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Abstract

In this paper,  we describe  a new trajectory  correction  technique  for high en-

ergy linear accelerators. Current  correction  techniques  force the beam trajectory

to follow misalignments  of the Beam Position  Monitors (BPMs).  Since the particle

bunch has a finite energy spread and particles  with different energies are deflected

differently, this causes “chromatic” dilution of the transverse  beam emittance.  The

algorithm which we describe  in this paper reduces the chromatic dilution  by min-

imizing the energy dependence  of the trajectory:  To test the method we compare w

the effectiveness  of our algorithm  with a standard  correction  technique  in simula-

tions of the Stanford  Linear  Collider (SLC) 1inear accelerator  and a design linac

for a Next Linear Collider (NLC). While the simulations  do not indicate that chro-

matic dilutions  are a serious  problem in the SLC linac,  they would be debilitating

in a future  linear  collider because  of the very small beam sizes required to achieve

the necessary  luminosity.  For example,  in simulations  of the NLC we have found

that  with typical alignment  tolerances  the beam size increased substantially  after

correcting  the trajectory with a standard  correction  algorithm.  In contrast,  after

correcting  with our technique,  the dilution was negligible. We feel  that  this tech-

nique will prove  essential  for future  linear colliders.
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1. Introduction

In a linear  collider there  are many effects which dilute the beam emittance;

a measure of the phase-space  volume  occupied by the beam.  The dilution then

causes a reduction  in the collider’s luminosity. In this paper,  we discuss a new tra-

jectory correction  technique  for linear accelerators  which reduces the “chromatic”

emittance  dilution.

The chromatic emittance  dilution results from “dispersive  errors.” Dispersive-- _

errors occur  when the beam trajectory  is deflected since the deflections differ  for

particles  with different energies. Because the particle beam has a finite energy

spread, these dispersive errors cause a dilution of the transverse  emittance;  we

refer to this dilution as a chromatic  dilution.  The chromatic emittance  dilution

tends to scale with the transverse  alignment tolerances  in the linac relative  to the

beam size. Since, to achieve the necessary  luminosity,  the beam sizes in most

future  linear collider designs  are very small, the chromatic  dilution,  if uncorrected, _

would specify very tight alignment tolerances.

The trajectory  in a linac needs  to be corrected  because  misalignments  and stray

fields  deflect the beam.  In addition to aperture  limitations, the orbit offsets lead to

wakefields  and dispersive errors which dilute the transverse  emittance. To reduce

these  effects,  the trajectory  is corrected  with additional  dipole correctors.  Usually,

the correction  algorithms  attempt  to zero the Beam Position  Monitors  (BPMs)

which  measure the trajectory in the linac. For example,  in the Stanford  Linear

Collider (SLC) 1inac, a “one-to-one”  algorithm  is used to implement the correction.

Here, a single dipole corrector  is used to zero a single (downstream)  BPM. Using

this algorithm,  each of the matched  BPMs can be zeroed  within the limitations of

the corrector  strength and the BPM precision, i.e., the intrinsic noise in the BPM

measurements.



The problem with this technique  is that  the BPMs are typically  misaligned,

both electronically and mechanically. Thus, the corrected  trajectory is kicked

from side to side, following  the BPM misalignments.  In such a case, the chromatic

- dilution tends to grow  with the square root of the number of BPMs [3]. For

example,  it is estimated in ref. [3] that  30 pm BPM misalignments  in the NLC [2],

a future  linear collider design, would cause the vertical  emittance  to double when

using the one-to-one  correction  technique. To reduce this dilution to 25%, we

would-need  to align the multikilometer  linac to roughly 10pm.  This is about  one

order of magnitude  better  alignment than can be achieved with techniques  now in

practice

To avoid this situation, we need to either  find and correct  the BPM misalign-

ments or develop  an algorithm  which does not depend upon the BPM alignment

errors..  A method of using the beam to find the quadrupole  and BPM misalign-

ments has been developed for-the  SLC linac [4,5]. The method uses trajectory

information  from two or more different focusing configurations  to solve  for the
.w

individual  misalignments;  the focusing configuration  of the machine  is varied by

tuning  the quadrupole  magnets  which focus the beam throughout  the linac.  While

this method  has been used very successfully to find most of the large alignment

errors,  in the SLC, it is limited to an accuracy  of roughly 100pm [4].

In this paper,  we discuss an algorithm  which is less dependent on the BPM

misalignment  errors than the one-to-one  algorithm.  Our approach is similar to

that  of Refs. [4] and [5], in that  we use information  from two different focusing

configurations. Specifically,  we measure two trajectories  where  we change the

focusing structure  between measurements.  By subtracting  these two trajectories,

the resulting  difference orbit is independent  of the BPM alignment  errors. In

theory, the quadrupole  misalignments  could now be found. Unfortunately,  the
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difference orbit still has errors due to the finite  BPM precision and additional

unknown  deflections.  Rather  than trying to solve for the individual misalignments,

we simply correct the trajectory  to minimize the difference orbit; this will then

- minimize the dispersive error.

In the next section, we discuss the basic theory and some aspects  of the im-

plementation. In sec. 3, we perform a detailed analysis of errors affecting  the

correction  technique.  In sec. 4, we present results from simulating  the correction

technique  on the SLC linac and a preliminary  design  for the NLC linac, compar-

ing with results found using the one-to-one  algorithm.  Next, we compare with

another  method  of controlling  the chromatic  dilution.  Finally,  in sec. 6 we discuss

the effect of alignment  tolerances  on our algorithms.

2. Theory

2.1 Beam transport .L e

A particle beam consists  of particles  distributed  in a six-dimensional  phase-

space: (x,P~, Y,P,, 40 hw ere x and y are the transverse  coordinates,  p, and p,

are the transverse  momenta,  and 6 and I are the relative  energy deviation  and

longitudinal  position.  To constrain  the transverse  size of the beam, it is transported

through a focusing  structure,  which, in the case of high-energy  beams, is usually

constructed from an array of quadrupole magnets.  The envelope of the transverse

beam distribution is defined  by this focusing structure and the initial conditions.

As the beam propagates,  the particles  execute  transverse  betatron  oscillations

about the beam centroid  within this envelope.

Since  the quadrupole  magnets  provide  linear focusing,  the particle trajectories

can be described  by a transport  matrix, relating  a particle’s  position  to its initial
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conditions  and the deflections  due to additional  dipole fields. Likewise, the tra-

jectory of the beam centroid  can be expressed in the same manner;  the centroid

follows  the trajectory of a fictitious central  particle that  defines  the central  trajec-

- tory of the bunch.  Assuming that the horizontal  and vertical planes are uncoupled,

the particle position  can be expressed as

X(S)= XORll(SO,S)+  XbRl2(sO,s)+  CoiR12(Si,S) ) (1)
i

-- _

where  x0 and XL are the initial conditions  and Oi are the deflections  due to ad-

ditional  dipole fields. The coefficient Rrr and Rr2 are matrix elements relating

positions  and deflections  at one location to a position  at another  location; these

only depend upon the focusing structure of the machine.

2.2. Dispersive  errors and chromatic dilutions

In this paper,  we differentiate  between the “dispersive  errors” and the chro- ‘*

matic dilution  of the bunch. Specifically,  we use the terms “dispersive error” or

“dispersion” to describe  the variation  of the central trajectory  with energy; it is a

single particle effect.  We define  the “dispersive  error” of a particle with an energy

deviation  as the difference between its trajectory  and the trajectory  of a particle

with the design energy E(s).

Dispersive  errors arise because  particles  with different energies are deflected

differently;  for ultrarelativistic  particles, the deflections scale inversely with the

beam energy.  Thus, for a particle with energy (1 + G(s))E(s), the dispersive error

is

AX(S) = C 0; [Rl2(si,s) - (1 - &)R12(6; si, s)] 7 (2)
i
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where  we have set the initial conditions  q and XL to zero.  The parameter  0; is

the deflection  at longitudinal  position si and includes kicks from both correctors

and errors,  bi is the relative  energy deviation from the design  energy, J&(s): Si E

- (E(si) - Eo(si))/E(si), and the matrix element Rrz(Si,  s) transforms  a deflection

at si to a transverse  position  at s; the coefficient Rr2(6) is the Rr2 matrix element

for a particle with energy deviation  S(s). Finally,  we should mention that the

dispersion is a nonlinear  function  of 6; this is seen in the Rr2(S) matrix elements.

This-nonlinearity  will be important  for the discussion of errors in sec. 3.

As has been mentioned,  a particle beam consists  of particles  distributed a six-

dimensional  phase-space.  Chromatic dilution  of the transverse  phase-spaces  occurs

for two reasons: first, the dispersive errors will cause each constant energy slice of

the beam distribution to have a different centroid; they will follow different central

trajectories. Second,  the beam envelopes  of the constant energy slices, i.e., the

second-order  moments of the slices, will differ since particles  with different energy

experience  different focusing. .w

In this paper,  we discuss correcting  only the first contribution  to the chromatic

dilution.  If the focusing structure of the accelerator  is properly adjusted  the second

effect will  typically be small. For example,  in the SLC and NLC linacs this effect

leads to less than 0.1% emittance  dilution.  Of course, when the linac is not properly

“matched,“i.e.,  the focusing structure of the linac is not set correctly,  this second

effect can become large. Regardless,  matching  the linac is a separate  issue and we

will not treat  it in this report.

2.3. Trajectory  correction

To reduce the chromatic emittance  dilution,  we correct  the energy-dependence

of the central trajectory.  To do this, we vary the efective  beam energy and then
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correct  the difference of the resulting  orbit  and the original trajectory.  In a linac,

there  are two methods  of changing the effective energy: changing the beam energy

or, equivalently,  changing the magnet strengths;  increasing  all of the magnets  by

1% has the same effect on the transverse  optics as decreasing the local beam energy

by 1%.

To correct  the difference orbit resulting  from changing the effective  beam en-

ergy, we need to measure the beam trajectories. If we consider only transverse

quadrupble  misalignments  and dipole correctors,  the ith BPM will measure

mi = ti(tl) - 4 + ~oRll(~o,si)+ x~R~~(sO,S;)
Nq

+ FB,Rlz(sj,si)  + CdjRij ,
j j=l

where  .[ is a stochastic  variable representing  the BPM precision error, 6 is the

deflection  of the dipole correctors,  and, b  and d  are the BPM and quadrupole

misalignments  relative  to the linac centerline. -The coefficients Rrr(so, si) and .-

Rr2(sg,si) are two elements of the transport matrix which  relate the initial values

x0 and xb to a position  offset  at the ith BPM. Likewise, Rrz(sj,Si) relates  the

deflection  due to the jth corrector  to a position at the ith BPM. Finally, we have

a sum over the quadrupole  magnets  where  Rj relates dj, the misalignment  of the

jth quadrupole,  to a position  offset at the ith monitor.  Specifically,

Rij = Rll(Si,Sj)(l -COS&L)+Rl2(Si,Sj)&SinJiTL  , (4)

where  the jth quadrupole has normalized strength  K = (e/&mc2)dBy/dx and

length  L, and the quadrupole  magnet ends at sj. Obviously, R;j is zero  if si < ~j.

In a similar  manner,  we can calculate the measured trajectory  after the effective

beam energy is changed by 6(s) G AE(s)/E(s). The difference orbit that  we will
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correct  is found by subtracting  this new trajectory  from the original  measured

trajectory:

Ami = (Ei(tl)  - G(t2)) + x0%(6; SO, 8;) + xbK(b; ~0, si)

+ 5 @jz(b; sj, si) + 5 djG(6) .
j=l j=l

(5)

Here, x(6) s R - R(6) and R(6) is th e coefficient R calculated for the modified

optics-due to the change in energy.  It is important  to notice  that  the difference

orbit is independent  of the BPM misalignments.  We should also note that  we

have not included additional  unknown  errors such as RF deflections  or magnetic

strength errors; these and other  errors will be discussed in sec. 3.

In principle,  using (N* + 2) BPMs, we could solve for the quadrupole  misalign-

ments .and the initial conditions  exactly, provided that  the BPM precision errors

and any additional  deflections are negligible. In such a case, we could fix the

injection and the quadrupole  errors; the trajectory  would then follow the linac

centerline  and the dispersive error would be zero. Obviously, this is not realistic.

When the additional  errors are included,  the difference orbit is not a function  of

just ( Nq + 2) unknowns. Thus, we cannot  calculate the individual quadrupole  mis-

alignments  and the initial conditions  exactly.  The error in each calculated  value

will increase  with the number of misalignments  being estimated since each calcu-

lation depends upon the accuracy  of the preceding calculations. Of course, while

the error of each individual  calculation may be large, the global solution  could be

used to reduce the difference orbit to the level  of the BPM precision errors. Un-

fortunately, after correcting  the difference orbit, and thereby  the dispersive error,

we would find that the trajectory  would diverge  from the linac centerline.  This

occurs since the difference orbit is not referenced to the linac centerline.
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It is evident that we need to include some information  about  the real trajectory

while  correcting  the difference orbit. We have found that the best approach is to

perform a least  squares solution for the unknowns  using both the original  trajectory

- and the difference orbit with the appropriate  weighting.

dipole corrector  strengths  which minimize the sum

Nq (mj + Xj)'c
j=l  6greC  + O&PM

+  (Amj + AXj)2

2$L

Thus, we solve  for the

. (6)

Here, oprec is the RMS of the BPM precision errors and CQPM is the RMS of the

BPM misalignments  relative  to the linac centerline.  In addition, Xj is the predicted

trajectory at the jth BPM as a function  of the dipole corrector  strengths and AXj

is the predicted  difference orbit. We will subsequently  refer to this algorithm  as

Dispersion-Free  (DF) correction.

It is important to note that-with this algorithm,  the correction  of the dispersive

error, i.e., the difference orbit, is independent  (approximately)  of the magnitude  of ‘-

the BPM misalignments.  Instead, the correction  depends upon the BPM precision

and the accuracy with which the measured difference orbit reflects the dispersive

error.

2.4. Emittance  dilution

To compare the results of the correction  algorithms,  we need to calculate the

emittance  increase  due to the dispersion. We will discuss the actual emittance  at

the end of the linac, i.e., the area the beam fills in phase-space.  Of course, the beam

will continue  to filament  as it is transported to its final destination. Furthermore,

in a linear collider,  one is interested  in the overlap  of the two colliding beams.  Thus,

the eflective emittance  increase may differ from the actual increase.  Unfortunately,
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this effective increase  is dependent upon the downstream optics, etc., and thus we

only consider the actual phase-space  increase.

The transverse  emittance  of a particle bunch is given by [l]

E = 4(x2)(x’2)  - (xx’)2 ,

where  the angle brackets  denote an average over the particle distribution and the

coordinates  x and x’ are referred to the beam centroid.  Assuming that  the disper-

sive errors are a linear function  of the energy difference (valid for small AE/E),

the emittance  is

Here, 60 is the unperturbed  emittance and it is multiplied by a magnification  factor.

The function F is
.”

Fh = pAxC; + 2~xAx,~Ax;~  + TAX;: (9) -

where  p, Q, and 7 are the lattice  parameters  for the design  energy [6]. In particular,

p, CY, and 7 are proportional  to the second  moments of the unperturbed  beam

distribution: (x2(s))  = cap(s), (xx’(s)) = -coo(s),  and (~‘~(5)) = COY(S).

The function .‘F is similar in form to the “curly  H” function  introduced  to

calculate the emittance  in storage rings [7]. It is a function  of the difference orbit

AXE, which  is the difference between the trajectory  of a particle with the design

energy and a particle whose  energy differs from the design  by the RMS energy

spread:

Axa* E x(&J f a,) - x(Eo) *

10
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Here, a,(s) is the R.MS relative  energy spread and x is the beam trajectory; note

that  both cc(s) and Es(s) are functions  of position  s. This difference orbit is a

measure of the chromatic dilution;  we will use it to estimate the effect of errors in

the correction  algorithm  in the next section.

Now, we need to allow for the nonlinearity  of the dispersion. Notice that, if the

errors were linear functions  of AE/E, Ax0+ would equal the negative  of Ax,,- and

3+ would equal 3-. Since  the dispersion is not linear,  we compute the emittance-- _
as an average, using both the Ax,+ and Ax,- difference orbits:

(11)

Here, we are approximating  the emittance  with half of the beam ellipse extended

by &Ax,,+ and half of the ellipse extended  by iAx,,-. Usually, this definition of

the magnification  factor will tend to underestimate  the core emittance  since we are ,_

approximating  a curve with two straight  lines. Of course, it is possible that eq. (11)

will overestimate  the magnification.  This will occur if the inner core of the beam

is much more densely packed  than the outer envelope; in this case, the one-sigma-

point cannot  be used to accurately reflect the density of the beam.  Regardless,  we

have generally  found good agreement between eq. (11) and actual beam emittance.

Finally, we discuss the basic scaling of the emittance  with the magnitude  of the

misalignments.  The difference orbit Ax, is roughly proportional  to the magnitude

of the misalignments  causing the dispersive errors. Thus, when the dispersion

is large Ax, >> a, the emittance  increase  is also  roughly proportional  to the

magnitude  of the misalignments. In contrast,  when the dispersion is small, the

increase  is proportional  to the square of the misalignment  magnitude.
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3. Error Analysis

In this section, we analyze the effect of various  errors on the performance  of the

- DF correction algorithm.  In a linac,  there are many additional  errors that were

not included in the initial formulation  of the DF algorithm.  Thus, to understand

the utility  of the algorithm,  we have to determine  its sensitivity  to these  additional

errors.

The DF algorithm corrects  the dispersive error by correcting  a measured dif-

ference orbit which is created  by changing the effective beam energy.  Thus, the

algorithm  relies  upon the resemblance between this measured difference orbit  and

the actual dispersive  error. We can divide any errors into two catagories:  errors

which  cause the measured difference orbit  to differ  from the actual difference orbit

(measurement  errors)  and errors which  cause the difference orbit to differ  from the

dispersive error of a particle within the beam.
.L .e

Errors in neither  category  will not degrade the correction  of the chromatic

dilution and thus can be ignored. This is an important  aspect  of the algorithm.

The algorithm does not attempt  to extract  specific information  from noisy data;

it minimizes a measured  quantity.  Thus, if errors reduce the convergence of the

minimization,  one can simply iterate the correction  procedure.  Examples of such

errors are BPM and corrector  calibration errors, absolute  beam energy errors, and

errors in the transport  coefficients Rr2 used to calculate the corrections.  These

errors will only slow the convergence of the algorithms.  Rather  than requiring one

iteration,  perhaps  two or even three  iterations will be required to achieve a good

solution.

In contrast,  errors in the first two catagories  will cause the algorithm  to converge

to an incorrect solution.  BPM precision and beam jitter errors are examples of
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errors from the first category.  Magnet scaling errors, RF deflections,  and effects due

to the nonlinearity  of the dispersion are examples of errors in the second category.

We will first discuss effects due to the nonlinearity  of the dispersive error and then

we will discuss each of the other effects in turn. We proceed in this order since the

nonlinearity  is important for determining  the full effect of the BPM precision and

beam jitter errors.

3.1. Nonlinearity

The goal of our correction  algorithm  is to improve the transverse  emittance

dilution due to the dispersive error; we want to correct  the dispersive error arising

from the energy variation  within the particle bunch. As mentioned in sec. 2.2,

the dispersion is a nonlinear  function  of the energy deviation.  Thus, ideally, we

would like to measure the difference orbit  by making an effective energy change
.- .e.

comparable  to the bunch energy spread. Unfortunately,  this tends to be small, the

order of 1% or less, and we will see that  a small effective energy change can lead to

large errors in the corrected  solution. Therefore,  we need to determine  the effect

of correcting  a difference orbit created  by an energy change that  is substantially

different from the beam energy spread.

In eq. (2), we expressed the difference orbit in a form that  implicitly  includes

the exact dependence  on the energy deviation.  Here,  we need an expression  for the

difference orbit that explicitly displays the dependence. The equation  of motion

for a particle in a transport  line can be written  [l]

x”(s) + (1 - S)K(s)x(s) = (1 - 6)G(s) , (12)

13



where K(s) is the normalized quadrupole  strength  and G(s) = l/p is the inverse

of the local bending radius due to dipole deflections.  Note that for simplicity  we

have not included effects due to the acceleration  in eq. (12).

We can use eq. (12) to find the equation  for the difference orbit Axg = x0 - x6

due to an energy change of 6.

Ax!+ KAx6  = 6(G - Kxo + KAxb) , (13)

where x0 is the on-energy trajectory  and we have used the subscript  6 to refer to

the magnitude  of the energy change which  created  the difference orbit. We solve

this equation  perturbatively, treating all elements as infinitely  thin in length, i.e.,

delta-functions in s. To second order, this yields

AXE = AXE) + C 6;(KL)iAx~‘(si)R12(s,  si) 7 (14)
i

.- .m

where  the first order term is

AXE) = C 6; (GL); - (xi - di)(KL)i  R12(s,  si) e
i >

(15)

Here, xi and di are the on-energy trajectory  and misalignment  at the ith quadru-

pole, and GL and KL are the integrated  deflection due to a dipole field and the

integrated  quadrupole  strength,  respectively.

Equation (14) illustrates a potential problem of using an energy change 6 that

is substantially  larger than the beam energy spread a(s). If S is relatively  large,

it is possible  to correct  the resulting  difference orbit Ax6 to a small value  while
(1)having a large first order contribution Ax, ; the second order contribution can be

used to cancel  the first order term. Unfortunately,  this cancellation does not work
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within the beam since the beam energy spread is small. Thus, one can correct Ax6

while  actually increasing  the chromatic dilution of the beam.  In the subsequent

sections, we will use eqs. (14) and (15) to determine  the effect of errors on the DF

^ correction  algorithm.

3.2. BPM precision

The BPM precision errors will limit the accuracy  with which we can correct-- -
the difference orbit. Assuming that the BPMs have random precision errors with

a RMS of oprec, the measured difference orbit  will differ  from the actual difference

orbit by an RMS error of &prec. We can estimate the residual dispersive error,

after correcting  this measured difference orbit, by considering a simplified example

where  one zeros  the measured difference orbit  at each of the BPMs. After correc-

tion, the actual difference orbit Ax6 would be equal to the negative  of the BPM

precision errors. .- .e.

Given this residual difference orbit  Ass, we want to solve for the difference

orbit Ax:, created  by an energy change of O(S), where  Q is the RMS energy spread.

This will allow us to determine  the emittance  dilution due to the BPM precision

errors using eqs. (9) and (11). First, we use eq. (14), with the change 6 -+ O, to

express Ax:, ,

Axe, = Ax;‘) , (16)

where  we have only included the first order term since o is assumed small. Next,
(1)we invert eq. (14) to solve  for Ax, from the residual difference orbit Ax6

AX:)(S)  = AXE - C Gi(I(L)iAxa(Si)R12(s,  si) - (17)
i
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Now, we need to relate Ax&‘) to Ax;). The difference orbit Ax6 is equal to

the negative  of the random BPM precision errors; it is constructed from sums of

“deflections” and coefficients  Rr2 which  oscillate, eqs. (14) and (15). Thus, there

are three length scales we need to consider: the length between “deflections”  LD,

the betatron  oscillation  period L,g, and the length over which  a(s) changes L,.

Provided that LD, Lg << L,, we can treat u and S as constant  over the correlated

“deflections”. This allows us, using eq. (15) and performing ensemble averages
-- _

over the random deflections,  to find the relation:

(A$)“) = ;(AxfJ2) , (18)

where  2 is the average of a2( s) over s. Now, using this result and eqs. (16) and

(17), we find that  after DF correction  the BPM precision errors cause an RMS

residual dispersive error of

To evaluate  the sum in the second term in eq. (19), we need to assume a model

linac.  We use the model described in ref. [3], where  the phase advance per cell is

constant while the beta  functions  and the cell lengths  increase  with the square root

of the beam energy.  In addition,  we assume that  the energy spread of the beam

decreases inversely with the beam energy.  Using this model, we can evaluate  the

sum in eq. (19) by approximating  it with an integral.  In this manner,  we find a

dispersive error due to the BPM precision errors of
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Here, PO, (KL)o, and ~0 are the average  beta  function, the integrated  quadrupole

strength, and the energy spread at the beginning  of the linac,  and Eo and Ef are

the initial and final beam energies.

Finally, we can use eqs. (9) and (11) to solve for the chromatic emittance

dilution  due to this dispersive error. We will not perform the explicit substitutions

here, but we will instead  discuss a few implications  of eq. (20). First, eq. (20)

indicates that there will be a minimum dispersive error, due to the BPM precision

errors,+r  some  value of 6. The first term of eq. (20) decreases rapidly  with S

while  the second term remains constant;  if we had included higher orders of 6,

we would find terms that  increase  with 6. Secondly, notice  that both terms in

eq. (20) can be reduced by decreasing  gprec, i.e., the measurement  error; the RMS

of the BPM precision  errors will tend to decrease with square root of the number

of measurements  when the separate  measurements  are averaged  together. We will

see this behavior  in the results-of  simulations  discussed in sec. 4.

3.3. Beam jitter

In a linac there  are many sources of jitter which cause the beam position  to

fluctuate. For example,  injection jitter, ground motion,  and power supply fluctu-

ations all have this effect.  To prevent these from degrading the performance  of a

linear collider,  this beam jitter must be constrained  to be much less than the beam

size; the beam jitter will directly  increase  the time average of the emittance  since

the beam changes position  with time, thereby, increasing  the effective  phase-space

volume occupied.  In this section, we will estimate a secondary effect of the beam

jitter, namely, its effect on the performance  of the DF correction  algorithm.

As was mentioned in sec. 2.2, the beam is most sensitive  to dispersive errors

when the beam energy spread is large. Thus, we will only consider  jitter of the
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injected beam,  since the beam energy spread is typically  largest  at injection.  Of

course, if desired, our result could easily be generalized by summing over all the

sources of the jitter. In fact, this will be done when analyzing the effect of magnet

scaling errors which are treated in an analogous manner to the beam jitter errors.

In the case of injection jitter, the measured difference orbit will differ  from the

actual difference orbit by a betatron  oscillation  caused by the jitter in initial condi-

tions.  After correcting  the measured difference orbit  to zero,  the actual difference
-- -

orbit Ax6 will be the negative  of this betatron  oscillation.  To estimate the magni-

tude of Axb, we use eqs. (16) and (17) derived in the previous section  on the BPM

precision errors. This case differs  from the case of the BPM precision errors in that

the deflections  that create the difference orbit, i.e., the summand of eq. (15), are

only non-zero near the beginning  of the linac.  Thus, instead  of eq. (18), we have

the relation

Ax:) = TAX;)--

where  erg is the RMS energy spread at the beginning  of the linac.  Using this and

eqs. (16) and (17), we find a dispersive error due to the beam jitter of

2(Ax&(q)) = “4$ + KCuo(KL)iRl2(sf,si)  [~oRll(si,so)
i (22)

+ ‘!6R11(6;%7~0)] ,

where  ajit is the RMS jitter measured at the end of the linac and the factor of

two appears in the first term since two trajectories  must be measured to calcu-

late a difference orbit. The angle brackets  denote an ensemble average over the

jitter which is represented by (0 for jitter of the on-energy trajectory and (6 for
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jitter of the trajectory after making the energy change of 6; note that  for simplicity

we have only included position  jitter  in these terms.

The expression  in eq. (22) d ffi ers from the expression found for the BPM preci-

sion errors,  eq. (19). The BPM precision errors are uncorrelated  and thus the error

(Axg2)  depends upon NBPM. In contrast,  beam jitter leads to a difference orbit

that oscillates  like a betatron  oscillation.  Thus, the error due to the nonlinearity,

the second term of eq. (22), will be correlated  with the betatron  phase advance

and (AxV2)  will depend upon the square of Nqud.

When performing  the sums in eq. (22)) we treat jitter of the on-energy trajec-

tory and the off-energy trajectory  separately  because  the induced betatron  oscil-

lations  will have different phase advances;  the phase advance is energy-dependent.

In particular,  after changing the effective beam energy,  the different phase advance

will cause the correlation  between the injection error and the dispersive error to

breakdown. Thus, we would find that  jitter of the off-energy trajectory contributes

far less than jitter of the on-energy trajectory;  for--this  reason, we will only estimate .-

the on-energy jitter.

Using the same model linac described in sec. 3.2, we can evaluate

in eq. (22) by approximating  them with integrals.  After DF correction,

dispersive error due to beam jitter of

(Ax&(s,))  x 2c@ + N&&$KL);(poQ., - /9oQD)2

the sums

we find a

, (23)

where  Nquad is the number  of quadrupoles,  ajit is the RMS beam jitter at the end

of the linac, and POQF and ,BOQD  are beta  functions  at the focusing and defocusing

magnets  at the beginning  of the linac.

One can solve  for the chromatic emittance  dilution due to this dispersive error

using eqs. (9) and (11). As in the discussion of the BPM precision errors,  we will
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not perform the explicit substitutions  here, but instead we will discuss eq. (23).

Similar  to the error due to the BPM precision errors,  the first term of eq. (23)

decreases rapidly  with 6 while  the second does  not, indicating that the residual

error due to the beam jitter  will have a minimum as a function of 6. Also, notice

that, like the error due to the BPM precision errors,  this contribution depends

upon the measurement  errors, and thus it can be reduced by averaging multiple

measurements  of the trajectory.  We will estimate the effects of the beam jitter at

the end of sec. 4, after discussing results from the simulations.

3.4. Magnetic  scaling errors

Magnetic scaling errors occur when one changes the effective beam energy by

scaling the magnetic fields. The errors arise because  different magnets  will scale

slightly  differently  with the power supplies  and because  the power supplies  have

finite precision.  Thus, one cannot  reduce all of the magnetic  fields  by exactly the .v
same percentage. Typically, it is possible to specify the magnetic  field strength

with an accuracy of roughly 10m3.

The effect of these  scaling errors is analogous to the effect of beam jitter. When

measuring  a difference orbit created  by scaling the magnetic  fields, one changes

the fields, measures the off-energy trajectory,  resets the magnets  and measures the

on-energy trajectory.  We treat  the final magnet values  as the reference values  and

thus the scaling errors only cause errors when measuring the off-energy trajectory.

We should emphasize that  the order in which  one measures the trajectories  is

important.  If we measure the on-energy trajectory  before the off-energy trajectory,

the scaling errors would cause errors in both measurements.

If a magnet  deflects the central trajectory  by an angle 6 and its magnetic  field

can be specified with an RMS accuracy of A, the off-energy trajectory will have an
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RMS deflection  error of (1 -&)AO. These deflections will drive  betatron  oscillations

which  will add to the measured difference orbit  just as beam jitter does. After

correction  with the DF algorithm,  the actual difference orbit will be corrected  to

the negative  of this (off-energy) betatron  oscillation.  Thus,

AX&(S)  = - C AiOiRrZ(S;  s, si) , (24)
i

wherewe  have neglected  the factor (1 - S). Now,  since the deflections  Ad are

random,  we can use eqs. (16), (17), and (18) to find Ax,. Using the model linac

described  earlier,  we find a residual dispersive error of

(Axt,iagnet  (q)) x N (A2Qz(sa)  q $

’KC ai(KL)iRl2(sf,  sl) 2 AjOjRr2(6;  s;, sj)]“> . (25)
i i

Here, N is the number of magnets  and 00 is the-deflection  due to the magnets  at ‘-

the beginning  of the linac. In addition,  we have assumed that  the deflection  errors

8 are random and that they decrease in strength  inversely with the square root of

the beam energy; this models quadrupole scaling errors in our example  linac.  In

the case of quadrupole  errors,  8 is proportional  to the integrated  strength of the

quadrupole  and the distance of the trajectory  from the magnetic  center.  Thus,

(@) = (KL)~((Y~)  + (~3) T (26)

where  ym and yC are the RMS values  of the quadrupole  misalignments  and the

beam trajectory.  Alternately, for dipole correctors,  0 can be estimated by assuming

- a uniform distribution of kicks. Thus, (8;) is equal to one-third  of the initial peak

deflection.

21



It is important to note that  as described the magnet  scaling errors only con-

tribute  to the error of the off-energy trajectory. The nonlinear  term, i.e., the

second term of eq. (25), will be small because  the off-energy phase advance differs

- from the on-energy phase advance and thus we can neglect it. A similar  situation

occurs  in the case of beam jitter errors as discussed in the previous section.  Of

course, if the difference orbit  is not measured using the procedure described  at the

beginning  of this section,  the magnet scaling errors could also affect the on-energy

trajectory.  In this case,  eq. (25) would have a term proportional  to N x N&d;

obviously this should be avoided.

Finally, we should note that  the effect of the magnetic  scaling errors does not

depend upon measurement  errors which can be reduced. Thus, these errors could

limit the performance  of our correction  algorithm.  In sec. 4.3 we will use eq. (25)

along with eqs. (9) and (11) to estimate the magnitude  of the errors; fortunately,

they cause only a small error.
.w

3.5. RF deflections

The RF is provided to accelerate  the particles  longitudinally.  Unfortunately,

there is typically a small coupling between the accelerating  field and the transverse

planes.  The RF deflections  present a problem for our algorithm  because, unlike

magnetic deflections, the RF deflections remain constant as the effective beam

energy is changed. Thus, they cause the measured difference orbit to differ  from

the actual dispersive error.

The RF deflections  are a sinusoidal function  of the RF phase, typically offset

in phase relative  to the longitudinal  acceleration:

&cc = ERF~“s~~ ,
ERF

ORF = f-
E(s)

CO440 - 4d) - (27)
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Here, f is the longitudinal-transverse  coupling of the accelerating structure,  ERF

is the energy gain from the structure, and E(s) is the beam energy.  In addition,

40 is the RF phase which  equals zero for peak acceleration  and $d is a phase offset.

There are two methods  of changing the effective beam energy when measuring

the difference orbit: one can either  change the magnet strengths or the actual

beam energy.  For either method to work properly, all of the deflections  should

scale with the change in effective energy.  Unfortunately,  if one changes the magnet

strengths,  the RF deflections are not affected. Likewise, if one scales the RF to

change the beam energy, the RF deflections also scale and the effect on the beam

does  not change.

Since  the RF deflections  do not change when varying the effective  beam energy,

the measured difference orbit will be independent  of the RF deflections.  The

dispersive error in the beam resulting  from the RF deflections and the beam energy

spread can be directly  calculated  from eq. (14) with the substitution  6 + a(s).

Assuming that the RF errors are random and using the same model linac described .-

earlier,  we find a residual dispersive error of

(Ax&F(sf,) (28)

Here, NRF is the number of accelerator sections.

Notice that the RF errors do not depend upon the effective energy change 6

used to create the difference orbit. Furthermore,  this effect cannot  be reduced by

making multiple  measurements  of the trajectory.  Thus, the RF errors could provide

a serious limitation on the performance  of the correction  algorithm.  We will use

eq. (28) along with eqs. (9) and (11) to estimate the importance of these errors

in both the SLC and NLC linacs after describing  the results of the simulations

in sec. 4.
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4. Examples

We have written a computer  program to test the DF correction  technique

_ against  the one-to-one  correction  algorithm.  The program simulates random trans-

verse misalignments  of the quadrupoles and BPMs, random quadrupole  strength

errors,  and BPM precision errors. We have not included effects due to RF de-

flections  or beam jitter; these are discussed in sec. 4.3 using the results of set 3.

In addition,  we have not included the effects of wakefields;  this is a subject  of-- _
continuing  research [8]. Finally, we have tested  our algorithm  on two lattices:  a

preliminary  design  of the NLC [23 h‘nac and the current lattice  for the SLC linac.

4.1. The NLC

The NLC main linac will accelerate bunches from 16.5 GeV to 250 GeV. Our

preliminary  lattice  is composed of 210 simple FODO cells with a phase advance

of 90 degrees. The cell lengths are scaled as JE?ss so that the phase advance ‘”

per cell remains constant while  the beta  functions  increase  with the square root
- -

of the beam energy [3]. F gi ure 1 contains a plot of the horizontal  and vertical

beta  functions; the square root of a beta  function  is proportional  to the RMS

beam size. The center of the plot shows  the locations  of the horizontally  focusing

and defocusing quadrupoles. Figure  2 shows the energy profile in the linac and

the relative  RMS energy spread oE of the bunch. The bunch is assumed to have

an RMS energy spread of 1.0% at the beginning of the linac;  this then decreases

inversely with the energy as the bunch is accelerated.  We have not included the

energy spread induced by the longitudinal  wakefields  or the energy spread which is

used by the BNS damping [8] tec mh ‘que to reduce the effect of wakefields.  Finally,

the beam emittances  in the NLC are ye2 = 3 x 10s6mrad and ycY = 3 x 10m8mrad

, and the beam size  at the end of the linac is roughly 10 pm x 1 pm.
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To simulate  correcting  the orbit in the NLC,  we use twenty different sets of

random errors. The errors are found from gaussian distributions which  have been

cutoff  at two sigma; the RMS values  of the errors are listed in table 1. The

- quadrupoles  are misaligned 70 pm relative  to the linac centerline  and the BPMs are

misaligned 70 pm relative to the quadrupoles;  thus, the BPMs are misaligned  with

an RMS of roughly 100 pm relative  to the linac centerline.  The BPM precision

errors of 2 pm are estimated assuming that a measurement  precision the order

of the-beam  size  will be achieved in the NLC. Finally, the quadrupole  strength

errors are constant,  simulating  calibration errors; the errors do not change from

measurement  to measurement  as power supply fluctuations would.

The trajectory is corrected  in the NLC by moving the quadrupoles  horizon-

tally or vertically to achieve the desired  deflection.  We use both the focusing and

defocusing quadrupoles  for correction. When correcting  with the DF algorithm,

the linac is divided into eleven  sections,  each containing  twenty cells. We then

use the algorithm  to correct  each section instead of correcting  the entire  linac at

once. While correcting  the linac in sections  will not minimize the dispersion as

well as correcting  the entire linac at once, this procedure reduces the sensitivity to

discrepancies  between the machine and the model one uses for correction.  In all

cases,  we calculate a solution with a single iteration of the DF algorithm.

Results from correcting  the twenty sets of errors with the two correction  schemes

are listed in table 2; the error on the data is equal to one standard  deviation.  The

Orbit RMS data is the RMS of the trajectory  relative  to the linac centerline,  while

the BPM RMS data is the RMS of the BPM measurements.  Notice that  the one-

to-one  algorithm  zeros  the BPM readings (within  the BPM precision)  while the

actual trajectory is relatively  large. In contrast,  our method corrects  both the

actual trajectory and the measured BPM readings. In fact, the DF correction
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algorithm  does better  correcting  the actual trajectory  than does  the one-to-one

method.

-

Of course, we are not only interested  in correction  of the trajectory.  The

dilution  of the vertical emittance  due to the dispersive errors is listed in the bottom

row of table 2; the magnification  of the horizontal  emittance  will be much smaller

than the vertical since the initial emittance  is one hundred times larger. Obviously,

the one-to-one  correction  technique  leads to a large (factor of seven) increase  in the

vertical emittance.  Furthermore,  this emittance  will continue  to filament  and thus

the effective  emittance  growth may be much larger. In contrast,  the new technique

performs very well,  virtually eliminating  the chromatic  dilution.

The difference in correction  techniques  is illustrated  in figs. 3-5. Figure  3

compares the trajectory after DF correction  (upper plot)  with the result of one-

to-one  correction  (lower  plot)  and fig. 4 compares the BPM readings in the same

manner. One can see that the one-to-one  method zeroes  the BPMs, but does

not correct the actual trajectory  as well  as the DF method.  Finally, fig. 5 shows .-

the di$erence  between the trajectory  of an on-energy particle and a particle whose

energy differs  from the design, the energy difference being equal to the RMS energy

spread shown in fig. 2; this is the difference orbit Ax:, - eq. (10). Obviously, the

dispersive error, e’.e., this difference orbit, and therefore  the chromatic dilution,  is

much smaller in the case of the DF correction.

It is evident from table 2 that the DF correction  technique  performs substan-

tially better  that the one-to-one  method.  In all of the data shown,  the effective

energy change used by the DF algorithm  was AE/E = 10%. Changing  the beam

energy,  or equivalently  changing the magnet strengths, is not necessarily  easy and

can in itself introduce  errors. For this reason, we wish to limit the energy change

used by the correction  algorithm.  Unfortunately,  as the energy difference is de-

creased,  the measurement  of the difference orbit, used by the DF algorithm,  will be
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lost in the noise of the BPM precision errors, and thus the correction  technique

will not perform as well.

In fig. 6 we plot results of the DF correction  technique,  again found from the

correction  of twenty sets of random errors, versus  the change in effective  energy

AE/E. There are three curves: the dotted  is the emittance  magnification  which

has a scale on the right,  the solid is the RMS of the trajectory,  and the dashed

curve is the RMS of the BPM measurement  of the trajectory.  Notice that both

the emittance  magnification  and the RMS of the trajectory  have broad minimums.

The increase  which occurs as AE/E increases is due to the nonlinearity  of the

dispersion.  In contrast,  as AE/E decreases, the BPM precision errors reduce the

effectiveness  of the algorithm.  Our estimate eq. (20) is in good agreement with both

the behavior  and the magnitude  of this residual error. Finally,  one can reduce the

error due to the BPM precision errors by making multiple  readings of the BPMs.

For example,  if we read the BP&Is three times to make  each measurement,  the BPM

precision error should decrease from 2.0 pm to 1.2 pm. In this case, we verified  that

the emittance  dilution  decreases by almost a factor of three  as expected.

Finally, in fig. 7, we plot the result of the DF correction  technique  versus  the

magnitude  of the BPM precision errors which are varied from 2 pm to 40 pm. As

before,  the data was found from the correction  of twenty sets of random errors.

As in fig. 6, the three  curves: solid, dashed, and dotted,  are the actual trajectory

RMS, the measured trajectory RMS,  and the vertical  emittance  dilution;  the first

two curves have scales on the left and the emittance dilution has a scale on the right

side of the plot.  Notice that the emittance dilution is still less than 25% when the

BPM precision errors have been increased to 8 pm, which is roughly eight times the

vertical beam size. Also notice  that the RMS of actual trajectory decreases rapidly

as the magnitude  of the BPM precision errors is decreased. In fact,  the decrease
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in the trajectory RMS, which  is important  for controlling  wakefield  effects,  may

be the most significant  gain from decreasing the BPM precision errors.

- 4.2. The SLC

The SLC linac accelerates  bunches from 1.153 GeV to roughly 50 GeV. The beta

functions  for the lattice  are plotted  in fig. 8. Notice that the quadrupole  spacing

is increased  in two steps from an initial spacing of three  meters to a spacing of

twelve  meters.  The RMS energy spread due to the initial energy spread of 1.0% is

plotted in fig. 9. In addition,  BNS damping [9] is used in the SLC linac to control

the wakefields,  which are significant.  In fig. 10, we have plotted  the energy spread

in the beam when using BNS damping [lo] with a bunch of roughly 2 x 101’e-.

The correlated  energy spread, added  when running with BNS damping, is used to

cancel  the transverse  wakefield  effects.  Thus, this additional  energy spread should

not contribute  to the chromatic  dilution.  Of course, the cancellation is not local .-e
and thus the actual chromatic  dilution should  be between the results found from

energy spreads with and without BNS damping. Finally, the SLC is designed to

operate  with emittances  of rcZ = rear = 1.5 x lo-‘mrad  in the collider mode and

xz = 3 x lo-‘mrad and -,JQ, = 3 x 10-6mrad in the flat beam mode. Thus the

beam sizes are roughly 80 pm x 80 pm in the collider mode and 110 pm x 35 pm in

the flat beam mode. We will see that the chromatic  dilution is not very significant

in the colliding beam mode, but, because  of the smaller vertical  beam size,  it is

more important for the flat beams.

As was done with the NLC, we simulated correcting  the orbit in the SLC with

twenty different sets of random errors. The errors used are listed in table 1 along

with those  used for the NLC. Specifically,  we used RMS values  of 150 pm for the

quadrupole  and BPM transverse  misalignments;  as before,  the quadrupoles  were
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misaligned relative to the linac centerline  while  the BPMs were misaligned relative

to the quadrupoles. These errors are thought  to be similar in magnitude  to the

errors in the current  machine.  In addition,  we assumed 0.1% quadrupole  strength

- errors and BPM precision errors with an RMS of 15pm.  The measured BPM

precision  in the SLC is 25 pm, but the 15 pm precision can be achieved by reading

each BPM three  times when measuring the trajectory.

In contrast to the NLC, in the SLC the orbit  is corrected  using dipole correctors

located near the focusing quadrupoles. We used only the correctors  and BPMs

which are actually used for orbit correction;  a number are set aside for various

feedback  systems.  Finally, as was done with the NLC,  we divided the SLC into six

sections  of roughly twenty cells  which  were then corrected  individually.

The results  of the two correction  techniques,  including errors of one standard

deviation,  are listed in table 3. As before,  the Orbit RMS is the RMS of the

trajectory relative  to the linac.centerline,  and the BPM RMS is the RMS of the

BPM measurements.  Notice that the one-to-one  algorithm  does not zero all of -

the BPMs; only BPMs located  at the focusing quadrupoles are zeroed. Again,

note that the new algorithm  improves  the actual trajectory  without improving the

measured trajectory.

The middle two rows  of table 3 list the emittance  magnification  when in the

colliding beam mode. The upper row does not include the energy spread used for

BNS damping,  while the lower  does. These magnifications  are listed in units of

the initial normalized emittance  of 1.5 x 10-5mrad . We see that there is a small

dilution of the emittance  even when using the one-to-one  algorithm.  The bottom

two rows list the vertical emittance  magnification  when running in the flat beam

mode: 7~~0 = 3 x 10s6 mrad . Notice that the fractional increase  of the emittance

has increased  by roughly a factor of four.  This occurs because  the flat beam vertical

emittance  is roughly five times smaller than the colliding beam emittances.
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Again,  the difference in correction  techniques  is illustrated in Figs. 11-13. Fig-

ure 11 compares a trajectory after DF correction  (upper plot) with the result  of

one-to-one  correction  (lower plot)  and fig. 12 compares the BPM readings in the

- same manner.  Finally, fig. 13 is a plot of the difference between the trajectory of a

particle with the design  energy and a particle whose energy differs  from the design

by the BNS energy spread shown in fig. 10. As before, the DF correction  results,

for both the trajectory  and the chromatic  dilution,  are better than the one-to-one

correction  results.

Despite  the fact that  we do not find significant  degradation  of the colliding

beam emittance  as a result of chromatic  dilution,  the dispersive errors still present

difficulties.  One example  is the energy management  system.  When one klystron

fails, another  turns  on, maintaining  the beam energy.  Typically,  the spare klystron

is located  at the end of the machine. Thus, the beam energy changes by roughly

200 MeV, the energy gain from one klystron, between the failed klystron  and the

replacement.  If the klystron  fails near the beginning  of the linac, this energy

change can lead to a very large orbit  change. The RMS trajectory  changes for a

few examples are listed in table 4. In the SLC, there are eight klystrons  per sector

and twenty-nine  sectors.  The sectors are numbered 2 thru 30, from the damping

ring to the end of the linac.  The klystrons  are labeled  by their sector number and

then the number within  the sector.  Thus, klystron  2-8 sits at the end of sector  2

and is near the beginning  of the machine.  As one can see from table 4, changing a

klystron  near the beginning  of the machine  leads to a large orbit change,  roughly

100 pm RMS.  In contrast,  the DF correction  method,  by correcting  the chromatic

dependence  of the trajectory,  reduces the orbit  shift by an order of magnitude.

Finally, as in the NLC example,  all data from the DF correction  algorithm  was

calculated with an effective  energy difference AE/E = 10%. We illustrate  the
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dependence  of the correction  on AE/E in fig. 14. Again, we plot three curves: the

dotted  is the emittance  magnification  which has a scale on the right,  the solid  is the

RMS of the trajectory,  and the dashed curve is the RMS of the BPM measurement

- of the trajectory.  Notice that the plot looks similar to fig. 6, the AE/E dependence

of the DF correction  technique  in the NLC.

4.3. Errors

In this section  we estimate  the effects of errors not included in the simulations.

Specifically,  we discuss the effect of beam jitter, RF deflections and magnetic  scal-

ing errors. Because these effects are machine specific, we will discuss the SLC and

the NLC linacs separately.

4.3.1. The SLC

In the SLC, the transverse-longitudinal  coupling of the RF structures f is

estimated in ref. [ll] to have an RMS off = 4 x 10s4. Each three  meter  accelerator

section  has an energy gain of roughly 60 MeV. Assuming that the effective energy

change is made by scaling the magnet strengths  and using eq. (28), we estimate

an- error of

A%RF M 1.6pm (SLC) . (29)

This residual dispersive error is much less than the RMS beam size and can there-

fore be neglected.  In fact, such an error would  increase  the vertical emittance  of a

flat beam in the SLC by roughly 0.1%. We should  note that the model linac used

to derive eq. (28) is not an exact model of the SLC linac, but modifying the model

will not change the result too much; at most a factor of two.
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If instead, the energy change was achieved by changing the beam energy,  we

would find a result  even smaller except for the kicks due to the large changes in

the first few RF sections.  The large initial changes are needed to shift the initial

beam energy by the desired amount;  all subsequent changes are incremental and

are therefore  smaller.  Turning a single klystron  off, each of which powers four

accelerator sections,  could lead to an error of roughly 100 pm. Obviously, this is

not tolerable.

Now, we estimate  the effects of magnet scaling errors. We will assume a random

1% absolute  error of the magnetic  field strength  after scaling the magnets.  If the

effective energy were changed by lo%, this would correspond to a 10% relative

error in the scaling. Using eq. (25), we find

Axamagnet x2.1/Lm  ) (30) _

where  we have combined the results from both the correctors  and the quadrupoles.

Again, we can neglect the error since it is much smaller than the RMS beam size.

Finally, we consider the effect of beam jitter. For a worst  case estimate, we will

assume all of the jitter is due to injection jitter.  If the jitter is 25% of the vertical

beam size, ojit  = 9 pm, we find using eq. (23)

Axajitter M 7.8pm , (31)

when the effective  energy change 6 is 10%. This is still much smaller than the

beam size  and would only cause an emittance  dilution of roughly 2%.
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4.3.2. The NLC

In the NLC, we estimate the effect of the RF deflections  using the same

transverse-longitudinal  coupling f as was measured in the SLC: f = 4 x 10s4.  We

further assume that the accelerator sections in the NLC are one meter  in length

and each gives an energy gain of 100 MeV. In this case, eq. (28) yields an estimate

of --_

AxuRF x 0.3 pm (NLC) . (32)

This residual dispersive error is comparable  to the NLC vertical beam size. Using

eqs. (9) and (ll), we find that it would lead to an emittance  increase  of roughly

5%. Of course, the actual tolerances  on the RF accelerator sections  in the NLC

would likely be tighter than those in the SLC. If the tolerance  on the transverse- .-.
longitudinal  coupling were reduced from f = 4 x 10B4, this error should  not be

significant;  the residual dilution scales with the square of f.

We also estimate the effect of the magnetic  scaling errors using the same error

as was used in the SLC, namely, random 1% absolute  errors of the magnetic  field

strengths after scaling  the magnets  by 10%. Using eq. (25), we find

Axamagnet x0.5pm  . (33)

This causes a 13% emittance  dilution.  Of course, again,  we believe that we have

overestimated  the error. In principle,  one could reduce the absolute  scaling error

to 0.1% by cycling the magnets  on a specified path through their hysteresis  curves.

In this case the chromatic dilution would be negligible.
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Next, we consider the effect of beam jitter.  As in the SLC case, we estimate

the effect of injection jitter that is 25% of the vertical  beam size. Using eq. (23),

we find

Ax ajitter x 0.3 pm WC) , (34)

when using an effective energy change of 10%. This error causes an emittance

dilution of 4%.
-- _

Finally, to verify our estimates,  we simulated both random magnetic  scaling

errors and jitter of the injected beam. Random  1% absolute  errors were added

to the magnetic fields  strengths  when scaling the magnets  by 10%. We found an

emittance  dilution of lO.Of8.7%  due to the scaling errors; this is in fairly good

agreement with our estimate of 13%.

The injection jitter was simulated by adding a random initial position  offset to

the trajectories  used to measure the difference orbit; the position  offsets have an

RMS equal to 25% of the initial beam size. In this case, we found an emittance

dilution of 3.1 f 1.9% when making an effective energy change of 10%. Again, this

is in good agreement with our estimate of 4%.

5: Alternate  Techniques

Although  the DF correction  technique  improves  both the chromatic dilution

and the trajectory,  it is not necessarily  easy to implement.  Thus, we will compare

with an alternate  method of chromatic correction.  Here,  a closed bump is used to

pass the beam off-center  through a quadrupole. This will then cause a dispersive

error. By using such a bump in conjunction with a spot size monitor,  the linear

part of the dispersion can be cancelled.  Of course, one needs  two bumps and beam

size monitors  to correct  both the beam size and divergence.
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This bump technique  and the DF correction  techniques  are similar in that both

use trajectory displacements  in the quadrupoles to correct  the dispersive error; the

two methods  differ  in that the DF method corrects  the dispersion locally  while

the bump method corrects  the error at a discrete  location. The advantage  of the

bump method  is that it is not sensitive  to errors such as RF deflections  or jitter

tolerances. The disadvantage  is that  it only corrects  the linear portion  of the

dispersion at a single location.

^

Figure 15 is a plot of the y-p, phase-space  at the end of the NLC linac after

correction with the one-to-one  trajectory  correction  algorithm;  the error distri-

bution  was one of those  described in sec. 4.1. The curve plots the endpoints  of

particle trajectories  having energies between +a, and -Q~. Also, for reference,  the

RMS beam size,  excluding  the dispersive error, is plotted  about  the design  energy

trajectory.  Obviously, there  is a large chromatic  dilution in fig. 15. The emittance

magnification  is estimated to be 8.5 using eq. (ll), although  the magnification  is

actually larger that a factor of nine; reasons for this discrepancy  are discussed in

sec. 2.4. The important issue, illustrated in fig. 15, is that the dispersion is highly

nonlinear  and thus the bump method cannot  correct  a large fraction of the error.

We can calculate the optimal  linear corrections  by integrating, in the y-p,

phase-space,  the energy-dependence  of the trajectory:

Yc(uc) = $ J dSe-62/2ua  :Y(S)
c

The optimal corrections  for the dispersion in fig. 15 are listed in table 5. We have

calculated the corrections  for the portion  of the beam with energies between fan,

f2o,,  and f3u,; the first corresponding  to just the core of the beam while  the
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later cases include the tails of the distribution. When correcting  just the core, the

correction  reduces the magnification  from a factor of nine to a factor of five; the

correction  is even worse when we include the tails of the distribution. Obviously,

- this is insufficient.

One solution  is to place many bumps and beam size monitors  along the linac,

correcting  the dispersion before the nonlinear  terms become significant.  Figure 16

is a plot of the dispersive error after roughly the first sixth of the NLC linac,

s = 550 meters;  the our version of the linac is 2925meters  long. While one can

see that emittance  dilution is not as large as in fig. 15, the dispersive error is

still nonlinear.  Again, we calculated  the optimal  linear corrections  which could be

obtained using the bump method;  these results  are listed in table 6. One can still

see that this correction  is not sufficient for the NLC.

Finally, fig. 17 is a plot of the y-p, phase-space  at the end of the NLC after DF

correction.  This should be compared with fig. 15, which is the same phase-space,

although  with different scales,  after one-to-one  correction.  Here, the emittance

magnification  is quite  small, roughly a factor of 1.011.  By using the bump method

in addition  to DF correction, the dilution can be decreased by a factor of two to 5%.

While this additional  correction  is not necessary  in this case,  the bump method

can provide additional  correction  if the nonlinearity,  RF deflections,  or magnetic

scaling errors degrade the performance  of the DF correction  technique.

6. Tolerances

When designing a high energy linac, transverse  alignment  tolerances  are spec-

ified to limit both wakefield  effects and the chromatic  dilution  of the beam emit-

tance. In the SLC linac, wakefields  are a much greater  limitation, at the operating

beam current, than the chromatic  effects.  The chromatic  effects are small since
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the misalignments  of the BPMs and quadrupoles are the order of the beam size.

In the NLC, wakefield  effects will be smaller (by design).  Thus, if uncorrected,  the

chromatic dilutions  could determine  the alignment tolerances.

The scaling of the emittance  dilution with the misalignments  was discussed

in sec. 2.4. After correcting  the trajectory  with the one-to-one  technique,  the

dilution  depends quadratically upon the magnitude  of the misalignments  when

the dilution is small, less than 100%. As the emittance  dilution increases,  the

dependence  becomes a linear function  of the misalignment  magnitude.  In contrast,

the dilution when correcting  with the DF technique  is roughly independent  of

the misalignment  magnitude. We have removed  this dependence  by scaling the

trajectory measurements  in eq. (6) by the estimated  RMS of the misalignments.

Thus, the emittance  dilution should only depend upon the other  errors,  namely,

BPM precision,  beam jitter, magnet scaling errors,  and the RF deflections;  these

effects were discussed in sec. 3 and were estimated  for the SLC and NLC linacs

-
.e

in sec. 4.3 using eqs. (20), (23), (25), and (28). Actually,  the dilution is weakly

dependent  upon the misalignment  magnitude  since the chromatic correction  is

not exactly  local;  trajectory errors in the last few magnets  will lead to a small

chromatic dilution that depends upon the magnitude  of the trajectory and thus

the magnitude  of the misalignments.

The dependence  of the trajectory  correction  techniques  on the misalignment

amplitude  is illustrated in fig. 18. Here,  we have varied the RMS magnitude  of the

vertical BPM and quadrupole  misalignments  from 7 pm to 350 pm; note that all

of the axes in fig. 18 have logarithmic  scales. The points plotted were found from

the average of correcting  twenty sets of random errors. The solid  and dashed lines,

at the top of the plot, are the RMSs of the actual trajectory after correction  with

the one-to-one  and DF techniques,  respectively;  these curves have scales on the
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left side of the figure. The DF technique  is slightly better  at correcting  the actual

trajectory,  but the two curves are similar;  in both cases the RMS of the trajectory

is roughly proportional  to the RMS of the misalignments.

The two other  curves, the dotted and the dot-dash lines, are the emittances

after correction  with the one-to-one  and DF techniques.  The dilution after one-

to-one  correction  is strongly  dependent upon the misalignment  magnitude.  Here,

the dilution varies  from roughly 25% to over 3400% as the misalignments  increase.
-- _

In contrast,  the dilution  after DF correction  is only weakly  dependent upon the

misalignment  magnitude;  it increases  slowly from roughly 1% to 6% of the initial

emittance  as the misalignments  become larger.

Thus, when using the DF correction  technique,  the chromatic dilution is effec-

tively uncoupled from the magnitude  of the transverse  magnet  misalignments.  The

transverse  magnet  alignment  tolerances  then need to be determined  by other ef-

fects such as wakefields  which, in many future  linear collider designs, impose looser .-

tolerances  on the magnet alignment than the uncorrected  chromatic dilution.  In-

stead,  the DF correction  technique  imposes relatively  straight-forward  tolerances

on the BPM precision,  beam jitter, RF deflections,  and magnet scaling.

7. summary

In this paper,  we have described a new trajectory  correction  algorithm for lin-

ear accelerators  that reduces the chromatic  dilution of the transverse  emittance

while  correcting  the trajectory.  The chromatic  dilution arises because  the beam is

deflected due to stray fields  and misalignments.  Roughly, the dilution scales with

the size  of the misalignments  relative  to the beam size. Future linear collider de-

signs tend to have very small beams to achieve the necessary  luminosity,  and thus,
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if uncorrected, the chromatic  dilution would impose extremely  tight alignment  tol-

erances in these  future  machines.

We have demonstrated  the effectiveness of our technique  in simulations  of both

the SLC and NLC linacs  while  comparing  with the results of a standard correction

technique,  the one-to-one  algorithm.  In all cases, the DF correction  algorithm  re-

duced the chromatic dilution substantially while  correcting  the trajectory  as well

or better  than the one-to-one  algorithm.  While the simulations  indicate that chro-

matic-dilution should not seriously degrade the performance  of the SLC linac, the

dilution will be debilitating in the NLC. Specifically,  we found that with 70 pm

misalignments  in the NLC, the one-to-one  algorithm  causes roughly a 700% in-

crease in the initial vertical emittance  of TQ, = 3 x lo-‘mrad  . In contrast,  the

DF correction  algorithm  reduced this chromatic  dilution to a few percent.

In .addition, we have estimated  the effect of errors not included in the simu-

lations, with the exclusion  of wakefields. The primary causes of additional  error
.w

are beam jitter, RF deflections and scaling errors of the magnets.  Our estimates

show that in the NLC these effects should not seriously degrade the algorithm’s

performance.

Although  we have not include wakefield  effects in the simulations,  they should,

by design, be a smaller effect in the NLC. Of course, this is not true in the SLC

linac.  Regardless,  wakefield  effects are beyond the scope of this report. Obviously,

they should be included in future  research [8].

Finally, we have compared our correction  algorithm  with another  technique  of

correcting  the chromatic dilution that corrects  the dilution at a discrete  location.

Unfortunately,  the dispersion is highly nonlinear  and since this method  can only

correct  the linear portion  of the error, it does not perform very well. Similarly,  our

technique  only cancels  the linear portion  of the dispersive error, but it performs

39



very well since it corrects the errors locally, before the energy-dependent  phase

advance adds significant  nonlinearities.

To conclude,  we believe that our algorithm  can effectively  control  the chromatic

dilution in a linear accelerator  while  correcting  the trajectory.  It is important  to

note that with our method the chromatic  dilution is roughly independent  of the

magnitude  of the misalignments;  the dilution depends upon the BPM precision

errors and the magnitude  of the magnet  and RF scaling errors. This will be

especially  important for future  linear colliders where  it may be unreasonable  to

specify extremely tight transverse  alignment tolerances  for a multikilometer  linac.

40



References

[l] See for example:  J.D. Lawson, The Physics of Charged Particle  Beams (Claren-

don Press, Oxford,  England, 1988); D.C. Carey, The Optics  of Charged Parti-

cle Beams (Harwood Academic,  Chur Switzerland,  1987); or S. Humphries,  Jr.,

Charged Particle  Beams (Wiley, N.Y., 1990).

[2] The NLC is a 250 GeV on 250 GeV linear collider being studied at SLAC. Some

information  can be found in ref. 3. More detailed parameters  can be found in

both: -Proc. DPF Summer Study, Snowmass  ‘88 and Proc. Int. Workshop on

Next-Generation Linear  Colliders,  SLAC-335  (1988).

[3] R.D. Ruth, “Bearn Dynamics  in Linear  Colliders,” Proc. XIV Int. Conf. on High

Energy  Accelerators, Tsukuba,  Japan, 1989; and SLAC-PUB-5091  (1989).

[4] C.E. Adolphsen et al., “Beam-Based  Alignment Technique  for the SLC Linac,”

Proc. IEEE Part. Act. Conf.,  Chicago,  1989; and SLAC-PUB-4902 (1989).

[5] T.L. Lavine,  et al., “ Beam Determination  of the Quadrupole  Misalignments .-

and Beam Position  Monitor  Biases in the SLC Linac,” Proc. 1988 Linear  Act.

Conf., Williamsburg, Virginia, 1988; and SLAC-PUB-4720  (1988).

[6] E.D. Courant  and H.S. Snyder, “Theory of the Alternating-Gradient  Synchro-

tron,” Annals of Phys.,  3 (1958) 1.

[7] M. Sands,  “The Physits of Electron Storage  Rings,” SLAC-121  (1971).

[8] T. 0. Raubenheimer, work in progress.

[9] V. Balakin,  A. Novokhatsky, and V. Smirnov, Proc 12th Int. Conf. on High

Energy  Accelerators, Fermilab, (1983),  p. 119.

[lo] This energy spread was calculated  for a bunch of 2 x lO”e- in the SLC by Karl

Bane of SLAC. The energy spread will be increased as the bunch population  is

increased to the goal of roughly 5 x 10”.

41



[ll] J. Seeman, “Effects  of RF Deflections  on Beam Dynamics  in Linear  Colliders,”

Proc XIV Int. Conf. on High Energy  Accelerators,  Tsukuba,  Japan, 1989; and

SLAC-PUB-5069 (1989).

42



Table 1
Errors  in the NLC and SLC lattices

Quadrupole  misalignments

NLC SLC

70 jxrn 150 pm

BPM misalignments 70 pm 150 pm

Quadrupole  strength

BPM precision
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Table  2
Correction  in the NLC

Orbit RMS

BPM RMS

One-to-One
89f3 pm 54f3pm

3 f 0.5pm 80f3pm

Magnification  of cy 7.20 f 3.2 eye 1.02 f 0.02 eye
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Table 3
Correction  in the SLC

One-to-One DF

- Orbit RMS

BPM RMS

156 f 14 pm 83f8pm

154 f 11 pm 184f8pm

Magnification of E (colliding beams,  no BNS) 1.01 f 0.01 EO 1.00 f 0.00 EO

Magnification of E. (colliding beams with BNS) 1.15 f 0.13 Eg 1.00 f 0.00 El)

Ma&&ation of Q, (flat beams,  no BNS) 1.04 f 0.04 Eye 1.00 f 0.00 $0

Magnification of Q, (flat  beams with BNS) 1.67 f 0.60 Q,O 1.00 f 0.00 cyo
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Table  4
Klystron changes in the SLC

One-to-One

2-8 Off 29-3 On 95f37pm 9f6 pm

6-3 Off 30-l On 31 f 12pm 3.2 f 0.9 pm

15-7 off 29-l On 23f7 pm 1.8 f 0.5 pm
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Table 5
Linear  chromatic corrections  for the phase space in fig. 15

Eq. (11) fa, f2a, f3a,

_ Uncorrected  E magnification 8.49 9.14 9.22 9.26

Corrected  6 magnification 5.02 7.16 7.55

Correction Yc( a,) 1.12 pm -0.52 pm -1.37 pm

Correction Yi (a,) 0.69 prad 0.53 prad 0.46 prad
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Table 6
Linear  chromatic corrections  for the phase space in fig. 16

Eq. (11) fa, f2o, f3a,

_ Uncorrected  E magnification

Corrected  6 magnification

Correction Yc (a,)

Correction  Yi( a,)

5.32

2.52

-1.46 pm -0.83 pm -0.40 pm

-1.24 prad -0.88 ,uad -0.65 prad
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Figure Captions

1. NLC lattice.

_ 2. NLC Energy  Profile.

3. Actual trajectory in the NLC after

(a) DF correction  and

(b) one-to-one  correction.

4. BPM measurements  in the NLC after

(a) DF correction  and

(b) one-to-one  correction.

5. Difference  orbit in the NLC after

(a) DF correction  and

(b) one-to-one  correction.

6. DF correction  versus  the energy change AE/E.

7. DF correction  versus  the BPM precision errors.

8. SLC lattice.

9. SLC energy profile without BNS damping.

10. SLC energy profile with BNS damping.

11. Actual trajectory  in the SLC after

(a) DF correction  and

(b) one-to-one  correction.

12. BPM measurements  in the SLC after

(a) DF correction  and

(b) one-to-one  correction.
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13. Difference  orbit in the SLC after

(a) DF correction  and

(b) one-to-one  correction.

- 14. DF correction versus  the energy change AE/E.

15. The y-p, phase-space  at the end of the NLC after one-to-one  correction.

16. The y-p,  phase-space  at s = 550 m in the NLC after one-to-one  correction.

17. They-py phase-space  at the end of the NLC after DF correction.-- _

18. One-to-one  and DF correction  versus  the RMS misalignment  magnitude.
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