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Abstract

Beam-beam deflection scan is a useful tool, both in the SLC and in

future linear colliders, for extracting information about the beam position, .w
size and luminosity. This technique poses nontrivial challenges to the instru-

mentation in its own right. The understanding of all aspects of beam-beam

deflection, in particular that of disruption, is therefore crucial to a successful

implementation of this technique.

When disruption effects become strong mainly due to increased beam

intensity per bunch, the simple rigid- bunch formula for beam- beam deflection

is no longer valid. In this report we discuss the general modification to the

rigid beam-beam deflection formula in the presence of disruption using var-

ious methods including analytical calculation, rigid and semi-rigid two-disk

models, and simulation. The impact on the realistic beam-beam deflection

in the SLC is also discussed.

Submitted to Nuclear Instruments  and Methods

*Work supported by Department of Energy contract DE-AC03-76SF00515.



1. Introduction

The method of beam-beam deflection scan employed in the Stanford

Linear Collider (SLC) as a routine exercise to align colliding beams and

determine beam sizes has matured considerably since the commissioning of

the machine [l]. Its necessity becomes obvious when beam intensities are

- increased to the point where conventional wire scans are no longer practical,

as is the case with SLC when the particle count per pulse exceeds 1.0 x

10”. In proposed future linear colliders where the beam flux is even higher,

beam-beam deflection may become one of the few viable options from which

information can be drawn about beam sizes and luminosity.

Exactly because of the increasing importance of beam-beam deflec-

tion scan with higher beam intensity, it is-crucial to address the problem of .s
disruption effects in this context. At current SLC intensity, it is accurate

enough to ignore disruption effects and employ the simple rigid bunch de-

flection formula.

(41 = -2r,N2 1
7

a (1 - e-S)

where (4) is the deflection angle of the centroid of the beam, re is the classical

electron radius, 7 is the relativistic factor, A is the impact parameter, and

cr is the transverse rms beam size. The subscripts 1 and 2 label the two

colliding beams.

At higher beam intensity, colliding bunches steer and deform each

other considerably throughout the course of the collision. Concurrent to

the deflection process, the local beam distribution, and the deflecting forces
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in turn, are significantly modified. This leads to a highIy nonlinear deviation

from the rigid deflection formula for which only low-order approximation

or simulation techniques can be attempted. At sufficiently high disruption

parameter D, to be defined later, this deviation has to be taken into account

if information about beam size and luminosity is to be correctly extracted

- -f&n it.

In this report we discuss various methods used in attempts at modeling

this effect. The major mathematical difficulty in treating the problem lies

in the inherent nonlinearity in the longitudinal dimension, exacerbated by

-the lack of symmetry in the transverse dimension which cannot be cleanly

decoupled from the longitudinal one. In sec. 2 the problem is formulated

and the rigid deflection formula briefly -reviewed. In sec. 3 an analytical .-.

solution is presented which takes full account of the transverse distribution

in the absence of cylindrical symmetry, but addresses the nonlinearity in

the longitudinal dimension only to the lowest order. In sec. 4 a conceptual

two-disk model is discussed which focuses on the nonlinear aspects in the

longitudinal dimension and offers predictions at various regimes of the impact

parameter. However, this method is limited so far to rigid distributions in the

transverse dimensions, and reflects only the dipole motion of the beam. This

latter method is combined with simple multiparticle tracking to yield the

results given in sec. 5, where the second moment of the transverse motion is

included and calcuIation is made over the full range of the impact parameter.

In sec. 6 results are given for full-fledged tracking, taking into account realistic

optics of the SLC at various disruption parameters. Section 7 sums up the

different methods and results.



2. Beam-beam deflection and the rigid deflection formula

In the current practice of beam-beam deflection scan in the SLC [2],

electron and positron beams are directed against each other at an impact pa-

rameter A which steps through a predetermined range in typically 40 steps.

The resulting deflected orbits of both beams are reconstructed using high

resolution BPMs, and correlation between deflection angles and impact pa-

rameters is fitted to the rigid deflection formula (1) to extract information

about beam sizes and luminosity. Figure 1 shows such a correlation. The

deflection process is illustrated in fig. 2. The two bunches head for collision

at an impact parameter A. Their centroids coincide in the longitudinal di-

mension at time t = 0. For the rest of this report the following convention

is adopted: Each beam possesses its own intrinsic co-moving longitudinal  co-

ordinate originating from individual bunch centroids while sharing the same

transverse  axes (a: and y) emanating from a common origin. The longitudi-

nal axes (zi and 22) point along the directions of motion of the individual

bunches. Thus the two coordinate systems have opposite handedness. The

two co-moving coordinates tl and z2 taken on by any particle at any time t

are related by .zl + z2 + 2t = 0, where the light velocity c = 1 is implied. The

rigid deflection formula (1) can be derived from such a setup by assuming

Gaussian distributions in all dimensions. We can easily deduce the limiting

cases of eq. (1):

A < 2.23 CT ,

(2)

A >> 2.23 u . .

The quantity 2.23 0 corresponds to the peak in the deflection curve in fig. 1.
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3. Lowest order analytical calculation

We start by writing down a consistent set of equations relating the

instantaneous  beam distribution  and the instantaneous  deflection received

by individual particles. A solution  can be attained [3] for systems possessing

certain simplicity  and symmetry. It is however overambitious to attempt such

a solution with realistic beam distributions  and lack of transverse  symmetry

due to nonzero  impact parameters.

Consider  the colliding beam system in the framework of sec. 2 and

fig. 2. A formulation of disruption effects in a cylindrically symmetric (i.e.,

-zero impact parameter) system has been laid out in the discussion  of lu-

minosity enhancement in ref. [4] by Chen and Yokoya as follows, given the

tri-Gaussian  distribution .-.

1 i
no@, Y, z> = wO(+tO(~, Y> = & e-&

2m7,by
e-R e-6 ( 3 )

for each bunch, with N being the total number of particles per bunch, and

the equation of motion  for a particle in beam one acted upon by the EM

force from beam two

-$ N2nLz(-2t  - zl)/ (Xl - x2) 13*2(x2, Y2)=
(

ddy2 ,
Xl - x2)2  + (Yl - Y2)2 (4)

@Yl Jr,- =  - -  N2 nL2(-2t - zl) (Yl - Y2) %2(X2, y2)
dt2 Y J ( x2)2  + (Yl - Y2)2

dx2dy2
,

Xl -

where xi and y1 are understood  to be functions of both zl and t and the

formula of relativistic Coulomb scattering was used. In the presence  of cylin-
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drical symmetry, i.e., zero impact parameter, the Coulomb potential  depends

only on the transverse radius r, and we have

@rl -4r,h$
== Y

rQ(-2t - %I) -L Jn
r1 0

n,2( r’) r’dr’ ,
(5)

@r2 -4r, Nl
yg-= Y

YQ(-2t - 22)  L J r2

r2 0
nTl (r’) r’dr’ .

Notice that a reciprocal formula was written for the force due to beam one

received by beam two, which in turn should give the variation in the trans-

verse distribution  ntz of beam two as a function of t and ~2. The exact solu-

tion was to be obtained by consistently solving the coupled system of eqs. (5)

while keeping in mind that rr and r2 are functions of z and t. An iterative

approach was adopted instead. The first equation of (5) was solved to lowest

order in the sense that the r in the right:hand side of eq. (5) was replaced .m
with the initial value rro,

rdh) = r10 -y fi0h0)  9(t, 4 ,

f&-d =  $ J,” nm(r’) r ’d r ’ ,

(6)
se, %I> = J’ & J” & u( -2h - 21) ,-03 --oo

Jt= &(t - tJ n&2tl - zl) .-03
Interchanging subscripts 1 and 2, we have the lowest order solution

for beam two. This can then be used to obtain the lowest  order deformation

of beam two at any instant through the mapping from r-20 to r2:

&)(r2,4 22)
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Notice that to this order the longitudinal and transverse dependencies are

still separable.

In the current problem of beam-beam deflection, the cylindrical sym-

metry is lost due to the nonzero impact parameter. The formulation is there-

fore more involved. But the spirit of lowest order iteration will be followed.

First we notice that eq. (4) can be rewritten as-- _ .

dLX< -he&
yIg-= 7

rQ(-2t - 21) J zT
- x;I x; - x;I” n&G) 6 ,

-4r, N2= w2(-2t - 4 iYl fi(G) , (8)
7

f&G) = h(xl,~l) = i Jdx dy n&y) ln[h - x)’ + (~1 - Y)~] ,
where Z represents the two-dimensional vector (x, y), I$ the two-dimensional

gradient operator (a/ax, alay), and the relativistic Coulomb force is replaced,_,

by the gradient of an equivalent line charge potential. This substitution turns

out to be very helpful. Equation ( 8 ) is solved to the lowest order as in eq. (6):

x1(4z1)  = Xl0  -y [Viz .f2(~1o,Y*o)J g(t, Zl) ,

Yl(W = YlO -F blu .f2(~lO,YlO)]  g(t,z1) ) (9)

where g(t, zi) is given in eq. (6). Equation (9) can then be inverted to the

same (lowest) degree of accuracy to give

X10 = Xl +F [Vlt f2hYl)l g(t, 21) ,

Yro = Yl + y [VlY f2(Xl,Yl)l  &Jl) .

Equation (10) can be used to derive the change in the distribution of

beam one, due to the deflection given in eq. (9) through

&)(xl,Yl,t,Zl) = y::3’
I I

nt01 (x10, yl0) . (11)
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where the superscript  (l), which indicates the lowest  order correction of the

distribution,  is included  formally in n$). Calculating the Jacobian  to first

order and expanding nmr around (xl, yr ) gives

#(Xl Y l  t 21)f , , = nt01(x*,Y*,t,~*)

+F 9(43) [wool  0: f2 + (61nto1) - (GlfZ)] 9
,-- _

=  nt01 +  h&dh,t,Z~) , (12)

where 6ntl sums up the deformation in the transverse  distribution  of

beam one. Notice that this depends  on the longitudinal coordinates,  but

the dependence is separable. The same formula applies  to beam two, except

for a jormaZly different  initial distribution  since the two beams are not cen-

tered at the same point transversely. Adopting the transverse  geometry as
. .

given in fig. 3, the transverse  initial distributions of the two beams are

n0l(xl,yl) = 2T01 Q e

-kc$ -$j-
I= e ly

l x  l y

noz(xz,Yz)  = 2T01  d ,-& ,-&
2 x  2y

(13)

Given the lowest order change  in the transverse  distributions  in eq. (12) for

both beams, we can calculate the accumulated angular change of beam one,

due to disruption. There are two contributions:

(a) The net angular kick on beam one caused by the change  in the transverse

distribution  of beam two.

(b) The net angular kick on beam one caused by the change in the transverse

distribution  of beam one itself.



It can be shown that the two terms are identical up to a change of beam

indices so that the sum of (a) and (b) is symmetric with respect to the two

beams. The calculation of term (a) will be elaborated  in the following.

Substituting 6nt2  (obtained by interchanging subscripts 1 and 2 in

eq. (12)) for nt2 in eq. (4) and then integrating over time, we get the net

- -chnge in angle for a particle in beam one due to disruption in beam two

4rJG= - -
Y

X

JO” dt nL2(-21  - zl)
--03

I ( -
(z:‘-

52) 6 nt2@2,  Y2>

52j2 + (Yl - Y2j2
da2 4/z

= - ($)’ NlN2-ll g(t,rz)n&2) di

x / (Xl - 52)(Xl - x2J2 + (Yl - Y212
[m vi fl + (?2nt~2)  1 (02fd] de dy2 7 (14)

where

fl = fd~2,Y2)

1
2 dx dyJ 1 - yz

= -
2na~xary e

b--f)2

I=
e 2aly In [(x2 - x)~ + (~2 - y)‘] .

It is shown in the Appendix that the integration over time yields a factor of

Q/(&F). In eq. (14) we can use Green’s identity in two-dimensions:

(15)
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where S and T are functions over a two-dimensional  area A and a/an

is the derivative with respect to the normal vector  at boundary of A. The two-

dimensional integral in eq. (14) can be rewritten (subscripts  1 and 2 are

dropped for compactness) as:

J
(Xl - 4

(Xl - x2J2 + (Yl - Y2J2
{no v2 f + (60 - Gf]} dx2 dy2 ,

,-- _
= / dx2 d3r2  4x1, Y~,XZ, ~2) [no v2 f + (ih) - (Gj)] ,

= JdzZ &2 [(And v2 f + (&no) . Cf + (n&4) - Gf]

- / dx2 dy2 [no& - &] ,

=

f

(An,) 2 ds - J dx2 da [&A - of] , (16)
where

4~17~1,527~~)  =

-x2

(

x1 -,2;;  + (yl

- Y2)2 *

.m.

The surface integral can be dropped due to the asymptotic  behavior of no at

infinity. We are therefore left with an integral

@1x(x1  7 Yl) = -$ (~)2w’+h& F(xl,x2mrYz),

x”+$

~(Xl,X2,Yl,Y2) = 4sl;202  e- 2”2
2 1

x e2
(

Xl -x2

(Xl - x2j2 + ( Y l  - Y2J21
- i?2 G(527~2)  ,

(3x2, YZ) = Jdx dy e-+pJ [(n 5 2 - d2 +  (Y2 -Y,‘] ,

where we assumed
(17)

01x = Oly = 01 ,

tTzx = ozy = 62 .
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The evaluation of eq. (17) turns out to be quite difficult. It is however

possible to evaluate the ensemble average of eq. (17), which is after all the

interesting measurable quantity:

(&l,) = & Jdxldyl e
_ (21 -A12+v:

20: &1(x1, Yl) * (18)
1

The lengthy evaluation of eq. (18) will not be reproduced in this report. We- -  _-
simply present the result here:

- e-S 20: Jm dr
0

; I1 (3 Q(w,~.)J , (19)

where

1
t2

Q(VhQ2) =
e-iq - -2 e-s + e-g 1 , .

c2 = c+?;
( 1a;+2a; ’

The remaining integral in eq. (19) is well behaved, although no closed form

can be found. Ii in eq. (19) is the Bessel function. The disruption parameters

D1 and D2 are defined as in ref. [3]. They serve as a measure of the extent

of the disruption effect. Despite the apparent quadratic dependence on D of

eq. (19), it is actually the first order correction in D1 to the rigid deflection

formula (1) as can be seen by taking the ratio of the two quantities.
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The other half of the contribution to (6&), namely that due to the

change in the distribution  of beam one itself, can be shown to be equal

to eq. (19), with the following substitutions:  interchanging ur and 02 and

replacing D1 by D2.

The sum of these two contributions to (S&) is plotted in fig. 4 with

- -nominal SLC parameters (al,2 = 2 pm, Dl.2 = 0.1, 4,r,z2 = 1 mm). It has the

correct qualitative  behavior and predicts a modification to the rigid deflection

formula by roughly 0.8% near A = 0.

The approach developed thus far took into account the complete  Gaus-

sian distribution,  and the solution does not rely on the presence  of transverse

symmetry. The compromise  we have to make however is that the disruption

effect, or the cross-interference  between the beam distribution  and the deflec- ,_

tion force at successive stages of the bunch crossing, is developed only to the

lowest  order. As a result, the effect of disruption is not fully taken into ac-

count.  In principle,  if a certain convergence criteria is met the same program

can be iterated with well defined physical  meaning to obtain progressively

more accurate solutions.  Such a possibility  is however quite remote, given

the formidable algebra already present at the next iteration.

4. Rigid two-disk model

As mentioned in the previous  section,  the shortcoming of the lowest

order analytical solution  to eq. (4) is that the instantaneous  change in the

beam distribution  under continuous  kick from the other-beam is not fully

accounted for. In this section we introduce a conceptual model which helps,

12



highlighting the nonlinear nature of the problem and characteristic disruption

effects at different regimes of the impact parameter.

Figures 5(a-c) depict a simplified picture of bunch collisions. The lon-

gitudinal distributions of the beams have been compressed into two b-function

peaks 2~7, apart, each carrying a transverse Gaussian distribution with half

- -of the total charge Ne. Again taking c = 1, the whole process of bunch cross-

ing is concentrated in three steps corresponding to the coincidences of the

“disks.” At each crossing the rigid deflection formula for transverse Gaus-

sian distributions can be used to calculate the kick received by each disk,

which in turn is used to propagate the disk rigidly to the next crossing point.

-In this idealized picture the mutual influence of the two beams and their

immediate response can be analyzed in detail. Of course it takes further re-

finement before this model can be compared with reality. Insight into the ‘*

nonlinear nature of the problem can be gained, however, by comparing this

model against the rigid deflection formula.

4.1 Small impact parameter: Suppression

In the following, all positions and angles x and I’ refer to those of

beam one, unless otherwise indicated. From fig. 5(b), since the transverse

distributions are Gaussian, at t = 0, both front disks receive a kick according

to eq. (2)
1 r,N Ax;1 = - - - -
4 Vl 01 (20)

where the subscript 11 denotes the kick received by the front disk due to the

other front disk. The front disks then propagate with this new deflection

angle to the next crossing point, t = u,, where the front disks meet the rear
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disks of the other beam. By now the front disks have traveled a transverse

distance of
I 1 r,Nu,

x12 = UZXll  = --m--.-A =
4 ru:

(21)

and therefore the impact parameter has been reduced to A x [l - (l/4)0].

Thus at t = u,, the kick is

xi2 = xi1 = -;ge (1-;D),

and the total deflection received by the front disk is

x; = xi1 + xi2 = --;=& (l-;D).

(22)

(23)

The rear disk keeps propagating at an angle xl,,. When the two rear disks

cross at t = 2u, the transverse position of the rear disk and the impact

parameter are respectively .s.

522 = Q,& = --:DA (I-a~),

A’ = A+2222  =  A D+ f D2) .

The A’ given above induces a kick for the rear disk

1 r,N AXL2 = - - - - 1
4 YUl QI

(24

(25)

and the total deflection received by the rear disk is

2; 1 A 3= x&+xL2 = - - - -  r,N 1
2 YUl 01

-sD+;D2). (26)

The deflection of the centroid of the two disks is just the average of eqs. (23)

and (26). To first order in D, this is

I 1 r,N A
x =-- -- (I-;D).

2 YUl 6.l
(27)
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In the case of small initial impact parameter, the effect of disruption is a

suppression  of the rigid deflection result by a factor of (1 - D/4). The sup-

pression can be understood  by looking at the deflection force experienced by

a particle at a small  impact parameter from the center of the oncoming  beam

distribution.  The deflection force decreases  with the impact parameter. Thus

as disruption effect pulls the two beam centroids  closer together,  the effec--- _*’
tive deflection is reduced.  Another interesting result is that if we consider

the strong-weak model, namely only one beam is allowed to be disrupted

while the other is assumed to have infinite  inertia, the total deflection of the

disrupted  weak beam is just that given by eq. (23). Thus in this deflection

regime,  a strong-weak approximation yields only half of the total disruption

effect.

Equation (27) shows that, with only transverse dipole motion  taken ‘*

into account, at D = 0.1 the disruption effect modifies the rigid deflection

formula by roughly 2.5%.

4.2 Large impact parameter: Enhancement

In the other regime where the two beams are far apart transversely,

we can repeat the previous  exercise using the second formula in eq. (2).

At t = 0,
r,N 1x;* = - -  -

Y A’

At t = Q,,

(28)



Al = A  +  x12

xi2 = xi1 = -QJF)(~+D(%)~+O(D~)) . (29)
-- _*

Thus the total kick of the front disk is

x;+~)~[1+;D(~)2] .

At t = 2u,,

x22 = u,x;l = -$(~)‘[l+D(~)‘]A,

= _o(~)~A-D~()~A, .

A” = A-~x~~=A l-20[ (%)2+o(D2)] ,

xi2 = r,N
-T

= -$[1+2D(~)2+O(D2)] . (31)

Thus the total kick of the rear disk is

x;1 + 42 = -$!(%)[l+i~(%)~+o(D')]  . (32)

Averaging over eqs. (30) and (32)

x  =-z(s)[l+D(%)‘] .I (33)

Again this doubles the estimate by a strong-weak approximation. The effect

of disruption in this regime is an enhancement. This is due to the fact that
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at large impact parameters, the deflecting  force decreases  as A is increased,

although the rate of increase  is not as pronounced as in the previous  case.

4.3 Near maximum deflection:  Shift of the peak

We are interested in the effect of disruption when A is near the de-

%&ion peak since this will lead to a shift of the peak which can serve as

a visible signature  of disruption. From the result of sets. 4.1 and 4.2, it is

expected that the peak will shift outward under disruption. We can check

this by repeating  the same exercise once more,  this time using an expansion

formula of eq. (1) around the peak (A x 2.23 a):

A-B(A-d)2
ItY2 ’

-d = 2.23~ , A  =  0.3190 , and B = 9.7160 ; 1O-2 . ‘-’

Equation (34), which approximates the deflection curve around the peak with

a parabola, will be used to calculate the shift of the peak due to a linear term

caused by disruption.

At t = 0,
(A - d)2 1u2 *

Remember that only half of the charge  is on each disk.

At t = u,,

Xl2 = x;*u* ,

= -Da A
1

A’ = A $5712 ,

-.B (A - dJ2 1u2  ’

(35)
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= d+6-Da A-B(Ajd)2
I

9 where 6 = A - d ,

xi2 = xi1 = -${A-+D+-T)ll)

_- -
= -$[(A-T)(1+f26D)-D2A2B]. (36)

T&IS the total kick of the front disk is

x; = -~[~-B~)~+D~)-~D~A~B]. (37)

At t = 2u,,

x22 = 0,x;, ) -

= -+I-~) (,.,DT)-D2A2B] ,

A, = A + 2x22 ,

= A-2Du [(A-y)j,+2D$!)-D2A2B],

xi2 = -$[(A-7)(1+yD6)-4D2A2B]+O(D3),  (38)

Thus the total kick of the rear djsk js

X~=-~~~-~)~+3~D4j-gD2A2B~.  (39)

Averaging  over eqs. (37) and (39),

xt- 2Da
--++2+D)(A-B;)-;D2A2B]. (40)

02

Once more, this gives twice the contribution of a strong-weak approximation.

Inspecting eq. (40) we see that the peak of the original parabola has been
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shifted by the term linear in 6. To first order in D, we have the new curve

given by

2’ =

2 D B  u2= - -
QZQ 1

B A+2uADii-b2 (41)
This implies that the peak of the parabola has been shifted from 6 = 0 to-- _
6 = ADu. Therefore

{Shift of peak} = AD
= 0.3190 D .

U (42)

Figure 6(a) shows the qualitative effect of disruption incorporating  all

the signatures discussed above. The dashed line represents the rigid deflec-

tion formula. Figure 6(b) hs ows the net effect of disruption inferred from

fig. 6(a). Notice exactly the same characteristic  was reflected  in fig. 4, which ,_

came from the lowest  order analytical calculation.

5. Semi-rigid two-disk model

The two-disk model developed in the previous  section,  while yield-

ing intuitive insight, warrants ample room for refinement.  First, one would

prefer to include changes in the second moment  in the transverse  distribu-

tion to allow the “pinching” effect to manifest itself. Second, it is desirable

to apply this model to cases other than the limiting ones discussed  above.

The first question  can in principle  be addressed using purely analytical tools.

The second however is difficult short of resorting to numerical methods. A

program is therefore developed which combines the analytical expression  for

single particle deflection and multiparticle tracking over a continuous  range

of impact parameters.  The basic algorithm is described  in the following.
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As in the previous  section,  the longitudinal distributions  are again

compressed  into two &disks. The transverse  distributions  however become

totally flexible by taking on a Gaussian distribution  of a large number of

particles, each one being allowed to move independently. The transverse

kick a single particle receives from colliding with a Gaussian bunch  at impact

_ qarameter A is given by

(43)

Adopting the same formulation as in the previous  section,  we use eq. (43) to

calculate the kick received by each individual particle at each crossing. Each

particle is propagated  by its own slope independently to the next crossing  ‘-

point. Before the next kick is calculated, the transverse  rms value as well as

the centroid  shift of the distribution  is calculated, and new values of A and u

inferred for each beam. The new A and u are then substituted into eq. (43)

to calculate the next kick for each particle. This is repeated  throughout  the

course of crossing.

Figure 7 shows such a calculation where the rigid deflection for-

mula (l), the deflection of rigid two-disks ,(sec. 4), and that including  second

moment changes (this section) are compared. It is worth noting that the ef-

fect of change  in second moment  serves to counteract  the effect due to the

rigid two-disk  model. This is especially  significant  at small A. The reason

lies in the pinching  of the .beam at small A, which enhances  the deflection

and offsets the suppression  due to centroid  shift alone.
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c

There appears to be plenty  of room for augmenting this program. For

example, the analytical formula for kick could be augmented by more com-

plicated distribution  both longitudinally and transversely, by inclusion  of

beam divergence  (and therefore lattice optics), and so on. It is a promising

approach,  since it has the advantage of a tracking program while a consider-

able amount of number crunching  is replaced  by analytical formulas.
-- -i

6. Tracking results

Tracking has been employed to simulate the disruption effect in the

realistic SLC environment. In principle  multiparticle tracking offers the ulti-

mate standard against which the various methods developed above must be

checked. It provides  a granularity to a degree unmatched  by the. conceptual ._.

models,  while taking into account  the inherent nonlinearity and realistic op-

tics, which are difficult for analytical methods. However, in reality, accuracy

is limited  by the computer capacity we can muster. In the current simula-

tion, each beam has 20000 particles meshed into a 32 x 32 grid transversely,

and 100 compartments  longitudinally.  The statistics near the center of the

distribution  are decent enough to ensure stability against noise. Simulation

was carried out for different  disruption parameters D, and also for different

optical conditions  defined by the divergence  parameter A given by [4]

A = (44)

which is a measure of the inherent divergence  of the beam, with p’ being

the lattice beta at the collision point. A large A tends to complicate the

disruption mechanism since the transverse size of the beam cannot remain

constant  throughout  the collision. Figures  8(a,b) show tra.cking results for

21



different  values of D and A, with D = 0.1, A = 0.05 corresponding to the

current  SLC running condition. The stability of the tracking is seen to be

reasonable. We begin to suffer from limited  computing power as the impact

parameter is increased  and the system steers farther away from cylindrical

symmetry. To achieve better understanding  of the disruption effects for a

. _p@icular  machine and to fully exploit  its significance,  further efforts must

be made towards a more complete  and refined set of tracking results.

7. Conclusion

In this report  we have demonstrated  different approaches that address

the problem of disruption in beam beam deflection,  with the SLC as a source

of realistic parameters.  Short of an analytical scheme which encompasses  all.- .m
the essential features of disruption at nonzero impact parameters, we settle

for methods which focus on specific aspects of the problem. An analytical

deflection formula was derived by considering  the lowest order deformation

of the source beam and the target beam separately. While  yielding  all the

expected behaviors across the whole range of the impact parameter, the

lowest  order calculation stops short of touching  on the nonlinear nature of

the problem,  and therefore is not expected to be accurate when D becomes

large. One can expect to carry through such a program by iteration,  thereby

realizing  the inherent nonlinearity.  However the algebraic complexity  poses

a serious challenge to such attempts, as can be seen in the lack of decoupling

in the longitudinal and transverse distributions  at the next level of iteration.

The two-disk  model presents a somewhat complementary approach

to the analytical method. While the nonlinearity is addressed to some de-

gree through the instantaneous  feedback  of the kick on the disk position,
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the highly simplified picture discourages a serious association with reality

beyond the conceptual level, neither does it provide much quantitative un-

derstanding outside the limiting regimes. It has been speculated that a more

realistic longitudinal distribution be created by increasing the number of

disks or even going to the continuous distribution, which should not present

too much technical difficulty [5]. H- -  _.* owever, relaxing the rigid constraints in

the transverse plane to a high order is much more involved.

Given the above considerations, the method presented in sec. 5,

namely the tracking of semi-rigid disks, appears to be a very attractive al-

ternative in that it keeps the advantage of the two-disk model while allow-

ing more degrees of freedom to play in the transverse dimension. It also

gives a quantitative picture across the whole range of the impact parameter.

Computationally this method is much more efficient than pure multiparticle

tracking because much of the number crunching has been replaced by ana-

lytical formulas, and many singular situations have been avoided due to the

smearing of the deflecting force in these formulas. Currently, this method is

being extended to smoothing out the longitudinal distribution , as well as

including higher moments in the transverse dimension.

Full-fledged multiparticle tracking was also done in this study. As is

true in all such practice in beam beam interactions, great care must be taken

to ensure decent statistics and absence of singularity problems. This in turn

translates into demands on computing power. With the specifics given in

sec. 6, we obtained reasonable results pertaining to relevant SLC optics. The

tracking result is seen to be stable against random fluctuations in the initial

distribution.
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The various methods employed in this report give results which agree

to within thesame order of magnitude. Given the nominal parameters of

the SLC, the disruption effect modifies the rigid deflection formula by less

than 5.0%.

-- _’
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Appendix

Calculating the time integral of perturbed

longitudinal distribution

We will evaluate the time integral in eq. (14)
- _ *.

I =
JO” g(t, 22) xz(z2)  dt ,

-W (A4

IO”
t= dt nL2(-2t - zl)

J
dt, (t - tl) nLl(-2tl + 2t + 21) ,

-W -W

where n,~(zz) and g(t, 22) are substituted from eqs. (3) and (6) respectively.

The z2 is also replaced with -2t - 21. Change the integration variables from

(t, tl) to (t, t - tl) and the integration range accordingly, and we get

I = Jw dt nL2(-2t  - zl)--x lrn dt t nLl(2t + 21) , .s.
-W

dttnL1(2t+q). (A.2) -

Now we take the ensemble average of this expression over the distri-

bution n~i(zi):

with

It’s not hard to find that

(I) = & JmdttJm dq e
-32+(r1+2t)2

20:1
0 -w
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Figure Captions

1. A typical experimental  observation of beam-beam deflection as seen in

the SLC [l].

2 Longitudinal coordinate system used in the calculation of beam-beam

- _* deflection  (see explanation in sec. 2).

3. Convention  adopted in sec. 3 for the transverse dimension  of the two-

beam system.

4. Net disruption effect given by eq. (19) for D = 0.1. The horizontal axis

is in units of the transverse beam sigma, while the vertical axis is in

units of the quantity  Hd = D 01/2  u,.

.m
5. Three steps of beam crossing in the two-disk model with increasing

degree of complication:

(a) rigid disks with infinite inertia,

(b) first moment  of disks allowed to change,

(c) second moment  of disks allowed to change.

6 Qualitative modification  of the rigid deflection formula inferred from the

two-disk model (see sec. 4):

(a) rigid deflection formula (dashed) and deflection with disruption

(solid),

(b) net effect of disruption.

7. Rigid deflection (solid),  first moment effect (dashed),  and second moment

effect (dotted)  for D = 1.5 obtained by semi-rigid’ two-disk method

(see sec. 5).
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8. Tracking  results for D = 0.01, 0.1 and 1.0. Dashed line represents

rigid deflection formula.  Some solid circles  are overshadowed  by hollow

circles in cases of neax coincidence.

(a) A=O.O,

(b) A=0.05 (nominal SLC case).
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