ref. 9 (see Appendix A). 
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Appendix A. Z-diagrams in terms of Feynman diagrams 

m Following the method of Ref. 12, we establish here a relation between the time-ordered 

-: Z-diagram, and certain contributions to the covariant meson-nucleon scattering amplitude. 

Let us first write the meson-nucleon amplitude (Fig. 12 (a)) as a sum of the nucleon 

pole term, and other contributions, 

AF, !I) = g2 F2(q2) (K + q)2 y M2 + i0 
+ (non-pole terms) , (A4 

where g is the meson-nucleon coupling constant, and F the nucleon form-factor (for sim- 

- plicity we neglect here spin). If mesons are absorbed and emitted at space-time points z 

and y, the Z-diagram corresponding to Fig. 12 (a) is defined by requiring z. > yo, i.e., by 

- multiplying the covariant diagram (in configuration space) by the step function 

@(x0 -Yo) = J dl0 

%Fe 
-il,(t,-y,) ’ = 

1, + i0 s - 
& (27r)3 63(lj emi 1(z-y) j--&j , 

0 

According to the last expression, in momentum space the vertices have to be connected 

by a line (Fig. 12 (b)) representing an “theton” - a fictitious particle carrying only energy 
- 

1 o, and having the propagator i/(Zo + i0). The Z-diagram corresponding to the amplitude 

(A. 1) is thus given by 

(2719~ h3(ij & A,(K, q + 2) , 
0 

or, for q. = 0, 

s 

dl, i 
A,(K,q) = - - 

g2 F2(a; - f2) 
2n 1, + i0 (K. + 1, - .5 + i0) (K. + 1, + e - i0) 

+ (non-pole terms) , 

(A4 
where, for {2 << M 2, the on-mass-shell energy of the intermediate-state antinucleon is 
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The (anti)nucleon-pole contribution is then obtained by closing the integration contour 

f 
-. around the pole at 1, = -K, - E + i0, 

AZK 4 = -r& (;I + q F”((& + E)2 - cy2) N --$ F2(4E2) + (non-pole terms) . 

(A-3) 
The pole part of the Z-diagram is thus suppressed by the factor 

fip,1 - P(4E2) < P(4AP) ) (A.4 

in agreement with Ref. 9. 

To compare this suppression factor with that defined and evaluated in the text, we 

assume now that the composite system in question is bound by long-range (Coulomb-type) 

&teractions, so that, for weak binding, MR - l/a. The suppression factor estimated in 

the text becomes then 

- 

fz& (A) 

N-l 
- $ (&p)-(W , 

whereas, with the power counting rules13 giving F(g2) - (R4q4)- tN-‘), the pole contri- - 

bution of Eq.(A.4) is 

P -(J/f4R4)-W-l) . 

In spite of this difference, both concepts of composite system’s Z-diagrams give then 

consistently strong suppression, and, qualitatively, result in the same physical picture. The 

concept discussed in the text is preferable, since it takes into account color cancellations, 

and it pert.ains to physical Fock-space states. more diredly rela.terl to mea.srlrahlr cIlla.ntitics 

(the distribution of antiquarks in the nucleon). 

Both suppression factors, fi and fZPole, are, on bhe other hand, smaller than the 

estimate given in Ref. 8. The latter was obtained simply as the inclusive probability of 

finding in the system (N - 1) extra constituent-anticonstituent pairs in addition to the 
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pair associated with the constituent interacting with the external field. That proba.bility 
-- was shown to be 

f 

where AM - cy2 M - (MR2)-l is the typical excitation energy of the system. The 

&ppression factor obtained in this way, 

fP - (M4R4)-(N-‘) , 

is, apparently, of the same order as fple, but, as shown by a more careful analysis, it 

- involves a very large numerical coefficient, due to a large number of diagrams that have to 

be taken into account. In contrast, in the more restricted class of diagrams considered in 
- 

the present work, there are systematic cancellations due to group weights. 

Appendix B. The low-energy theorem and composite systems 

We have shown in this paper that Z-diagrams involving the propagation of composite 

- systems are suppressed in the degree depending on the degree of compositeness of the 

system. At first sight, this seems to be in conflict with the low-energy theorem for forward 

Compton scattering6 which states that, for any charged target p, the o --+ 0 limit of the 

amplitudes is 

where E and E’ are photon polarization vectors. The apparent discrepancy stems from the 

fact that, in QED, the entire contribution to the ye --+ ye amplit.ude is given (in radiation 

gauge) by the electron Z-diagram. It is thus illumina.ting to underst.and t.he dynamics 

which restore the exact low energy limit in the ca6e where the tSarget is not an elementary 

object. 

Detailed analyses of this problem have been given in the literature.5j7 The essential 

time-ordered diagrams are shown in Fig. 13. We assmne that the target is a bound state 
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of spin one-half elementary particles with charges ei, i = 1,2,. . . , N. The contribution of 

~ the constituent Z-diagrams (Fig. 13 (a)) is then proportional to Ci=1,... ,N ef/Ei , where 
c, 

Ei is an effective bound state energy of the constituent i. 
-. 

The diagrams of Fig. 13 (b) and (c) involve a double sum over the currents of the 

constituents. After transforming those products to commutator terms, one can see that, 

at threshold, only the diagram (b) results in a non-vanishing “zero over zero” expression, 

- the zero denominator being due to the intermediate ground state. By using sum rules, 

one can show that this contribution gives precisely the difference between the constituent 

Z-diagram contribution and the correct total amplitude, which is only dependent on the 

total charge e and total mass of the target. The above analysis can be extended to the 

relativistic domain using a Fock state expansion at equal “time” CC+ = t + z on the light- - 

plane. 

Thus the constituent Z-diagrams play an essential role in the scattering amplitude 
- 

even at zero momentum transfer and very low energies. In contrast, the Z-diagram of 

the composite target as a whole (and its antiparticle) is negligible in the low energy limit. 

In fact, the vanishing of fi at zero momentum transfer is necessary, since the low-energy - 

amplitude is obtained entirely from the constituent Z-diagram and the pole diagram 13 

(9 

In the case where the photon has only isoscalar interactions ei = e/N and assuming 

we ca.n approximate E; = M/N, t,he entire contribution to t.he low energy amplitude comes 

from the constit.uent Z-diagrams; this is another example of how the const.it,uent Z-diagrams 

ca.n mimic t,he Z-dia.gra.m cont.ri1~llt.h of t,he h-get., as disciissed in Rcf, 8. At. t~l~resl~olcl 

the physics is indist,inguishable whether the target. is elementary or not; however when t.he 

energy w is of the order of the target excitation energy and/or t,he moment,ulll transfer is 

of the order of the inverse size of the target, t.he constit,uent nature of the target obviously 

gives a completely different description of the scattering amplitude compared to the naive 

Dirac treatment. In the case of interactions of a nucleon int’eracting in a background 
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meson%eld, such energies and momentum transfers are involved for contributions beyond 

_ the first Born approximation. The use of the Dirac equation to describe the dynamics of 

. ..^ 
a composite nucleon in these circumstances is thus clearly invalid. 
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Figure Captions 

-. 
i 

Fig. 1 Z-diagram of a point-like nucleon interacting with an external potential (a), the cor- 
-1 

responding Z-diagram of a single quark (b), and the composite Z-diagram of the 

three-quark system (c). 

Fig. 2 Gluon-exchange mechanisms of qfi pair creation. The diagram (a), and similar dia- 

grams, reproduce the structure of the diagram of Fig. 1 (a), while the diagram (b) 

does not. 

Fig. 3 The Z-diagram of a single electron in the positronium. 

Fig. 4 Composite Z-diagrams for the positronium. 

Fig. 5 Partially cancelling diagrams generating the effective short-range interaction potential. 

Fig. 6 The diagrams of Fig. 4 represented in terms of the effective short-range interaction. 

Fig. 7 Another representation of the process of Fig. 6 (a), suggesting a small pair-creation 

volume compared to the large positronium size. - 

Fig. 8 Elements of the diagrams of Fig. 6, responsible for cancellation at q = 0. 

_ Fig. 9 Some quark-gluon diagrams contributing to the composite nucleon Z-diagram, to- 

gether with the signs of their color group weights, relative to the diagram (a). 

. Fig. 10 The color group structure of the diagrams of Fig. 9. 

Fig. 12 The meson-nucleon scattering amplitude (a), and t,he rela.ted cova.riant represent.a.tion 

of the time-ordered Z-diagram (b). 

Fig. 13 Diagrams contributing to the forward Compton scattering in the low energy limit. 

29 



. 

- 

-Fig. 1 

X 

I 
I 

I I I 
I I 
I I 

( ) a 

Fig. 2 

(W 



.- 
- 

c 

Fig. 3 

1 a ( 2) 

Fig. 4 



f 

Fig. 5 

.- . 

w 
Fig. 6 

Fig. 7 



- 

f 

_. k, 

k2 
‘0 

Fig. 8 



- 

I 

I (a) (+) i 

- i I 
I I 

I (c) (4 

i I 

I (e) (-) t 

I i 
I 
I 
I 
I 

w t-1 i 

I I 
I I 
I 
I 
I 

w (+I i 

Fig. 9 . . . . 



- 

I 
I 
I 
I 
I 

I 
I * 
I 

I 

’ (h) (0) i 

I 

I 
I I 
I 

I (9) (4 i 

I I 
I I 

I (i) (-) i 

Fig. 9 (continued) 



I I ql A ( 1) a v I 

- 

Fig. 10 

I 

W) 

I 
I 
I 

I 
( 3) a i 

Fig. 11 



.- 
- 

- 

f K K+q+l K 

-. I I +Q.. . ..(. . ..* y- I 
I I I 

q A 
I 
I 

( > a 

Fig. 12 

$s 
I 

w I I yl 
I I 

(W 

non-pole 

Fig. 13 


