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ABSTRACT .w

Simple model calculations indicate that instanton estimates of high-energy
scattering amplitudes are unreliable when the number of final state particles be-
comes large. T his casts doubt on recent claims that the cross section for baryon
number violation becomes large at high energy.
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1. Baryon Number Violation and Instantons

Years ago ‘t Hooft  pointed out that baryon number is not strictly conserved
in the electroweak theory [l]. He used semi-classical techniques to estimate am-
plitudes which contribute to baryon number violation and showed that they are
non-zero but too small to be observed. The processes he considered involve a min-
imum of twelve fermions (in a three generation theory) and the system has to pass

between gauge sectors of different winding number. That requires tunneling under-- _
a high barrier and the amplitudes are suppressed by a factor of e-‘*iffW.  Recently

this problem was revisited by Ringwald [2] and E spinosa [3]. They used instanton

methods to compute amplitudes with some W, 2 and Higgs bosons in the final
state, in addition to the required minimum number of fermions, and found that
the cross section for such inclusive processes increases fast with the number of
particles in the final state. The total baryon number violating cross section then
rises rapidly with energy as higher thresholds for multi-particle production are
passed. In a subsequent paper McLerran et al. [4] obtained the following energym
dependence for this total cross section:
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where A is some constant of order unity. Here and throughout we take Mh - A4,
for simplicity. This expression includes the usual instanton suppression, but if
the energy increases beyond E - M,/o, the suppression factor is overwhelmed,
and the cross section becomes large. Eventually it violates the upper bound set
by unitarity. Of course, the analysis leading to (1.1) is based on a number of

assumptions, many of which fail before such high energy is reached. As an example,

radiative corrections are no longer small when the number of gauge and Higgs
bosons in the final state becomes approximately l/oW. This was pointed out by

Ringwald in ref. [2] and he made no serious attempt to extrapolate his results

to energies where unitarity would be violated. McLerran et al. [4] tried to go
beyond the usual semi-classical approximations and present an estimate of the

2



total cross section at energies above E - M,/cr,. They claim to have included

the ‘back-reaction’ of the large number of external particles on the instanton. Yet,
they still find a rapidly rising total cross section with energy and conclude that
fermions become strongly interacting at energies above E - Mw/ayw - 10 TeV.
If this surprising prediction turns out to be true, it would provide an arena for
experimental study of new non-perturbative physics at future colliders such as the

s s c .

The energy at which the cross section is expected to become large is N M,/cr,-- _
which is also the height of the tunneling barrier separating adjacent perturbative
vacua. One might be tempted to argue that the instanton suppression is overcome
because there is enough energy available to get across the barrier. Thus the fields
no longer have to tunnel through and the reaction can readily proceed [5]. Such
reasoning would, however, almost certainly be incorrect. Consider a process involv-

ing two incoming fermions with total center of mass energy of order the barrier

height. Each fermion is dressed with bosonic fields, which are of strength - 6.
For baryon number violation to happen without tunneling the system must passw
over the tunneling barrier. Since the available energy is just about the height of
the barrier, this can only be done by passing over the minimum of the saddle,

through a field configuration called a sphaleron. A sphaleron is a coherent state
characterized by gauge fields of strength l/& with Fourier modes correspond-

ing to wavelength - l/MU. The dominant decay mode of a real sphaleron is to
produce - l/o, soft bosons and the amplitude for decay into a small number of
particles is exponentially suppressed in comparison [6]. This would seem to sup-

port the aboye picture because the instanton induced cross section becomes large

precisely when the final state has a large number of particles. On the other hand,

for c+ << 1 there is a very big mismatch between the sphaleron and the initial field
configuration. The point is that, although the system has sufficient kinetic energy
to climb the barrier, it corresponds to motion in the wrong direction in configura-

tion space. It is as though we tried to kick a ball over a hill by kicking it in the
wrong direction. The energy is there but unless it can somehow be redirected it
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is useless. Since the theory is renormalizable, and the coupling between modes is
weak, it is unlikely that the energy gets redirected in the required way in a very
short time. After t N l/MW the high-frequency modes will have separated to a
distance greater than the size of the sphaleron and cannot reassemble. Thus the
mismatch between the initial field configuration, with a few high-energy particles,
and the final state with a large number of soft bosons, leads one to believe that this
sort of amplitude should be highly suppressed. Even if a sphaleron configuration

readily decays into a large number of particles the high-energy scattering ampli-

tudes remain small simply because the incoming high-energy particles are unlikely
to form a sphaleron.

This leaves the question of why the instanton calculation appears to give large
cross sections. First of all, the Euclidean path integral, on which the instanton esti-
mates are based, is not well suited to describe particles with high energy. On-shell
Euclidean momenta are limited by the particle masses and obtaining the Minkowski

space Green’s function from the Euclidean one by analytical continuation can be
a delicate matter. In the leading instanton approximation one is instructed to re-
place external fermions by their zero modes and external bosons by their value in
the instanton configuration. This guarantees that the Green’s function is separa-
ble, i.e. its only singularities are poles associated with on-shell external particles.
The corresponding S-matrix element does not depend on energy at all. Instanton
induced amplitudes can thus be generated from a point-like effective multi-particle
vertex, which explains the rapid growth with energy in the instanton estimate of
the total cross section. It is not clear whether this separability persists in a more
careful analysis [7,8].

There is another problem with applying instanton methods to processes which
involve a large number of particles in the final state. The naive instanton approx-
imation basically computes an overlap between initial and final states. Having
a large overlap between a state with N l/oyw quanta concentrated in a volume

N iL?i3 in a vacuum with baryon number n and a state with very few quanta in
the n-l vacuum does not necessarily imply a large transition amplitude between
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such states. In the following section we illustrate this idea by a simple quantum
mechanical system, with a double well potential, which shares many features with
the more complicated field theory problem. In particular, one can set up a situ-
ation where a transition amplitude for tunneling between the two wells is clearly
small, but a naive instanton estimate nevertheless yields a large result. One can of
course not draw any definitive conclusions about electroweak theory from such sim-
ple model calculations, but our results indicate that naive instanton calculations
do not capture the correct physics of high-energy scattering.

-- _
Better estimates are therefore needed to discuss such amplitudes. Ideally one

would address the problem directly in Minkowski space, but it is not clear how to
proceed there. Instead attempts have been made to improve on the Euclidean space
calculations, for example by allowing for the distortion of the instanton saddle point
due to large numbers of external quanta in Green’s functions. The claim that the

weak interactions become strong at energies above 10 TeV is backed by an argument

which is meant to take that distortion into account [4]. We briefly review this
‘back-reaction’ argument at the end of Section 2. It involves coupling the system
to a strong external field and relies on continuing the momenta of the final state-
bosons from the mass shell to zero. This continuation is only valid if the instanton
amplitudes are really separable in the sense described above. When applied to our
quantum mechanical model this back-reaction procedure leads to a considerable

enhancement over the naive instanton estimate, which is already too large. Aoki [9]
has considered the back-reaction of external particles on instantons from a different
viewpoint. He finds a high-energy cross section, which is dominated by an instanton
configuration whose scale is set by the momentum of the incident fermions, and
does not grow with energy. The calculations are based on a perturbative approach
[lo], which is not applicable when the number of external particles is N l/ow, and
therefore they do not directly address the issue raised by McLerran  et al. [4].

It remains a challenging problem to estimate correctly the dominant baryon
number violating cross section at high energy. To get some idea of the physics in-
volved we consider the l+l dimensional Abelian Higgs model with fermions. This
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theory has instantons which give rise to violation of fermion chirality in scattering
amplitudes. The probability of such processes is supposed to rise rapidly with en-

ergy [4] in much the same way as the instanton induced cross sections in electroweak
theory. Consider the scattering of two fermions, of the same chirality, producing
some number of bosons. The incident high-energy fermions, each of momentum p,

are Lorentz contracted as in Figure 1. Nothing happens until the fermions overlap,
at which time, energy is concentrated in a spatial volume Sz N l/p for a short time

6t-l/p.If  ta unneling event is to happen it must involve field configurations of-- _
similar space-time extensions. Thus we should expect qualitatively to replace large
instantons by resealed configurations of size l/p. The tunneling barrier for such
resealed instantons is - p/a and is always higher than the available energy. In this

picture, the baryon number violating cross section is dominated by configurations
with a few high-energy jets and not by N l/o non-relativistic bosons. The cross

section will of course be exponentially suppressed.

Mueller [l l] has given a similar argument in 3+1 dimensions. If the incoming_
particles have energy E >> M,, the interaction region, which supplies the dominant_,
contribution to the scattering amplitude, has volume N 1/E3.  This follows from
causality, Lorentz invariance and the uncertainty principle. The minimum action
configuration of that scale goes through a sphaleron-like coherent state with energy

- Efaur. The high-energy particles thus see a raised barrier. The exponential

suppression of the amplitude does not depend much on energy at all since E scales
out of the value of the minimum tunneling action.

It should be stressed that the problem at hand, involving high-energy scattering
amplitudes, is quite distinct from the question of baryon number violation at high
temperature. In a heat bath at temperature T, where MW << T < MW/oyw, the
correlation length is - l/c~,T and Fourier modes with wavelength - l/MU will be

thermally populated. The high-temperature field configuration thus contains the
ingredients that go into making a sphaleron and the above mismatch argument does

not apply. Thermally activated processes violating baryon number conservation via
the sphaleron configuration can be described in terms of classical statistical physics
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and are only suppressed by a Boltzmann factor e-“w/aWT  [12,13]. The relevant
kinetic theory involves classical fields, i.e. coherent states with N l/o, quanta,

rather than collisions of individual quanta.

2. A Simple Model

The suggestion that the weak interactions become strong in high-energy col-
lisions at energy above ten TeV’s is based on instanton calculations involving a

large number of particles in the final state. It is very surprising to find large cross
sections for processes where incoming high-energy quanta produce a multitude of

soft particles. Therefore, one should perhaps question the validity of the instan-
ton approximation under these circumstances. Unfortunately we do not have an
alternate method for quantitatively computing the relevant field theory scattering

amplitudes. Instead, our approach will be to apply instanton methods to study
tunneling in a particularly simple system, where we have a good handle on the
physics, and see if they produce reliable results for amplitudes involving many.

quanta in the final state.

Consider a two-dimensional quantum mechanics problem with the following

Lagrangian,

L = -& + $2 - V(q y)],

where V(x, y) is a double well potential,

a
J,+ y) _ 4 x2(x - 4YN27 2 U2(Y> *

(24

(2.2)

The potential has two troughs, one along z = 0 and the other along z = u(y). The
u2(y) m the denominator ensures that the oscillator frequency in the s-direction is
fixed at wo along the bottom of both troughs. In order to define initial and final

states localized in one potential well or the other we want the wells to be separated
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for asymptotic y, but at the same time the two directions should only be weakly
coupled. This is achieved by choosing the function u(y) as follows,

u2(y) = 1 + p2y2, P*3)

where p is a small coefficient. The parameter Q = l/mz~ plays the role of the
squared coupling constant in the field theory problem. Here m is the mass of the

particle and ~0 is the minimum separation of the two troughs. The variables in

the Lagrangian  (2.1) have been resealed by ~0. Since there is only weak coupling

between the z and y directions the energy eigenstates are approximated by products

of plane-waves along y and the usual double-well eigenstates in x. Of course the x
eigenstates will also depend on y through u(y).

Consider a particle at large negative y traveling along the bottom of the trough
centered around x = 0 with momentum q in the positive y direction. Classically

the particle never leaves the initial well, but it can find its way to the other one
by tunneling. The minimum separation between the potential wells is at y = 0.- .m,
and there the barrier between them is lowest. Therefore the transition amplitude

comes mostly from that region. By dialing CY we can make the barrier between the

wells as high as we like and the tunneling probability arbitrarily small. The idea
is to use instanton methods to compute the tunneling amplitude. The system has
an instanton with a Euclidean path along y = 0, which describes the tunneling of
a stationary particle from the origin to x = 1. The Euclidean solution is identical
to that of the one-dimensional double well instanton,

xinst(r)  = i(l + tanh UT). (2-4)

In our case the particle has momentum q in the y-direction and strictly speak-
ing there is no path with finite Euclidean action satisfying the appropriate initial
conditions. We can, however, approximate the transition amplitude by using the
one-dimensional instanton to compute an ‘instantaneous’ tunneling amplitude in
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the neighborhood of y = 0 and cutting off the zero mode integration, over the loca-
tion of the center of the instanton, at r N l//?q. This approximation is somewhat
analogous to placing external momenta on the Euclidean mass-shell when com-
puting instanton amplitudes in field theory. Momentum is not conserved in this
problem so an incoming particle with some kinetic energy can tunnel into excited
states of the second well. On the other hand, if the coupling between x and y is
weak we would expect amplitudes, which transfer a lot of kinetic energy into x-

oscillations to be suppressed. This directly corresponds to the argument we made-- _
in the previous section about mismatch between initial and final field configura-
tions suppressing real-life scattering cross sections. The instanton approximation

) be unreliable.

into excited final states we define a

misses this and therefore we might expect it tc

In order to calculate transition amplitudes
Heisenberg operator,

00
r

Z(w) = J dt (x - u(y)) d(t) eiw’ .
--oo

(2.5)

,*.
Since x(t) oscillates with frequency wo, as t + 00, Z(w)  has a pole

1
Z(w)  -+ -z(w).

w - wo (2.6)

If we apply $j [ ~%4jn to the ground state, and let w + wo, the system
will be excited to the nth level in the second well. The factor of l/a has to be
included for proper normalization. In terms of a path integral the amplitude is

A,= ‘u-$” /Dx {g J”& (x(2) - u> eiut}n eiJdtL. (2.7)
0

where the limit of w + wg is understood. Wick rotation gives

A ,  = (W--WO)n~ J Dx {E J*dr (X(T) - u) ewT}” e-sE[zl. (24
0

Now we simply saturate this with the one-dimensional instanton (2.4). The asymp-
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totic  behavior, xinsl N 1 - e+“Or, gives rise to the correct pole in the r integral.

When we have included the instanton zero-mode integral our estimate of the tran-
sition amplitude reads

d,,N -jq (-$ (2)./z e-we/6a . W)

This has the characteristic features of the instanton amplitudes of refs. [2] and [3]:
exponential suppression and a factor of l/fi for each final state quantum. We
find the total probability for the particle to tunnel by squaring the amplitudes (2.9)-- _
and summing over final states up to a point determined by energy conservation.
In the limit of very high energy the sum gives an exponential and we find a total
probability,

+wo/6a
. (2.10)

If Q is small enough this result is considerably larger than one. Evidently we
have drastically overestimated the amplitude (or perhaps we have explained cold
fusion). Having a tunneling probability larger than one in this problem corresponds
to instanton amplitudes violating unitarity in electroweak theory.’ It is clearly
incorrect to sum over all values of n in (2.9). We obtain a more reasonable answer
if we only include final states with energy less than the barrier height. However,
there is no physical prescription which tells us where the sum should be cut off
and it is not clear how to get a useful result out of this. What is clear is that the
actual tunneling probability in this problem is exponentially small. At no point in
the evolution of the system does the wave function ever leak appreciably into the
well at z = u(y).

We have arranged our tunneling calculation in a way which brings out the
similarity with instanton calculations in field theory. We now discuss the same
problem from a slightly different point of view, which makes it clear what goes
wrong with the instanton estimate. We will again do an approximate calcula-

tion which assumes that tunneling occurs only when the two wells are close to-
gether. This time, we will use the Hamiltonian, Ho = 5~2 + $V(x, 0), and evaluate
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the amplitude ($rl eeHoT I$;). The tunneling probability will be proportional to
/Y2qs2)  (+fl ewHoT ]+i) 12. The amplitude can be obtained by inserting a complete

set of HO eigenstates. If we take 2’ > w.-’ the contribution from excited eigen-

states is heavily suppressed. There are two low-lying eigenstates with energies

E = y f ICesSo. Here So is the Euclidean action associated with the instanton

and the factor I< is obtained from the path-integral determinant at the instanton
saddle point (141. The small energy difference gives rise to beats between the wells.

We can assume that T is short compared the characteristic time for these beats
to-avoid tunneling back into the original well. The two low-lying eigenstates are
denoted I-) and I+), and they are the spatially even and odd combinations of the
particle ground-states in the two wells:

I-> =$9 + p’)),

I-t-1 =$lO) - lo’>>*
(2.11)

The dominant contribution to the tunneling amplitude comes from.these states, ._,

(+fl e-H”TItii)  z((lClfl-) (-I&)+ (tif1-t) (tl$i)) e--woT/2a

=((~flO)(Ol45)t($flO')(O'I$i))  e--woT/2a.

(2.12)

The factor of e-woT/2a comes from the zero point energy and can be absorbed into

the normalization. The instanton amplitude is thus simply given by the overlaps of
the initial and final states with the ground states of the two wells. If the initial and
final states are IO) and IO’) respectively then the instanton amplitude is particularly
simple:

( I0’ emHoT IO) N (0 I()) N esSo = e-we/6a. (2.13)

This agrees with our previous result. We can also consider more general amplitudes

where the particle starts out in the ground state of one well but tunnels to some
excited state in the other well. At each energy level of a double well system there is

11



an almost degenerate pair of eigenstates, one even and the other odd, and these can
be combined to form a state localized in one well. Such states can be approximated
by harmonic oscillator states centered in the given well (at least for the low-lying
levels) and then the overlaps can be obtained in a straightforward way,

( In’ ,-HOT  lo) N (n’lo) = k!J (z)“12 e-wO/4a. (2.14)

Note that the exponential suppression appears to be greater now than in (2.13).
The harmonic oscillator wave-functions fall off more rapidly under the barrier than-- _
the actual eigenfunctions of the double well system so we systematically underes-
timate the overlaps. Squaring the amplitudes and summing over final states gives
an estimate for the probability of finding the particle in the second well. However,
it is now clear that we have to cut the sum off before we reach harmonic oscil-

lator states with energies of order the barrier height - wi/32cr.  If we fail to do
so .we will indeed find a large ‘probability’ for the particle to tunnel. For small
CY the initial wave-function is mostly found in the first well and is likely to stay
there throughout. Its tail extending into the other well is exponentially suppressed..*,
What is wrong with the ‘probability’ found above is that for high excitations the
wave-functions centered in the second well are peaked far from its center at x = 1.
For n - wo/20 the wave-function r,!~,,  is actually concentrated in the first well! This
is illustrated in Figure 2 where we have graphed the ground state wave function
of the first well and an excited one of the second well, with the parameters arbi-
trarily chosen to correspond to we/o - 50. Large overlaps of the initial state with

excited final states, which are peaked in the original well, reflect the fact that the
particle is unlikely to tunnel at all, and in particular, do not imply large transitionA
amplitudes.

We can give another related example where instanton methods overestimate a
physical effect. Consider a conventional double well problem in one dimension,

L = i[kP2 Wfi 2- TX (5 - l)“] . (2.15)

We will compute the contribution to the ground state energy from processes in
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which the particle tunnels from the ground state of one well to an excited state of

the second well and back. The energy shift is

6Eo = c
I An I2

wof2 - wn *
(2.16)

n

If we try to use the instanton estimate (2.9) for the transition amplitudes and then
sum over all n we find an absurdly large result,

LEO - - c -$(~)ncn-~lwo  e-we/3a
n ’ (2.17)

N -ewofga.

Again, this demonstrates that instanton methods are unreliable in quantum me-
chanics when highly excited states are involved.

When the number of quanta in the final state is - l/a the path integral

saddle point is no longer dominated by the action and the instanton gets distorted.
In the electroweak theory this can occur at an energy - M,/cr, ‘and improved

calculations are needed to obtain reliable estimates at that energy and higher.

McLerran  et al. [4] addressed this back-reaction problem by coupling the Higgs
field to an external source and studying the generating functional Z[J]. In general
there are also gauge bosons in the final state, but for simplicity we concentrate
on amplitudes involving Higgs bosons only. The idea is to use analytic properties
of Z[J], as a function of the external source field J(x). Correlation functions
involving n external Higgs particles are obtained by taking n derivatives of Z[J],1
and for large n they are determined by the asymptotic behavior of the power series

expansion of Z[J]. M cLerran et al. assume that the Higgs particles can be placed
at zero four-momentum. Then a constant external source J can be considered and
the calculation is simplified enormously. A constant external source distorts the
scalar potential and shifts the Higgs expectation value. At a critical value, J,, a
local minimum of the potential becomes unstable and Z[J] develops an imaginary
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part. The location of the singular point limits the radius of convergence of the
power series expansion of Z[J], and we can estimate the limiting behavior of its

terms as ( J/Jc)n fo r  ar1 ge n. Once Jc has been determined, the n Higgs particle
Green’s function is estimated as

An N C(n) n!/ I Jc In7 (2.18)

w h e r e  ( ( n ) is some function of n that grows slower than exponentially [4]. McLer--- _
ran et al. applied their method to estimate baryon number violating amplitudes
and found an even larger answer than a naive extrapolation of Ringwald’s instanton
results.

Similar considerations can also be applied to our quantum mechanical problem.
In particular we can estimate the effect of adding a constant source term to the

Euclidean action. The story is much the same as in the field theory and we will

not present the analysis here. We find that this method leads to an even larger

result than (2.10). A qualitative physical explanation of this over-estimate can_,
be obtained by following the time evolution of the transition amplitude into an
excited state with n > l/o. This is shown schematically in Figure 3. At early
times the particle is concentrated in the well centered about x = 0 and the wave

function overlap with highly excited states in the other well is small. As the
particle approaches the origin, where the potential barrier is lowest, the overlap
grows, but at late times the overlap becomes minute once again. Since the overall
tunneling probability is non-vanishing there is a small amplitude to find the particle
in the second well at late times and a characteristic eerEnT  phase develops. This
is represented by the oscillating piece (which is not drawn to scale) in the figure.

Evaluating zero-momentum amplitudes corresponds to taking the total area under
the curve whereas an on-shell calculation would identify the small oscillating piece
at late times.
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3. Conclusion

We see no reason to believe that the weak interactions become strong at en-
ergies of a few TeV’s. There is no obvious physical process in a weakly coupled

theory by which incoming high energy particles can produce a sphaleron-size co-

herent state of non-relativistic W, Z and Higgs bosons. Scaling considerations can

be used to argue that weak interaction baryon number violation is exponentially

suppressed in high-energy scattering at all energies and that the cross section is-- _
dominated by processes involving a few high-energy jets [ll].

The large cross sections predicted in ref. [4] were obtained using an instanton
approximation. The analysis in the previous section illustrates that one must be

very careful in using instantons to calculate transition amplitudes to states with
large numbers of quanta in the final state. In our quantum mechanical model large
n excitations about one vacuum make substantial excursions into the other vacuum

configuration. Naive instanton calculations compute this overlap rather than the

actual transition amplitude. Of course, our model is very simple and our results
do not rigorously exclude the possibility that large cross sections occur in the real
problem. New tools for calculation are called for, to place upper bounds on baryon
number violating scattering amplitudes in electroweak theory and lay this question
to rest.
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FIGURE CAPTIONS

1) Lorentz contracted fermion world lines.

2) Overlap of simple harmonic oscillator wave functions centered in different
wells.

3) Schematic large n transition amplitude.
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