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1. Introduction _- 
t 

--- 
The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become 

one of the twin pillars upon which our understanding of all particle physics phe- 

nomena rests. It is a brilliant achievement that qualitatively and quantitatively 

describes all of the vast quantity of experimental data that have been accumulated 

over some forty years. Note that the word quantitatively must be qualified. The 

low energy limiting cases of the GWS theory, Quantum Electrodynamics and the 

V-A Theory of Weak Interactions, have withstood rigorous testing. The high 

energy synthesis of these ideas, the GWS theory, has not yet been subjected to 

comparably precise scrutiny. 

The recent operation of a new generation of proton-antiproton (pp) and electron- 
.- . . positron (e+e-) colliders has made it possible to produce and study large samples 

of the electroweak gauge bosons W* and 2’. We expect that these facilities will 

enable very precise tests of the GWS theory to be performed in the near future. 

In-keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, 

these lectures will explore the current status and the near-future prospects of these 

experiments.* 
- 

* In other words, we will use the title of this school as an excuse to ignore the many lower- 
energy, neutral current tests of the GWS theory. The two lecture format of this presentation 
precludes a more exhaustive treatment of the field. 
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LECTURE I -. 
c 

-- 2. Parameters of the Standard Model 

The minimal Standard Model contains some 21 empirical parameters. They 

are listed in Table I with their approximate values. 

. 

- 

Table I 

Parameter 

9s 

9 
I 

i, 
MH 

mu, 

mVP 
mu, 

me 

mP 
mr 

mu 

ma 

ms 

mc 

mb 

mt 

sin 1912 

sin 023 

sin 01s 

sin S 

Description Approximate Value 

SU( 3) coupling constant 1.3 @ 34 GeV 

SU(2) coupling constant 0.63 

U( 1) coupling constant 0.35 

VEV of the Higgs field 174 GeV 

Higgs boson mass ? 

electron neutrino mass < 12 eV 

muon neutrino mass < 0.25 MeV 

tau neutrino mass < 35 MeV 

electron mass 0.511 MeV 

muon mass 106 MeV 

tau mass 1.78 GeV 

up-quark mass 5.6 MeV 

down-quark mass 9.9 MeV 

strange-quark mass 199 MeV 

charm-quark mass 1.35 GeV 

bottom-quark mass 5 GeV 

top-quark mass ? 

K-M Matrix parameter 0.217-0.223 

K-M Matrix parameter 0.030-0.062 
K-M Matrix parameter 0.003-0.010 

K-M Matrix parameter ? 

The dynamics of electroweak Physics at the 100 GeV Mass Scale are deter- 

mined (at tree level) by three of the parameters: the SU(2) coupling constant (g), 
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the U(1) coupling constant (g’), and the vacuum expectation value of the Higgs 

c field ((4)). Th e complete specification of the electroweak sector of the Standard 

Model requires that all three parameters be precisely known. The values of these 
-I 

quantities are extracted from the measurement of three related quantities: the elec- 

tromagnetic fine structure constant (cY), the Fermi coupling constant (GF), a.nd the 

mass of the 2’ boson (Mz). The current values of these quantities are listed in 

Table II. 

Table II 

The current values of the physical parameters that determine the deter- 
mine the electroweak sector of the Standard Model. 

- . . 

Quantity EW Parameters Current Value Precision (PPM) 

a [137.0359895(61)1-l 0.045 

GF ($6 
1.16637(2)x10e5 GeVm2 17 

- Mz v- - (4 91.16(3) GeV 320 

The value of (u is extracted from a very precise measurement of the anomalous 

magnetic moment of the electron!” The value of GF is derived from the measured 

value of the muon lifetime! The first precise measurements of the 2’ mass have 

been made quite recently! Although Mz is determined with far less accuracy than 

are Q and GF, it is expected to remain the most well-determined Standard parame- 

ter for the foreseeable future. It is clear that the measurement of a fourth physical 

quantity should overconstrain the determination of the electroweak parameters. 

We should therefore be able to test the electroweak sector of the Standard Model. 

Unfortunately, the expression given in Table II that relates Mz to g, g’, and 

(4) is valid only at tree-level. Since Mz is measured at a substantially larger 

energy scale than are cx and GF, we must include virtual electroweak corrections 

in order to extract accurate values for the electroweak parameters. In principle, 

this requires a knowledge of all of the parameters listed in Table I. In practice, a 

dispersion relation is used to determine the dominant correction (due to low mass 
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fermion loops) from the low energy e + - total cross section. The largest remaining e _- 
* corrections depend upon the top quark mass (strongly) and the Higgs boson mass 

(weakly). A reasonably precise test of the Standard Model therefore requires at c- 
least two more experimental measurements (ideally a measurement of mt would be 

one of them). 

At high energies, all of the proposed tests of the Standard Model fall into one 

of two categories: 

1. An improved measurement of the W boson mass, 

where Mw is the W boson mass and SEC accounts for the virtual electroweak 

corrections. 

2. A measurement of the ratio of the vector and axial vector parts of the 2’ 

- coupling to a fermion-antifermion (ff) pair. The vector and axial vector 

coupling constants (VU~ and af, respectively) are given by the following ex- 

pression, 

(2.2) 

where r[ is twice the third component of the fermion weak isospin and Qf 

is the fermion charge. 

The Standard Model tests that fall into the second category measure one com- 

bination of coupling constants. At tree-level, this combination is the well-known 

electroweak parameter sin28,, 

sin28, = 912 
g2 + g12 * (2.3) 

To good approximation, the virtual corrections that affect each quantity in the 

category can be absorbed into the definition of sin20ul. We can therefore useb the 
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tree-level sin28, sensitivities of the second-category quantities to compare their -. 
c sensitivities to the electroweak parameters and loop corrections. 

3. Experiments at Hadron Colliders 

High energy physics, like most fields of scientific endeavor, follows trends that 

are determined as much by psychology as by logic. In the decade of the 1970’s, 

the electron-positron collider was preeminent. The great success of the SPEAR 

storage ring at SLAC lead to the construction of larger projects at DESY, SLAG, 

Cornell, and KEK. The experimental program at the CERN ISR (which was the 

world’s only hadron-hadron collider) was rather slow in bearing fruit and never did 

produce a major discovery.* 

- 

In the 1980’s, the situation was somewhat reversed. The large program of 

moderate energy e + - e storage rings (25-60 GeV in the cm frame) produced no - 
major discoveries! On the other hand, the observation of the W* and 2’ bosons at 

the CERN SpijS Collider provided fairly dramatic evidence that the GWS theory 

of electroweak interactions is substantially correct. This has lead to the great 

popularity of high energy hadron-hadron colliders and to the plans for the building 

of the SSC in the US and the LHC at CERN. Perhaps some discovery at SLC/LEP 

will cause the pendulum to swing the other way? 

At the current time, there are two active hadron colliders in the world, the 

SppS at CERN and the Tevatron collider at Fermilab. The parameters of the 

two machines are summarized in Table III. Note that substantial upgrades of the 

Tevatron collider are being proposed for the next several years. 

* The observation of large transverse momentum scattering processes did lend support, along 
with data from electron-nucleon scattering experiments, to the parton model of hadrons. 

t The observation of an increased fraction of three-jet events in the total hadronic cross section 
was strong supporting evidence for Quantum Chromodynamics. The reader is requested 
to consider whether these data could have been termed the discovery of the gluon in the 
absence of a very detailed theory and several very detailed simulations. 
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Table III .- 
t 

Machine Energy Peak Luminosity Integrated Luminosity 

SPPS 630 GeV 3 X 103* cm-2sec-1 6.7 pb-l 

Tev I 1.8 TeV 1 X 103* cmT2sec-l 4.7 pb-l 

Tev I( 1995) 1.8 TeV 5 X 1031 cm-“see-r 300 pb-l? 
F 

3.1. EXPERIMENTAL DETAILS 

There are four experiments that are active or in preparation at the SppS 

and the Tevatron: the UAl and UA2 experiments at CERN, and the CDF and 

DO experiments at Fermilab. The main features of the these experiments are as 

follows: 
.- . . 

1. Large Solid Angle Calorimeters - each experiment utilizes a calorimeter that 

covers the entire azimuth in a region of polar angle that extends to within 

- - 5’ of the beam direction. These devices are usually segmented transversely 

and longitudinally. The longitudinal segmentation permits the separation of 

electron and photon showers from hadron showers. The energy resolution 

of these devices is typically SE/E - 0.15/a (E in GeV) for electromag- 

netic showers and SE/E - 0.80/a for hadronic showers. Additionally, 

the overall energy scale of a typical calorimeter is uncertain to 2 1% for 

electromagnetic showers and - 3.5% for hadronic showers. 

2. Magnetic Spectrometers - The UAl and CDF experiments contain large 

charged particle tracking systems that are immersed in magnetic fields. They 

are capable of reconstructing transverse momenta with resolutions in the 

range SPt/Pt -(O.OOl-O.OOS).Pt ( w h ere Pt is in GeV). Although these reso- 

lutions are inferior to those of the calorimeters for high energy electrons, the 

CDF collaboration have managed to control the momentum scale uncertainty 

to a few tenths of a percent. The UA2 and DO experiments have charged 

particle tracking systems but are not capable of charged particle momentum 

reconstruction. 
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3. Muon Spectrometers/Identifiers - The UAl, CDF, and DO experiments have 

c magnetized iron shielding for the identification and measurement of muon 

tracks. The momentum resolution of these systems is poor as compared with -1 
the inner tracking systems mentioned above. 

4. Triggers - All four experiments need fairly sophisticated, calorimeter-based 

triggers to ignore the large rate (- 100 kHz) f o or d inary hadronic interactions. 

The triggers normally require that preselected patterns of transverse energy* 

be deposited into the calorimeter. The energy thresholds are adjusted to 

reduce the trigger rates to a few Hertz. 

Observable Quantities 

.- As the energies of storage rings and collider complexes have increased, the 
. 

importance of observing individual final-state hadrons has declined. This is par- 

ticularly true in hadron colliders. The experimentally observable and measurable 

quantities are as follows: 

1. Hadron Jets - the signature of a quark or gluon jet in a typical detector is a 

cluster of energy in the calorimeter. The transverse and longitudinal extent 

of the energy deposition is much larger than that associated with an electron 

or photon. A large number of charged tracks is usually required to originate 

from a vertex and point to the cluster. 

2. Electron - the signature of an electron in a typical detector is a cluster of 

energy in the calorimeter of small transverse and longitudinal extent. A 

charged track must be associated with the cluster. The track-calorimeter 

matching is improved with the use of high granularity preshower detectors, 

high granularity layers in the calorimeter, or position sensitive detectors em- 

bedded in the calorimeter. The UAl and CDF experiments also require that 

the momentum of the charged track (as measured by magnetic deflection) 

A- Transverse energy is defined as the product of the energy deposited into a calorimeter 
segment and the sine of the polar angle subtended by the segment. 
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agree with the energy that is measured in the calorimeter. All of the exper- ..- 
t iments require that electron candidates pass an isolation criterion of some 

description (typically, less than a few GeV of energy must be detected in a 

cone of 15”-40’ about the track-cluster). 

3. Muons - the signature of a muon is a charged track that penetrates the iron 

muon identifier. The track is required to match to a charged track in the 

central detector. The central track must not show any sign of a lcinlc that 

could be associated with the decay of a pion or kaon. The energy measured 

in the calorimeter must be consistent with the passage of a minimum ionizing 

particle. Additionally, the muon candidate must pass an isolation criterion 

that is similar to the one applied to electron candidates. 

4. Neutrinos - the large coverage of the calorimeters permits the reconstruction 

of the net transverse momentum vector of the entire event (relative to* the 

beam axis). The measurement of the net longitudinal momentumof the event 
- requires calorimetric coverage to quite near the beam direction and is not 

practical. Since the transverse momentum of the initial state is zero, the total 

event transverse momentum measures the total transverse momentum of all 

non-interacting particles. Neutrinos with large transverse momenta can be 

identified and tagged by this technique. The missing transverse momentum 

(PtmESS) resolution of a typical detector is given by the following expression, 

SPg:$ = (0.5 + 0.7) - 

where Z, y are the directions that are orthogonal to the beam axis and where 

E,obS is the total transverse energy that is observed in the calorimeter (the 

energy of each cell weighted by the sine of the polar angle). 

It is clear that large Pt electrons and (in the case of CDF) muons are much bet- 

ter measured quantities than are jets or neutrinos. The most serious backgrounds 

to large transverse momentum charged leptons are due to low multiplicity hadronic 

jets. The rejection power of the selection criteria is typically several x lo*. The 
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-. efficiency to detect a large Pi lepton is typically 50% to 75% depending upon the 
t 

detector and the selection criteria. 

-c 
3.2. GAUGE BOSON PRODUCTION 

All the electroweak tests that have been performed at hadron colliders involve 

the measurement of gauge boson properties. It is important to remember that 

gauge boson production in these machines is a small part of the total cross section. 

The signatures and cross sections for gauge boson production are compared with 

those of hadronic processes in Table IV. 

Table IV 

Process .- Signature ~$0.63 TeV) a(1.8 TeV) . . 
Soft Collision Et = 5-10 GeV ~6x10~ nb >6x107 nb 

15-25 charged tracks 

- 

Hard Collision Two large Pt jets -600 nb -3000 nb 
back-to-back azimuthally (Pj>30 GeV) (Pi>32 GeV) 

PP --+ w+ QQ Two large Pt jets -3 nb -15 nb 
back-to-back azimuthally 

PP-+ z + QQ Two large Pi jets -1 nb -5 nb 
back-to-back azimuthally 

pp + w + &u Large Pt lepton -0.5 nb -2.5 nb 

pji ---f z + u Two large Pt leptons -0.05 nb -0.25 nb 

Note that the hadronic final states of the gauge bosons have a signature that 

is very similar to that of the dominant large Pt scattering process. For this reason, 

all precise gauge boson measurements make use of the leptonic final states. 

Drell-Yan Mechanism 

The hadronic production of the W* and Z* bosons occurs via the well-known 

DreZZ-Yin mechanism which is illustrated in in Figure 1. The incident proton and 

antiproton have momenta Icl and Ic2, respectively. A parton carrying a fraction 
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x1 of the proton momentum collides with a parton carrying a fraction x2 of the -. 
t antiproton momentum. The two lowest order subprocesses that produce gauge 

bosons are shown in parts a) and b). The dominant subprocess is the qij anni- 

hilation diagram shown in part a). Note that the emitted gluon is optional and 

is shown only to illustrate the production mechanism for gauge boson transverse 

momenta. The second subprocess is the Compton scattering of a quark and gluon. 

This process is higher order in crS than the basic process (without initial state gluon 

radiation) and is important when the longitudinal or transverse momentum of the 

gauge boson is large. 

The parton-parton center of mass energy, 4, has a simple relationship to the 

hadron-hadron center of mass energy &, 

.2 = XlX2.s = 7-s (3.1) 

where the definition of r is obvious. If the gauge boson transverse momentum 
pKZ * 

t is small as compared with its mass, the gauge boson longitudinal momentum 

is given by the following simple expression, 

- 

where Abeam is the 

Assuming that 

therefore write the 

dao 
dxl dx2 

WJ 
PL = &am ’ (Xl - 22)~ (3.2) 

beam momentum. 

the annihilation subprocess dominates the cross section, we can 

lowest order differential cross section as, 

41(X1)$(X2) + +4,8(x2) 

x1x2 x1x2 I 
~.ij(XlXZS), (3.3) 

where: qt(xl)/ 1 x is the probability of finding a quark of species i in the proton 

with momentum fraction x1; NC is a color factor (3) to account for the probability 

of finding a quark-antiquark pair in a color-neutral state; and &ij(S) is the cross 

section for the annihilation of quark species i and j with a qtj cm energy of s^. 
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The QCD radiative corrections to equation (3.3) are quite substantial. Real -. 
t gluon emission produces large gauge boson transverse momenta. At a center of 

mass energy of 630 GeV, the average gauge boson transverse momentum is ap- 

proximately 7 GeV. In the absence of gluon radiation, the natural scale of the 

gauge boson transverse momentum would be that of the Fermi momentum of a 

quark in a nucleon (a few hundred MeV). Additionally, the QCD vertex correc- 

tions change the size of the cross section by a factor that is between one and two. 

Nevertheless, equation (3.3) correctly describes many of the features of gauge boson 

production and gives the correct scale of the cross section. 

3.3. W BOSON PHYSICS 

As an example of the Drell-Yan mechanism, let’s consider the process pji + 
.- . . W* + ebb. The cross section for the process qij + W* + e*v in the qQ cm frame 

can be written as, 

- 

where: 19* is the polar angle of the charged lepton relative to the quark direction; qj 

is the lepton charge; and Iw is the W boson width. The large angular asymmetry 

is a consequence of the V-A coupling of the W to all fermions. Note that electrons 

are emitted preferentially in the quark direction and positrons in the antiquark 

direction. 

The lowest order Drell-Yan cross section for the production of the W- boson 

follows from the substitution of equation (3.4) into equation (3.3), 

da0 1 -=- 
J 

dxldx2S(xlx2 - i/s) dp(xl)q&) d+ 
di-2 3 x152 

-& - cos s*> 
(3.5) 

+ 

where uh(x) [dh(x)] is th e momentum distribution of u [d] quarks in hadron h. “The 

antiquark-antiproton distribution tip(x) is required to be identical to the quark- 

proton distribution up(x) by CPT invariance. The sea quark distributions up(x) 
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and dp(z) are approximately equal and are unimportant except at small values of -. 
c x. The angular asymmetry that is associated with the iiP(xr)dp(x2) factor has the 

opposite sense because the qij axis reverses direction with respect to the parent -. 
hadrons. Note that the delta function explicitly applies the constraint given in 

equation (3.1). Th e average value of x1 or x2 is therefore x,,~ - Mw/&. At larger 

values of xavg (lower energy colliders), the valence quark distributions dominate 

equation (3.5) and the lepton angular asymmetry is large. As xavg becomes smaller, 

the wrong-sign sea quark terms dilute the asymmetry. 

Since the u-quark distribution of the proton is harder than is the d-quark dis- 

tribution (there are two valence u quarks to one d quark), we expect that W- 

bosons are slightly boosted in the antiproton direction, and that W+ bosons are 

. slightly boosted in the proton direction. The scaled longitudinal momentum dis- 

tribution x2 - x1 of W- bosons produced at 6 = 630 GeV is shown in Figure 2. 

The average boost along the antiproton direction is fairly small, 22 - $1 = 0.06. 

However, the distribution is quite broad. The average value of the absolute value 

1x2 - xl] is 0.22 which corresponds to an average longitudinal momentum of 68.2 

GeV. 

The Detection of W Bosons 

As we have already discussed, there are serious QCD backgrounds to the de- 

tection and measurement of W bosons via their hadronic decays. It is necessary 

to search for the charged lepton-neutrino final states. The QCD background is 

suppressed both by the leptonic selection criteria and by the missing Pt signature 

of the neutrino. 

The identification of charged leptons and neutrinos is greatly aided by the 

two-body nature of the W decay. This becomes clearer if we consider the transfor- 

mation of the lepton angular distribution from the W center-of-mass frame to the 

laboratory frame. Let the cm angular distribution be described by some (analytic) 
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function f, - 
c dN 

d cos 19* 
= f(cos e*). 

-- 
In the laboratory frame, most of the W boson momentum is along the beam axis. 

Therefore, the transverse momentum distribution of the charged leptons is the same 

in both frames. The lepton transverse momentum Pf has a simple relationship to 

the cm emission angle, 

P: = T sine’. 

Changing variables from cos0* to Pf, equation (3.6) becomes 

(3.7) 

There is a singularity in the P[ distribution at Mw/2! This so-called Jacobian 

p&k (after the Jacobian of the transformation) implies that most of the leptons 

and neutrinos emerge with the largest transverse momenta. 

The singularity in the Pf distribution as described by equation (3.8) is unphys- 

ical and is moderated by three effects: 

1. The parent W boson has a finite width, I’w - 2.1 GeV. 

2. The detector has finite resolution. 

3. The parent W is produced with non-zero transverse momentum. 

These effects are incorporated into a simulation of the process pp + W + ev 

at fi = 630 GeV. The Pt distribution is presented for three different phenomeno- 

logical W boson transverse momentum distributions in Figure 3. TII(, <iverage 

values of Ptw are zero (the dashed curve), 7 GeV (the dashed-dotted curve), and 

14 GeV (the solid curve). The energy resolution of the detector is assumed to 

be SE/E = 0.15/a. Note that the Pf distribution is very sensitive to the 1%” 

transverse momentum distribution. 
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The Jacobian peak is a feature of transverse momentum distributions of the 
I. 

c charged leptons and of the neutrinos. Since the backgrounds that affect the iden- 

tification of charged and neutral leptons decrease rapidly with increasing Pt, most 
-. 

experiments select W candidates by requiring that P[ and Pr be larger than 20 

GeV. The electron and neutrino transverse momentum distributions for the 1203 

W + ev event sample of the UA2 Collaboration [‘I are shown in Figure 4. The 

background from misidentified two-jet events is estimated to be less than 1%. 

In practice, W bosons are detected by their decays into ev and ,W final states. 

The Q-V final state cannot be detected with high efficiency (the efficiency is in 

the range lo%-15%). This is because a large fraction of 7 decays appear as low 

multiplicity hadronic jets. One must use very restrictive cuts to eliminate low 

multiplicity QCD events. A second difficulty is that neutrinos are detected from 
. 

an imbalance in the total transverse momentum of the event. Since all T decays 

contain at least one neutrino, the missing Pt distribution is softened considerably. 

The P: requirement is therefore less efficient. Although the identification of 7 

lepton final states is difficult, the leptonic decays of the r’s do contaminate the eu 

and pv final states. For electron or muon transverse momenta above 20 GeV, the 

r contamination is in the range 3%-4%. 

W Mass Measurement 

It is clear from equation (3.8) and from Figure 3 that the position of the 

Jacobian peak in the Pf distribution is determined by the mass of the W boson. 

Figure 3 also illustrates the difficulty in the extraction of Mw from a fit to the 

distribution. The Pf distribution is very sensitive to the Ptw distribution which is 

neither well-known nor well-measured. The solution to this problem is to use the so- 

called transverse mass variable, n/r, . ” The transverse mass is the two-dimensional 

analog of the normal three-dimensional one, 

(3.9) 

where Ptv is the neutrino transverse momentum and A4,, is the azimuthal angle 

16 



.- 
- 

- between the lepton and neutrino Pt vectors. Although Mt is not a Lorentz-invariant 

c quantity, it is quite insensitive to the Ptw distribution. This is shown in Figure 5. 

-. The Mf” distributions are plotted for the three Pf distributions shown in Figure 3. 

The average values of Ptw are zero (the dashed curve), 7 GeV (the dashed-dotted 

curve), and 14 GeV (the solid curve). The resolution of the neutrino Pt along the x 

and y axes is assumed to be SP,“,, = 7 0.5& GeV. Note that the Mfv distribution 

is very insensitive to the details of the Ptw distribution. 

Note also that the llqfv distributions are much more sharply peaked than are 

the Pf distributions. The transverse mass should therefore be a more sensitive 

measure of the W mass. We can quantify this observation by analyzing the ex- 

pected results of likelihood fits to the Pf and &ltv distributions. Let f and G be 

Pf and Mf” likelihood functions that are normalized in the region of sensitivity. 
. 

In practice, the regions 25 GeV < Pf < 50 GeV and 50 GeV < Mfv < 100 GeV 

are used to measure Mw. The functions f and g are therefore defined as follows, 

- 
dN 

- 
The Mw precision of likelihood fits to the measured distributions can be estimated 

from the following expressions, 

where Nd is the number of detected events. The numerical results given in the 

second line are derived by numerically differentiating and integrating the (Ptw) = 

7 GeV distributions in Figures 3 and 5. Note that the transverse mass distribution 

has substantially more analyzing power than does Pf distribution. Note also that 

our simulation of the missing Pi resolution is somewhat optimistic. The analyzing 
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power of the it!Lfv distribution is probably not a good as indicated by equation 

(3.11). 

-. The transverse mass distribution has the advantages that it is less sensitive 

to the W boson Pt distribution and more sensitive to the W boson mass than 

is the lepton transverse momentum distribution. These advantages are the result 

of adding more information to the problem (the neutrino Pt). Unfortunately, the 

additional information is accompanied by an additional uncertainty. We must un- 

derstand the resolution function for the missing Pt vector. In practice, the increase 

in the systematic uncertainty that is associated with the use of the Ptv information 

is more than compensated by the reduced sensitivity to the Ptw distribution. 

The shapes of the AL$ and Pf distributions near the Jacobian peaks are sen- 

. sitive to the proton structure functions. The lineshape of the W resonance and 

the accepted lepton transverse momentum distribution are both affected by the 

structure functions. The lineshape is given by the convolution of the relativistic 

BrZt-Wigner resonance form (given in equation (3.4)) with the quark structure 

functions (see equation (3.5)). Since th e s t ructure functions fall sharply with in- 

creasing x, the A$” and Pf distributions are steepened above the peak values. 

The acceptance effect is caused by the boosting of the W along the beam axis. 

The acceptance for a lepton that is emitted with a backward angle (in the W rest 

frame) relative to the boost direction is larger than the acceptance for a lepton that 

is emitted with the symmetric forward angle. Since P/ is completely correlated 

with the emission angle, the accepted P/ and Mt ey distributions are sensitive to 

the choice of proton structure functions. The dependence of the predicted distri- 

butions upon the structure functions leads to an uncertainty on the fit value of 

Mw of roughly 100 MeV. 

The best current measurement of the W boson mass is the one derived from 

the 1203 event sample of the UA2 Collaboration:’ 

iLfw = 80.79 f O.Sl(stat) f 0.2l(syst) f 0.8l(scale) GeV. 
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The systematic error has roughly equal contributions from uncertainties on the 

transverse momentum resolution, the quark distribution functions, and the statis- 

tical precision of the Monte Carlo that was used to calculate the shape of the Mfv 

distribution. There are smaller contributions to the systematic error from the leak- 

age energy from the underlying event into the electron clusters, from uncertainties 

on the final state radiative corrections, and from the uncertainty on the electron 

energy resolution function. Note that the largest single uncertainty is due to the 

1% energy scale uncertainty of the UA2 electromagnetic calorimeter. The error is 

quoted separately because it cancels in the ratio of the W and 2 masses. 

W Angular Distribution 

We have already seen that the angular distribution of the leptons emitted in 
. W decay is expected to be strongly asymmetric in the qa center-of-muss frame. 

It is clearly important to verify that this is indeed true for the 81 GeV particle 

that has been observed. Unfortunately, the qtj center-of-mass frame is generally 
- 

not well determined. The reasons for this are: 

1. The qa axis is coincident with the pp axis only when the W is produced 

with zero transverse momentum. A non-zero value for Ptw implies that one 

or both of the incident quarks emitted gluons in the collision process. The 

solution to this problem is to use the Collins-Soper definition of the qq cm 

[“I frame. The bisector of the proton and antiproton directions in the W rest 

frame is chosen as the qq axis. This definition is therefore correct on average 

but fails on an event by event basis. 

2. The use of the Collins-Soper frame requires that we know the W boson rest 

frame. However, since the neutrino longitudinal momentum is not measured, 

we do not have enough information to reconstruct the W rest frame. The 

solution to this problem is to constrain the mass of the lepton-neutrino sys- 

tem to the W mass (ignoring the finite width of the W). This yields two 

solutions for the neutrino longitudinal momentum Pi. Since the W longitu- 

dinal momentum is PLw = Pi + Pi”, there are two solutions for Pz”;. In the 
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Collins-Soper frame, the two solutions correspond to opposite sign solutions 

z for cos 8*. In many cases, the W is highly boosted on the laboratory frame 

and one solution is unphysical (P,” > G/2). These unambiguous events -. 
are normally used to measure W boson angular asymmetry. 

The UAl collaboration has performed this analysis with their old (767 nb-r) 

[“I sample of W t ev events. They have used only the 149 events that have an 

unambiguous solution for PLw and a measured value of Ptw less than 15 GeV. They 

correct the measured distribution for the biases that are introduced by the selection 

process. The resulting distribution is plotted in Figure 6. The solid curve shows 

the expected (1 - qe cos 19*)~ distribution. It agrees well except near qe cos 8* = 1 

where the wrong-sign sea quark contribution is large (see equation (3.5)). 

3.4. Z” BOSON PHYSICS 

- 

The cross section for the process pji + 2’ -+ e+.P can be calculated from the 

zeroth order Drell-Yan formalism given in equation (3.3). The cross section for the 

point process qq + 2’ -+ l+P is straightforward to calculate from the Standard 

Model couplings, 

2(c) = f { Qi(l + "2) 

Qq - 
2 sin2 20, 

ReI’(>) [vvp(l + c2) + ~UU~C] 

1 
+ 

16 sin4 24, 
lr(3)12 [(u” + u”)(v,” + a;)(1 + c2) + 8vuv~u~c 

(3.12) 

where: c E cos 19* is cosine of the polar angle of the lepton relative to the quark 

direction; I’(g) = i/(.? - &$ + iIzi/M z is the normalized 2 propagator; I’z ) 

is the 2’ width; and where the coupling constants (defined in equation (2.2)) 

without subscript, 2, and a, refer to the leptonic couplings. The first term within 

the braces describes the process of pure y exchange, the second term describes 

the Z”-7 interference, and the third term describes pure 2’ exchange. The y 
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c 
exchange term is quite small and can be ignored. The interference term vanishes 

at .S = Mi and can be ignored except when calculating the angular distribution 

-. (because uug > ~2)~). 

The lowest order Drell-Yan cross section for the 2’ production follows from 

the substitution of equation (3.12) into equation (3.3), 

duo 1 
- = - 
dR 3 J 

dxldx2S(x1x2 - S/s). 

up(x1)+~2) de-, o+[ &-&(x2> + 
371x2 dRC x1x2 

spun d?-, (-)+[ sP~xd%3(4 + 
21x2 dRC 21x2 

where sh(x) is the strange (sea) quark structure function. 

Note that the angular distribution of the outgoing lepton is a function of the 

ratio of the rates uu annihilations and dd annihilations (because di+-,/dR is quite 

different from di?d/dfi). Like the W case, there is also a dilution effect coming 

from the wrong-sign sea quarks. 

2 Boson Detection 

The presence of a second charged lepton makes the detection of the decay 

2’ --) e+C extremely straightforward for electron and muon final states. On the 

other hand, the detection of 7 final states is quite difficult without the missing Pt 

signature of the W decays. At the current time, no experiment has published a 

signal for the process pp + 2’ t T- + T -. In the case of electrons, it is necessary 

to require that only one of the legs of the 2 candidate satisfy very restrictive 

identification criteria. Taking all lepton pair masses between 60 and 120 GeV, the 

background from misidentified hadronic events is typically less than 1%. 

Measurement of Mz 

The mass of the 2 boson is extracted from the observed lepton-lepton mass 

(A4&) distribution. The observed A4& distribution is the convolution of the under- 

lying Breit-Wigner lineshape, the quark structure functions, and the experimental 
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resolution. The leptonic daughters of the 2 are sufficiently energetic that the en- - 
z ergy resolution associated with electromagnetic calorimeters (SE/E - 0.15/a) is 

better than that associated with magnetic spectrometers (S( l/Pt) - 0.001 GeV-l) -. 
by roughly a factor of two. We therefore expect the electron final states to offer 

better statistical analyzing power than do the muon final states. We can quantify 

the difference by comparing the expected results of fits to the M,, and Mp, dis- 

tributions. Let z(Mff, Mz) be the likelihood function for the observed lepton pair 

mass distribution normalized over the interval 60 GeV < rn~ < 120 GeV, 

The Mz precision of a likelihood fit to the measured distribution can then estimated 

from the following expression, 

- 
where N is the number of detected events. The electrons are expected to be better 

by roughly 30%. 

In practice, only well-measured lepton pairs are used to extract Mz. The ex- 

isting experiments are well instrumented only at relatively large values of polar 

angle (101 ;L 20’). Th e probability that both leptons are detected in this region 

is about 70% at fi = 630 GeV and 47% at fi = 1800 GeV. The magnetically 

measured masses of 123 muon pairs and 65 electron pairs of the CDF collabora- 

tion[12’ are shown in Figure 7. Although the momentum resolution of the CDF 

magnetic spectrometer is inferior to the energy resolution of the CDF calorimeter, 

the momentum/energy scale is more precisely known (an uncertainty of 0.22% is 

claimed). The magnetic spectrometer is used to directly measure the muon pair 

masses and to calibrate the electromagnetic calorimeter with low energy electrons 

(from b quark decay). Performing likelihood fits to the 123 p-pair sample and to a 
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sample of 73 calorimetrically measured electron pairs, the following the measure- 

ments of Mz were obtained, 

Mz = 90.7 f 0.4 (stat) f 0.2 (syst) GeV (muons) 

Mz = 91.1 f 0.3 (stat) f 0.4 (syst) GeV (electrons). 

The systematic error on the muon result is dominated by the momentum scale 

uncertainty of the magnetic spectrometer. The systematic error quoted for the 

electron measurement is due largely to uncertainties in the calorimeter calibration. 

The combined result is 

. 

Mz = 90.9 * 0.3 (stat + syst) rf 0.2 (scale) GeV 

where the scale uncertainty has been quoted separately. 

- The UA2 Collaboration have also recently published a result that is based upon 

a sample of 90 electron pair events:’ 

Mz = 91.49 f 0.35(stat) f O.l2(syst) f 0.92(scale) GeV, 

where dominant contributions to the systematic error are due to leakage of energy 

from the underlying event into the electron clusters and to uncertainties in the 

detector response to the process 2’ -+ e+e-y. 

3.5. iVlw,Mz AND THE STANDARD MODEL 

The ratio of the W and 2 boson masses is an interesting quantity for very 

practical reasons. We have seen that lepton energy scale uncertainties lead to 

substantial uncertainties on the gauge boson masses. These particular uncertainties 

cancel in the ratio Mw/Mz. Since Mz has been precisely measured in e+e- 

experiments (which cannot measure Mw at the current time), the electroweak 

information contained within Mw is also contained within the mass ratio. 
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The best measurement of Mw that is currently available is contained within - 
z the Mw/Mz measurement of the UA2 Collaborations’ 

-. 
MW - = 0.8831 f O.O048(stat) f O.O026(syst). 
MZ 

Taking the current weighted world average value [‘I for Mz (Mz = 91.160 f 0.0029 

GeV), they quote a resealed W mass value of, 

Mw = 80.49 f 0.43(stat) f 0.24(syst) GeV. 

The ratio Mw/Mz directly determines the parameter sin28, as defined by 

Sirlint131 , 

2 

= 0.220 f O.O08(stat) f O.O05(syst). 

- 

The Sirlin definition of sin28, is related to the 2’ mass by a very well-known 
t141 expression, 

- M; = 
A2 

(1 - Ar)sin20, cos2 Bu, ’ 
(3.16) 

where Ar contains the effects of electroweak radiative corrections (Ar = 0 at tree 

level), and A is a constant, 

A= 
1. 2 

= 37.2805 f 0.0003 GeV. 

Using the SLC/LEP value for Mz and their own result for Mw/Mz, the UA2 

group derive a result for Ar, 

Ar = 0.026’::$!!!. 

Their result is consistent with a large value of mtop (100-200 GeV). 
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- 3.6. FUTURE MEASUREMENTS OF MW AND MZ 
s 

-. We have seen that the mass ratio Mw/Mz has the advantage that the uncer- 

tainty on the leptonic energy scale cancels in the ratio. The remaining systematic 

errors are due largely the differences in the techniques that are used to extract the 

masses. These techniques have been developed to minimize the statistical error 

of the result. The Tevatron experiments expect to accumulate significantly larger 

data samples in the next few years (the current CDF sample could increase by a 

factor of order fifty). The increased size of the samples should be adequate to satu- 

rate the current systematic errors.* One must therefore ask if it is possible to reduce 

the systematic uncertainties by using techniques with less statistical sensitivity. 

. 
The obvious approach is to extract the 2 mass from the transverse mass tech- 

nique. In this case, the uncertainties associated with the Pr resolution, the un- 

derlying event, and the electron energy resolution would largely cancel in the mass 

ratio. The remaining uncertainties would be those due to the differences in radia- 

tive corrections and structure functions. 

The question of whether to discard one leg of a 2 event has been much discussed 

(over coffee). It is clear that a strong correlation exists between the transverse mo- 

menta of the two leptons. It would be difficult to assess the effect of the correlation 

on the result. However, it is very likely that this question will remain academic. 

In the current experiments, the number of 2 candidates with two well-measured 

legs is somewhat smaller than the number with only one well-measured leg (the 

CDF group uses 73 well-measured electron pairs to determine Mz and 193 events 

with one well-measured leg to determine the 2 cross section [15’). The use of second 

well-measured legs would therefore add only a small statistical advantage (in the 

CDF example, the statistical error would be improved by only 17%). 

Scaling the current CDF samples P51 of W + ev candidates (1828 events) and 

* It would also permit the detailed study and reduction of the current systematic errors. For 
instance, a large sample of 2’ decays should help understand the missing Pt resolution from 
the study of the hadronic system that recoils against the (well-measured) lepton pair. 
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one-legged 2 - + ee events (193) by a factor of 50, we can use equation (3.11) to 

w estimate the statistical error on AJw/IMz that m ight be achieved in the future. 

Assuming that only one leg from each 2 event is used, we estimate the error on -_. 
the ratio to be 

6 Mw 
( > 

- - 0.0009. 
MZ 

Assuming that 2Mz is known to 30 MeV, this corresponds to an error on Mw of 

83 MeV. It is clear than a loo-150 MeV measurement of Mw is possible if the 

remaining systematic error can be controlled to a comparable level. 

3.7. THE Z” ANGULAR DISTRIBUTION 

The angular distribution of the leptons in the qa center-of-mass frame is given 
. by equations (3.12) and (3.13). Although th e net expression is fairly complicated, 

it has the following form, 

da - - = $1+ 
dR* 

cos2 o*> + B cos o* (3.17) 

- 

where the complexity is hidden in ‘the definitions of the constants A and B. If the 

initial state hadrons were monoenergetic quarks of energy Mz/2, we could write 

A and B as 

A= 
a!2 

512 sin4 28, 
- L * 2(?J2 + a2)(v; + ai) 

I’; 

a2 
(3.18) 

B= . L - 8vavPa~. 
512 sin4 20, Ii 

It is often quite useful to consider the so-called forward-backward asymmetry 

which measures the ratio of the B and A terms. It is defined as follows, 

&B(x) = So” dcos ’ 
* da - - f, dcos O*& dcos6” 

s_“, dcos o*& 

4x 3 B =-.-.- 
3+x2 4 A 

(3.19) 

where x is an integration lim it and the function F(x) is normalized such that 
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F(1) = 1. Th e f orward-backward asymmetry is the ratio of the difference in the 

z cross sections for finding the lepton in the quark and antiquark hemispheres to 

the total cross section. The effect of limited detector acceptance in polar angle --. 
is described by the function F(x) where x is the maximum value of cos 8*. By 

convention, the symbol AFB describes the asymmetry for complete polar angle 

coverage (APB = AFB( 1)). 

The forward-backward asymmetry is sensitive to the couplings of the 2’ to in- 

cident quarks and the final state leptons. For the simple example of monoenergetic 

quarks of energy Mz/2, the asymmetry has the form, 

A 
3 -2va -2v,aq 0.063 for u-quarks 

FB = 4 * V2 -I- a2 ’ v; + a; 0.089 for d-quarks 
(3.20) 

where we have assumed that sin28, = 0.234. Note that the lepton and quark vector 

coupling constants are sensitive functions of sin28, (see equation (2.2)). The 2’ 

forward-backward asymmetry is therefore useful for testing the Standard Model. 

The actual pji initial state is a mixture of uu and dd states. The measured 

asymmetry should therefore fall between the above extremes (as determined by 

the u and d quark structure functions and by the quark couplings to the 2’). 

Or should it? We expect that a number of effects should reduce the measured 

asymmetry: 

1. As in the case of the W angular distribution, there are wrong-sign sea-quark 

pairs that dilute the asymmetry. Note that a correct analysis of this effect 

depends upon a good knowledge of the low-x quark structure functions. 

2. The electroweak interference terms are important when 3 # AI;. This effect 

is also sensitive to the quark structure functions. 

3. The acceptance of a real experiment is finite (x < 1). The actual acceptance 

depends upon the longitudinal momentum distribution of the 2 which is 

sensitive to the quark structure functions. 
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4. The actual q4; axis is unknown. Although we can use the average direc- - 
z tion (the Collins-Soper definition), there will be an inevitable dilution of the 

asymmetry. 
. . 

It appears that the measured value of AFB might be quite sensitive to uncer- 

tainties in the quark structure functions of the proton. To investigate the above 

effects, we have performed a Monte Carlo simulation with several different sets 

of structure functions. It is assumed that our experiment can reconstruct leptons 

with polar angles larger than 20’. We find that the reconstructed value of AFB 

is 0.050 f 0.002 where the uncertainty reflects the variation of the result with 

structure function parameterizations. This result does not vary between SppS and 

Tevatron energies. Given our list of structure function dependent dilution effects, 

the uncertainty seems remarkably small. Note that our simulation does not in- .- . 
elude the correct mechanism for the generation of 2’ transverse momentum. The 

smearing of the angular distribution due to the initial state gluon bremsstrahlung 

(which produces non-zero P,“) is not correctly simulated. This may result in a 

large uncertainty in the reconstructed asymmetry. The sensitivity of the resolved 
. 

asymmetry to variations in sin28, is given by the following expression, 

1 
Ssin2d, = - . SAFB. 

3.7 
(3.21) 

The only measurement of Apg that is currently in print was performed by the 

UAl Collaboration 1111 with 33 events, 

AFB = i - (0.06 f 0.24) = 0.045 f 0.18 

which they convert into a measurement of sin26,, 

sin2B, = 0.24+~$~. 

It is likely that CDF will be able to produce a measurement in the near future 
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with a precision, 

c 
~AFB- -& - 0.07 

. . 
where N is the number of 2 candidates. The corresponding precision on sin28, 

would be approximately Ssin28, N 0.020. 

Although neither the UAl nor the likely CDF results are likely to be very 

significant, future high-luminosity measurements could reach the Ssin28, N 0.003 

level if the uncertainty associated with the qq axis can be controlled. 
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LECTURE II -. 
* 

. . 4. Experiments at Electron-Positron Colliders 

During the last year, two high energy electron-positron colliders have begun 

operation. The SLAC Linear Collider (SLC) began physics operation in April 

of 1989 and had produced a sample of about 600 2’ events by early 1990. The 

LEP project began operation in October of 1989 and had produced samples of 

approximately 30,000 2’ events in each of four detectors by early 1990. The 

current and future parameters of the two machines are summarized in Table V. 

.- . 

Table V 

1 I Machine I Date I Energy I Peak Luminosity 

a 
- 

SLC 1989 

SLC 1992 

LEP I 1989 

LEP I 1990 

LEP II 1994? 

6 100 GeV ~1,4xlO~~crn-~sec-’ 

,S 100 GeV -6x 102gcm-2sec-1 

6 100 GeV -2 x 1030cm-2sec-1 

S 100 GeV -1 x 1031cm-2sec-1 

=5 200 GeV -3 x 1031 cm-2sec-1 

The luminosity of the SLC is expected to improve by a factor of approximately 

forty in the next two years. The SLC has a spin polarized electron source that is 

expected to provide a 40% degree of polarization at the beam collision point. The 

polarized electron beam should begin operation during 1990. The LEP machine 

was operated routinely at 20% of its design luminosity during its first run. It 

seems likely that the design luminosity of 1031 cm-“set-’ will be achieved during 

the next year. Although there are serious plans to produce longitudinally polarized 

beams in LEP, it appears to be difficult to achieve a high degree of longitudinal 

polarization (X 30%) with good 1 uminosity. In the longer term, the energy of LEP 

will be upgraded to a value above the threshold for W pair production. 
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4.1. EXPERIMENTAL DETAILS 

. . 
There are a total of six experiments that are currently operating at or being 

prepared for SLC and LEP. At the SLC, the Mark II detector is currently in 

operation and will be replaced by the SLD detector later this year. There are 

four active experiments at the LEP collider: ALEPH, DELPHI, L3, and OPAL. A 

complete description of the six detectors would be extremely tiresome. All of them 

share the a number of common features and capabilities: 

1. High Resolution Magnetic Spectrometers - all of the experiments contain 

charged particle tracking systems that are immersed in magnetic fields. They 

are capable of reconstructing track directions and transverse momenta. The 

transverse momentum resolution is typically SPt/Pt -(O.OOl-O.O02).pt (where 

Pt is in GeV) in the region of polar angle 1 cos 81 < 0.8. 

2. Electromagnetic Calorimetry - all of the experiments have electromagnetic 

calorimeters. These range from gas sampled devices with resolutions SE/E - - 
0.30/a (E in GeV) to lead glass and BGO calorimeters with sub-percent 

resolutions over a large range of energies. 

3. Muon Spectrometers/Identifiers - all of the experiments except L3 have mag- 

netized iron shielding for the identification and measurement of muon tracks. 

The momentum resolution of these systems is poor as compared with the in- 

ner tracking systems mentioned above. The L3 detector handles muons in 

an inside-out manner. The muon identification is achieved by penetration of 

the unmagnetized hadron calorimeter. The muons are momentum analyzed 

in a huge magnetic spectrometer that is external to the identification shield- 

ing and has much higher momentum resolution than the internal tracking 

system. 

4. Vertex Detectors - since the 2’ is a fairly copious source of b and c quarks, 

all of the experiments have high precision tracking systems at small radius. 

The resolution of these systems is typically a few 10’s of microns per track 

measurement. 
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5. Triggers - since the total (accepted) cross section in an e+e- experiment is - 
* quite small, a trigger is necessary to find bunch crossings that contain events. 

The SLC and LEP experiments all contain electronic hardware that can find 

drift chamber tracks and calorimeter energy depositions during the interval 

between bunch crossings (22.5 psec at LEP, 8.3 msec at SLC). Typically, 

any event containing two or more charged tracks or a calorimeter energy 

deposition larger than approximately 5 GeV is recorded. 

6. Specialties - in addition to the common elements, most of the experiments 

have some special strengths and features. The following is a partial list: 

(a) Ring Imaging Cerenkov Devices - DELPHI and SLD use ring imaging 

Cerenkov devices to identify long-lived hadrons. 

(b) High R eso u ion 1 t Vertexing - Mark II and SLD make use of the small 

SLC beam and the small SLC vacuum chamber with very high resolution 

microvertex detectors. 
- 

(c) Muon Measurement - as already mentioned, L3 has been optimized for 

the measurement of muon final states. 

(d) DE/DX - the ALEPH and DELPHI have time projection chambers as 

their primary tracking systems. These devices are capable of very good 

measurements of the charged-particle energy loss due to ionization of 

the chamber gas. This information can be used to identify long-lived 

charged particles at low momentum. 

(e) Hadron Calorimetry - the SLD calorimeter is expected to have good 

energy resolution for hadronic final states. 

The Electron-Positron Environment 

Unlike the situation with hadron colliders, the most copious processes in a 

high energy e+e- collider are also the most interesting ones. The signatures kand 

relative sizes of the various processes are indicated in Table VI. The most serious 

background to 2’ production is due to the various two-photon processes. The 
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two-photon background is rather trivial to remove from the data sample (a total 

c energy cut is sufficient to suppress it by several orders of magnitude). 

-. Table VI 

Event Type Signature a(& = Mz) 

eSe- --+ 2’ ---f hadrons 2-3 jets -30 nb 
;5 20 charged tracks 

e+e- --t e+e- 45 GeV clusters in -50-200 nb 
(small angle) small angle tagger (dep on acceptance) 

e+e- + e+e-!+&- Transversely balanced -7-8 nb 
e+e- + e+e-h+h- low energy track pairs (dep on acceptance) 

e+e- 3 Z” 3 p+p-I- back- to- back -1.5 nb 
.- high energy tracks 

. 
e+e- 3 Z” 3 ~+q-- acolinear track pairs -1.5 nb 

l-3 combinations 

- 
4.2. MASS AND WIDTH OF THE Z" 

- 
We have already discussed the importance of a high precision measurement of 

the mass of the 2’. The width of the 2’ has a tree-level dependence upon the 

parameters of the Standard Model and the particle content of the theory. The total 

width is the sum of the partial widths for the decay into each fermion-antifermion 

final state, 

(4-l) 

where r,,- is the partial width for the decay 2’ + ff and the constant Cf is 

defined as 

cf = C 

l+EQ; for leptons 

3 . [l + EQ; + F] for quarks. 

Note that the expression of each partial width in terms of Mz has the advantage 

that the mtop and rnHiggs dependences are minimized. The partial widths for a 
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generation of quarks and leptons are listed in Table VII. The last line shows the 

* expected total width for three lepton flavors and five quark flavors. A small phase 

space suppression factor is included for the bb final state. .^. 

Table VII 

Final State 

2.75 Generations 2.481 GeV 

'ff 

166 MeV 

83 MeV 

297 MeV 

383 MeV 

The actual measurement of IMz and Pz is made by measuring the cross section . 
for the process e+e- -+ 2’ t ff for a number of center-of-mass energies about 

the 2’ pole. The theoretical 2 lineshape is then fit to the measured cross section 

points to extract the desired parameters. This technique is illustrated in Figure 8 

which shows the result of an actual measurement by the Mark II Collaboration!’ 

- 
The theoretical lineshape was discussed in great detail by Michael Peskin in a 

[16’ lecture at this institute. He showed that the tree-level lineshape for the process 

e+e- -+ 2’ -+ ff is well-approximated by a relativistic Breit-Wigner form, ~ 

(4.2) 

Equation (4.2) does not apply to the process e+e- t e+e- which occurs via both 

s-channel and t-channel subprocesses. 

The electron and positron radiate real photons rather copiously in a hard col- 

lision. The lineshape is strongly affected by the initial state radiation. This effect 

can be treated in a Drell-Yan-like formalism by introducing an electron structure 

function. The electron structure function D(z, s) is defined as the probability that 

an electron (positron) radiates a fraction 1 - z of its initial energy during the 
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collision (of cm energy &).* Th e radiatively corrected cross section can then be 

* written as, 

-. of(s) = 
J 

dzldx2D( 51, s)D(z2, s,+ = az259, (4.3) 

where ~1 and ~2 the electron and positron energy fractions. The leading term of 

the electron structure function has the form, 

I&s) N $1 - &-‘, 

where the dimensionless constant p is the effective number of radiation lengths for 

the process, 

-- P z Fpn(s) -1-J N 0.11. 
e 

The effect of the convolution described in equation (4.3) is to reduce the peak cross 

section by ~25Y o and to shift the peak of the cross section by roughly 120 MeV 

from the pole position. 

It is convenient to write the radiatively corrected cross section in a form that 

is close to the underlying Breit-Wigner form, 

SLerff 
of(S) = 2 ’ cs _ ~;)2 + ris2/M; ’ P + sRc(s)l~ (4.5) 

where the effects of the radiative corrections are contained in SRC(S). Using equa- 

tion (4.1), we can expression all of the quantities that appear in equation (4.5) in 

terms of a single parameter, iIIz. Note that this choice of parameters minimizes 

the sensitivity of the lineshape to higher-order terms in mtop and mhiggs. 

Equation (4.5) is the basis for the measurement of a number of 2 resonance 

parameters. The analysis is usually performed with several sets of constraints: 

A- Note that the electron structure function is defined as a number distribution unlike the 
hadron structure functions which are defined as normalized momentum distributions. The 
e+e- cross sections therefore lack the factors of Z- ’ that appear in the hadronic cross 
sections. 
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2. 
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- 

- 3. 

4. 

All resonance parameters are constrained to their Standard Model values. In 

this case, the only free parameter is IMz. The measurement can be performed 

with any or all of the final states (the e e + - final states must be excluded or 

fit to the correct form). 

The visible partial widths are constrained to their Standard Model values 

and the invisible width is allowed to vary as a free parameter. The total 

width rz is decomposed into visible and invisible portions, 

rz = C rqq + 3r‘8+e- + 3r,, 

= ks + rinv, 
(4.6) 

where the visible width Ivis contains all hadronic final states and all charged 
i 

lepton pairs, and I?inv contains the neutrino decays and any additional un- 

observed particles. Any or all of the final states can be used to perform the 

measurement (with the usual caveat about electrons). The data are therefore 

fit to a function of two parameters (1Mz and Iinv), 

127r 
Of(S) = - * 

sreerff 
hf; (S - M;)2 + (rVis + rilaV)W@ ’ [l+ sRc(s)l* (4.7) 

The resonance parameters of the total hadronic cross section are not con- 

strained to their Standard Model values. The hadronic cross section is de- 

scribed by the model-independent form, 

(4.8) 

where the free parameters are: Mz, Iz, and the tree-level hadronic peak 

cross section triad. The Standard Model prediction for the tree-level peak 

cross section is, 

4ud = 12~ reerhad -. 
hf; r; 

N 41.5 nb-r. P-9) 

None of the partial widths given in equation (4.5) are constrained to their 

Standard Model values. This analysis is most elegantly performed by fitting 
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the hadronic and leptonic final states separately but simultaneously. If the 

electron final states (and the appropriate lineshape) are not used, it is neces- 

-. sary to invoke lepton universality, Ice = IPLI1 = Irr. Assuming universality, 

the fit involves four parameters (Mz, Iz, Ihad, and I,). 

Scanning Theory 

A hadron collider gives the experimenter a free energy scan. The hadron struc- 

ture functions are quite broad in that reasonable quark-quark luminosity is pro- 

duced over a large range of energies. The electron structure functions have an 

integrable singularity at x = 1. Most of the eSe- luminosity is produced near the 

nominal value of ,/Z. The experimenter can therefore choose the most efficient 

energy scan to optimize the measurement he/she wishes to measure. Note that 

an optimal scanning strategy requires some a priori knowledge of the parameters 

that one desires to measure. In the earliest runs of the SLC, the 2’ mass was not 

well known and it was necessary to search for an enhancement in the event rate. 

Once A4z became somewhat constrained, it was possible to choose very efficient 

operating points. The presence of the Standard Model as a predictor of widths 

and couplings made this task much easier. 

Let us consider a hypothetical scan of N energy-luminosity points: 

Eb = El, E2, . . ..EN 

J Ldt = &,L2 ,..., LN. 

We assume that a cross section 0; is measured at each point, 

The A4 parameters aj (j = 1, M) f o our theoretical lineshape a(E) can be 
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extracted from a x2 fit to the measured points. The quantity x2 is defined as, 

(4.10) 

where Sai is the error on the P measurement. 

The best estimate of the parameters (tij) is the one that minimizes x2. The 

parameter errors are found from a Taylor expansion of x2 about the minimum 

value, 

x2 = x2(4 + ; 5 d2x2 

j k=l dajdak 

(Uj - Sij)(Uk - zk) 

, 

= X2(C) + 5 (Cml)jk(Uj - iij)(Uk - arc) 

7 

j,k=l 

(4.11) 

where the matrix C-l is the inverse of the parameter covariance matrix. The error 

hyperellipsoid is determined by changing x2 by one unit about the minimum value. 

It is straightforward to show that the parameter errors are given by the diagonal 

elements of the covariance matrix C, 

(SUj)2 = Cjj. (4.12) 

Averaging equation (4.11) over many experiments, the inverse matrix can be ex- 

pressed in the following form, 

(4.13) 

Although equation (4.13) is quite general, it is useful to express the cross section 

errors in terms of the luminosity and the theoretical cross section. Ignoring‘the 
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- statistical errors on the luminosity measurements: we can express the cross section 
* errors as (Sai)2 = a(Ei)/Li. Equation (4.13) can then be written as, 

-. 
(c-l)j, = 5 L; . &(Ei) ‘a 

i=l a(Ei) daj * ,at(Et) = 5 L; * S(Ei, aj) * S(Ei, a/J, (4.14) 
i=l 

where we define the so-called sensitivity junction S(E, aj) as 

S(E,aj) E &) * g.(E). (4.15) 

If the lineshape is a function of a single parameter or if the off-diagonal elements 

of the inverse matrix C-l are small, the parameter errors have a particularly simple 

form, 
. 

(Suj)-2 N 5 Li * [S(EiYaj)12. 
i=l 

(4.16) 

Eqaution (4.16) ’ pl’ am aes that the error Saj is minimized when the integrated lum.i- 

nosity is concentrated in regions of scan energy where IS(E, aj)l is large. Note 

that IS(E,aj)I ’ 1 g h is ar e w ere the derivative laa/dajI is large and where the cross 

section is small. 

The correlations between the parameters are described by the off-diagonal ele- 

ments of the matrices C-r and C (the error ellipsoid is unrotated if they vanish). 

The presence of non-zero correlation always increases a parameter error beyond the 

value given in equation (4.16).t It is clearly important to minimize the off-diagonal 

elements by our choice of the scan point luminosities. 

Equations (4.14) and (4.12) predict the complete parameter error matrix in 

terms of the theoretical lineshape and the scan point luminosities. Note that it is 

assumed that x2 is well-defined (N > h4) and that a suficient number of events is 

collected at each point that the errors are Gaussian. 

* This assumption is quite valid for the measurement of non-resonant cross sections. 
t The presence of non-zero correlation allows the error associated one parameter to leak into 

the error associated with another parameter. 
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Since any cross section measurement has an associated normalization uncer- -- 
t tainty, it is important to consider the sensitivity of the final result to systematic 

shifts in the measured cross sections. Expanding the theoretical cross section in 
. . 

parameter space about the best estimates sij, it is straightforward to derive the 

average shift in a parameter aaj caused by shifts in the measured cross sections 

Aai7 

(4.17) 

It is clear that we would like to choose the energies and luminosities to minimize 

the parameter errors and the correlations between the parameters. We can be 

guided in this task by examining the energy dependence of the functions S(E, uj). 

As an example of the usefulness of the sensitivity functions, let us consider the 

measurement of the model-independent parameters of the hadronic cross section. 

For simplicity, we assume that values of Mz, rz, and a:,,(@) are 91 GeV, 2.5 - 
GeV, and 40 nb, respectively. The sensitivity functions for Mz, rz, and a:,,($) 

are plotted in Figures 9-11 as functions of E - Mz. The maximum sensitivity to 

Mz occurs at the scan energies -0.8 GeV and +l.O GeV about the pole. Note that 

there is little sensitivity to I’z at these points. The maximum sensitivity to rz 

occurs at points that are approximately f2 GeV about the pole. If we choose our 

energy-luminosity points symmetrically about the pole, the sum of the products 

S(Ei, Mz) * S(Ei, rz) will tend to cancel since S(E, Mz) is odd about the pole-and 

S(E, I’,) is even about the pole. The maximum sensitivity to aflad occurs at the 

pole. The same odd-even effect that cancels the Mz-I?z correlation will cancel the 

Mz-aiad correlation. The rz-aflad correlation cannot be cancelled by a choice of 

scan energies. However, it is not intrinsically large since S(E, I?z) is small in the 

energy region where S( E, aiad) is large. 

In general, a scan strategy that is based upon equations (4.14) and (4.12) is 

a problem in linear programming. The scan planner must decide how important 

various parameters are and what constraints must be satisfied. Nevertheless, fairly 
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simple considerations lead to the conclusion that a minimal Z-pole scan should 

t include points at 0, fl, and f2 GeV about the pole. 

. . Event Select ion 

The selection of hadronic and leptonic events was done by the five experiments 

with five different sets of criteria. While these criteria differ in detail, they do 

contain a number of common features. The selection of hadronic events usually 

involves the following requirements: 

1. The event is required to contain five or more charged tracks. This require- 

ment is sometimes relaxed to three or more tracks. In this case, one must be 

careful to exclude r+r- events from the sample. 
.- 

2. ._ The event is required to have a visible energy (track momenta and/or calorime- 

ter energy) that is larger than 10% of the center-of-mass energy. The princi- 

pal reason for this requirement is to suppress two-photon events. 

-3. Most of the analyses require that substantial energy be observed in both 

hemispheres about the detector midplane (polar angle 8 = 90’). This re- 

quirement suppresses beam-gas events. 

4. The time of the event must be consistent with the time of a beam crossing 

(to suppress cosmic ray events). 

The detection efficiency for hadronic events is typically -95% with an uncer- 

tainty of 0.5-l%. The residual background contamination is typically at level of a 

few parts in lo3 (mostly from T+T- events). 

Leptonic events are selected by a set of criteria that are similar to the following: 

1. Electron Final States 

(a) The event is required to have two tracks. Some analyses require that the 

acolinearity angle be less than 5’. 

(b) There must be energy depositions in the electromagnetic calorimeters 

that match the tracks (spatially and/or in energy-momentum). The 
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total energy of the calorimeter clusters must be a large fraction (2 80%) 

of the center-of-mass energy. 

2. Muon Final States 

(a) The event is required to have two tracks. Some analyses require that the 

acolinearity angle be less than 5’. The momenta of each track must be 

2 60% of the beam momentum. 

(b) The energy deposition in the calorimeter that is associated with each 

track must be consistent with the passage of a minimum ionizing particle. 

(c) At least one track is required to penetrate the muon shielding and be 

detected in the outer tracking system. 

3. Tau Final States 

(a) The event is required to have a visible energy that is larger than ~10% 

of the center-of-mass energy. 

- (b) The event is required to have between two and six tracks. Dividing the 

event into two thrust hemispheres, the legal track configurations are: 

one track recoiling against one track (l-l), one track recoiling against 

three tracks (l-3), or three tracks recoiling against three tracks (3-3). 

(c) The track momenta of two-track events are required to be 2 60% of the 

beam momentum. 

(d) The invariant masses of the charged tracks in each hemisphere must be 

less than 2 GeV. 

The detection efficiencies for lepton pairs are strongly affected by the accep- 

tance of the tracking, calorimetric, and muon identification systems. Typically, 

electrons are selected with the largest efficiency (- 70%). The typical detection ef- 

ficiencies for muon and tau pairs are 60% and SO%, respectively. The uncertainties 

on the efficiencies are typically about 2%. The background contamination from 

hadronic events, two-photon events, and miscategorized lepton pairs ranges from 

-1% for electron pairs to -5% for tau pairs. 
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Luminosity Measurement 

t 

. . 

The experimental luminosities are inferred from measurements of the process 

e+e- + e+e- at small scattering angles (25-150 milliradians). In the small angle 

region, this process is dominated by t-channel exchange of photons and is indepen- 

dent of the parameters of the 2’ system. The tree-level differential cross section 

has the form, 

hum 47ro2 1 -N-.A 
dB - s O3 

(4.15) 

where the scattering angle 8 is assumed to be small. An accurate determination 

of the luminosity requires that the radiative corrections be included in equation 

(4.18). Nevertheless, equation (4.18) d oes illustrate one of the difficulties in the 

. measurement of the luminosity. The measured cross section a;:’ is a sensitive 

function of the angular acceptance of the detector edges, 

(4.19) 

where 131 and 02 are the angles of the inner and outer detector edges. 

Each of the SLC/LEP detectors contains a luminosity monitor that consists of 

two cylindrical electromagnetic calorimeters designed to detect e+e- pairs in the 

very forward regions (from 25-60 milliradians at the inner edges to -150 milliradi- 

ans at the outer edges). In order to control the angular acceptance well, each device 

is either highly segmented or contains an integral tracking system to measure the 

scattering angle of each particle. The accepted cross section for these devices is in 

the range 25-150 nb. In some cases, the statistical error on the luminosity determi- 

nation is a bit worse than that on the number of hadronic events (the radiatively 

corrected cross section for hadronic events is -30 nb). The systematic error on the 

luminosity measurement is usually dominated by the uncertainty on the accepted 

cross section and on the effect of higher-order radiative corrections. The systematic 

errors range from 1.3% to about 5%. 
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The uncertainty on the luminosity determination must be combined with the 

z uncertainty on the detection efficiency to yield an overall normalization uncer- 

tainty for a cross section measurement. The overall normalization uncertainties 
. . 

are typically several percent. 

Experiment al Results 

The current results of the five SLC/LEP experiments [3-71 are listed in Table 

VIII. The Mark II, ALEPH, DELPHI, L3, and OPAL results are based upon 

exposures of 17, 850, 53.9, 627, and 1247 nb-‘, respectively. 

Table VIII 

The results of the 2’ mass and width analyses of the SLC/LEP experi- 
ments. 

.- . Experiment Mz (GeV) I?z (GeV) Pinv (MeV) aiad (nb) Fee (MeV) 

Mark II (31 91.14(12) 2.42(+-t;) 460( 100) 42.0(40) Ya.o(y;;) 

-ALEPH”’ 91.18(4) 2.54(6) 501(26) 41.4(8) 83.9(22) 

DELPHIL51 91.06(g) 2.42(21) 400( 107) 42.8(58) - 

L3 16,171 91.16(4) 2.54(5) 548( 29) 39.8(9) 83.0(24) 

OPALL7] 91.16(3) 2.54(5) 453( 44) 41.2(11) 81.9(20) - 
Average 91.16(3) 2.54(3) 506( 17) 40.8(5) 82.9( 13) 

The following notes apply to the information that is presented in Table VIII. 

1. The Mark II value for the leptonic partial width is determined from the 

product of the measured[“’ ratio I’&‘had and the theoretical value for Ihad. 

2. The ALEPH Collaboration quote their result for IJinv in terms of the number 

of neutrinos N, as defined by the following 

rinv = NV - rvv = N,, .166 MeV. (4.20) 

They derive NV from an analysis of rz and aiad. Note that this procedure 

is entirely equivalent to the use of equation (4.7) in a constrained fit. We 

convert their result to I’inv for display purposes. 

44 



3. The Delphi Collaboration do not use azad as a fit parameter but instead scale 

* the Standard Model value with a free normalization parameter. We convert 

their result for the normalization parameter into a value for the peak cross -. 
section. 

4. The averages that are listed in the last line are calculated by weighting each 

measurement appropriately with its error. The common energy scale error 

was correctly included in the averaging procedure. All other errors are as- 

sumed to be uncorrelated (which is undoubtedly incorrect). 

The measurements of the resonance parameters that are shown in Table VIII 

agree remarkably well with the Standard Model predictions. Using equation (4.20) 

we estimate the number of light neutrino species to be, 

NV = 3.04 f 0.10, 

which is the best evidence for the three generation model (note that neutrino species 

of-mass larger than Mz/2 are not ruled out). The only apparent discrepancy 

between the measurements and the expectations is that Iz seems a bit larger 

than expected (by -60 MeV). Th ere are several possible explanations for this. 

We list them in descending order of likelihood: 1) it is a statistical fluctuation 

(the probability of a fluctuation is not small enough to establish a discrepancy); 

2) there is a correlating effect (like the energy of a scan point differed from its 

nominal value); 3) the QCD corrections to the hadronic partial widths need more 

work; 4) there is a new particle in the final state. It is even possible that several 

of these explanations are valid. 

Systematic Errors 

The various resonance parameters vary in their sensitivity to the energy scale 

and normalization uncertainties. The determination of IMz depends completely on 

the accelerator energy scale. The 27 MeV uncertainty on the LEP energy scale and 

the 40 MeV uncertainty on the SLC energy scale apply directly to ma,ss measure- 

ments made at the two machines. The model-independent determinations of Mz 
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are completely insensitive to the normalization uncertainty. The model constrained 

* determinations of Mz have a slight sensitivity to the normalization uncertainty. 

These uncertainties are typically a few MeV or less (even with the model con- 
-. 

straints, most of the Mz information is derived from the resonance shape). 

The peak cross section and the invisible width are strongly affected by nor- 

malization uncertainty, This can be seen from an inspection of equation (4.7). 

The invisible width enters the cross section as a component of the total width. 

The influence of the total width is maximized when the center-of-mass energy is 

s = Mi. The effect of the normalization uncertainty Sg upon the invisible width 

is approximately, 

SI’;,, N 1.5 GeV. 

The measurement of Iz depends almost entirely upon the measurement of the 

resonance shape. It is therefore insensitive to the absolute energy and normaliza- 

tion errors. - It is sensitive to point-to-point errors in the energy and luminosity. 

These are typically much smaller than the absolute errors. 

The measurement of the leptonic width is sensitive to the absolute normaliza- 

tion uncertainty. The peak leptonic cross section is proportional to the square of 

the leptonic width. The percentage uncertainty on ret is therefore one half of the 

percentage uncertainty on the normalization. 

4.3. MASS AND WIDTH OF THE W 

The measurement of the W boson mass and width will become possible in the 

second phase of LEP operation. The installation of superconducting RF cavities 

will permit the beam energy to be increased to a value above the threshold for the 

process e+e- -+ W+W-. 

High Energy e+e- Cross Sections 

The tree-level expression for the W-pair cross section is somewhat complex.[lgl 

The inclusion of initial state radiation (as in equation (4.3)) and finite widths 
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for the final state W bosons involves a four dimensional convolution of the tree- 
c level expression. We therefore choose to present only the result of a Monte Carlo 

integration. The cross section for the process e+e- + W+W- is plotted in Figure -. 
12 as a function of Eb - Mw where Eb is the single beam energy. The mass and 

width of the W are assumed to be 80 GeV and 2.1 GeV, respectively. Note that 

three curves are plotted: the dashed curve is the basic tree-level cross section; 

the dashed-dotted curve is the cross section including the effect of initial state 

radiation; and the solid curve is the cross section including initial state radiation 

and the effect of a finite W width. The inclusion of initial state radiation reduces 

the size of the cross section. The finite W width produces non-zero cross section 

at energies below the nominal threshold at Eb = Mw. 

The basic e’e- - -+ ff cross section for five quark and three lepton flavors in- 

- 

creases from about 7 units of R at center-of-mass energies below the 2’ pole to 10 

units of R at energies above the 2’ pole.* At fi = 160 GeV, the t,ree-level cross 

section is approximately 34 pb. Unfortunately, the initial state radiative correc- 

tions increase this number enormously. Although the photon structure functions 

decrease greatly as x is decreased from 1, the 2 pole is sufficiently large that the 

convolution given in equation (4.3) is several times larger than the tree-level cross 

section. The process e+e- -+ 72’ therefore dominates the visible cross sectioh at 

W-pair threshold. Using equation (4.3), we estimate the size of the visible cross 

section to be -150 pb at fi = 160 GeV. 

e+e- -+ W+W- Threshold Scan 

There are several different techniques that can be used to measure the W mass 

at LEP II. It is possible to extract Mw from the measured distributions of jet 

masses or lepton energies. These methods are are described in Reference 20. The 

technique that we’ll discuss here is the measurement of the threshold behavior of 

the W pair cross section. 

* The unit of R is the cross section for e+e- ---) y* 4 P+/I-. Numerically, the cross section 
has the value UR = 86.8 nb-GeV2/s. 
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It is clear than the W mass can be extracted from the step in the cross sec- 

* tion that is shown in Figure 12. Since there is a large background from ordinary 

processes, it is necessary to apply selection criteria to the data to improve the 
-. 

signal-to-noise ratio. The background processes produce mostly two- and three 

jet hadronic events or lepton pair events that are often highly boosted along the 

beam direction. The visible energy of the background is often small as compared 

with &. The W-pair events appear most often as four-jet events (-44% of I/r- 

pairs) or as an energetic lepton and two jets (-44% of W-pairs). The authors of 

Reference 20 have studied a number of selection criteria to reduce the background 

cross section to less than -1 pb while retaining -75% of the four-jet and -45% of 

the lepton+two-jet events (we assume that 7 leptons cannot be used and that one 

third of the remaining events are eliminated by the isolation cut used to suppress 

heavy flavor events). Assuming that the residual background is due to the large 

& continuum, the measured cross section would have the following form, 

- %eas(Eb) = Wuzu(Eb) + &, (4.21) 

where: E is the efficiency to identify a W-pair event (E N 0.53); gww(Eb) is the 

cross section plotted in Figure 12; and B is a constant that represents the residual 

background (which presumably scales as l/s). 

subsectionsensitivity Functions 

We can analyze the Mw and Iw sensitivity of a cross section scan of the I+’ 

pair threshold by using the scanning theory that was discussed in the last sec- 

tion. Numerically differentiating the measured cross section (as defined in equa- 

tion (4.21)), ‘t 1 is straightforward to calculate the sensitivity functions for Mw, 

I’w, and the background constant B. For the purpose of this exercise, we assume 

that B = 1 pb . (~Mw)~ or that the background cross section is 1 pb at W-pair 

threshold. 

The sensitivity function s(&,, M w is plotted in Figure 13 as a function of ) 

Eb = Eb - Mw. Note that the maximum sensitivity occurs at 6b N 0.5 GeV. 
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The sensitivity function S(&, I?w) is shown in Figure 14 as a function of Eb. 

As one would expect, it peaks just below the nominal threshold (IQ = -1 GeV) 

where the width-induced tail in the cross section is largest. The function S(Eb, I’w) 

decreases rapidly as Eb is increased. It passes through zero near cb = 1 GeV and 

plateaus above cb = 3 GeV. The sensitivity in the plateau region is due to the 

reduction in the cross section caused by the finite width (see Figure 12). The 

maximum value of Is(Eb, I,)/ is smaller than the maximum value of the mass 

sensitivity function by a factor of three. A good measurement of l?w will clearly 

require a substantial commitment of luminosity to a point of very small cross 

section. Note that the product S(&, Mw) . s(Eb, I’w) is an odd function about 

the point Eb = 1 GeV. In principle, the Mw-rw correlation can be cancelled by 

. measuring the cross section on both sides of this point. The functions S(,!&, Mw) 

and S(.&, I’w) are not large in the region 6b > 1 GeV. The cancellation of the 

correlation therefore requires a substantial commitment of luminosity to a relatively 

insensitive region. 

The function S(Eb, B) is plotted as a function of Eb in Figure 15. As one would 

expect, the background sensitivity is largest at small beam energy and decreases 

dramatically as Eb increases through the W pair threshold. Note that it is possible 

to cancel the B-I’w correlation but that it is not possible to cancel the B-Mw 

correlation. 

Scan Strategies 

It is clear that precise measurements of Mw and l?w require that LEP be 

operated in regions of small cross section. Since all other studies of the W-pair 

system require a large sample of data, there will be considerable pressure to operate 

the machine on the cross section plateau at the largest available energy. In order 

to estimate how precisely Mw and l?w could be measured in a l-2 year run (500 

pb-l), we assume that 50% of the luminosity is dedicated to operating at the largest 

available energy (we assume that cb = 15 GeV or 6 = 190 GeV is achieved) and 

the remaining 50% is dedicated to operation in the threshold region. 
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It is instructive to first consider an extremely unrealistic scan scenario. We 

t assume that we will measure only one parameter and that the other parameters 

are precisely known. In this case, we need only one scan point in the threshold 
. . 

region for a constrained fit. We choose to allocate the entire 250 pb-l luminosity 

to operation at the most mass-sensitive point (cb = 0.5 GeV) or at the most width- 

sensitive point (cb = -1 GeV). Using equation (4.16) we estimate the precision of 

these measurements to be 

SMw = 92 MeV or SI’W = 286 MeV. 

The Mw measurement would be a very desirable result. The rw measurement is 

not competitive with the recent indirect determinations that have been published 

. by the CDF and UA2 collaborations~15’211 

rw = (0.85 f 0.08) - rz = 2.19 f 0.20 GeV (CDF) 

- rw = (0.89 f 0.08) e rz = 2.30 k 0.20 GeV (UA2). 

Since the width cannot be measured to an interesting level, it is clearly unwise to 

design a scan to measure I’w. We therefore concentrate on the measurement of 

Mw. 

A real measurement of Mw will require that the background constant B be 

varied as a fit parameter. Unfortunately, the B-Mw correlation cannot be can- 

celed by a clever choice of scan points. It is therefore necessary to measure both 

parameters well. 

The number of scan points is somewhat arbitrary. A minimum of three points 

are required to constrain the two parameter problem. The presence of a high energy 

point implies that only two points are needed in the threshold region. Equation 

(4.14) implies that several closely spaced points in a region of large sensitivity 

are equivalent to a single point in the same region. We can therefore analyze 

the optimization of the Mw measurement by considering a two-point threshold 

measurement. 
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c An optimal scan must include an energy point in a region of large background 

sensitivity I,!?( Eb, B) 1 and a om near the maximum of the mass sensitivity func- p * t 
. . tion IS(&,Mw)l. W e c h oose the scan point energies to be cb = -5 GeV and 

Eb = 0.5 GeV, respectively? The apportionment of the available luminosity be- 

tween the two points is a straightforward problem in one-dimensional optimiza- 

tion. We find that the error SMw has a very broad minimum about the ratio of 

luminosities, L(0.5 GeV)/L(-5 GeV) 21 2/l. If the luminosities of the -5 GeV 

and 0.5 GeV points are 85 pb-l and 165 pb-I, respectively, the minimum value of 

the error SMw is approximately 155 MeV. 

A two-point threshold scan is somewhat risky. It is safer to bracket the region 

of maximum Mw sensitivity with several scan points. We therefore construct an 

optimal four-point scan (a five-point measurement when the cb = 15 GeV point 

is included) by assigning one third of the 165 pb-l (55 pb-I) to each of three 

points: Q = 0 GeV, 0.5 GeV, and 1.0 GeV. It is instructive to compare this scan - 
(Scan 1) with a slightly modified version. The modified version (Scan 2) is created 

by shifting the luminosity from the cb = 0 GeV point to cb = -1 GeV. We expect 

the second scan strategy to improve the width measurement at the expense of the 

mass measurement. Finally, we note that our modified scan strategy is similar to 

the scan strategy that was studied in Reference 20 (which we label Scan 3). The 

authors of Reference 20 assigned 100 pb-’ to each of the following five points: 

cb = -5 GeV, -1 GeV, 0 GeV, 1 GeV, and 15 GeV. 

Using equation (4.14) and the sensitivity functions, the performance of each 

scan scenario can be estimated. The expected number of detected events and the 

expected precisions SMw, SI’W, and SB are listed in Table IX for each of the three 

scan strategies. The presence of a high energy point in each strategy reduces the 

Mw-I’, correlation sufficiently that the Mw precision obtained from the three 

parameter fit is essentially identical to that obtained from a two-parameter fit. 

* Varying the energy of the second point about eb = 0.5 GeV verifies that the B-Mw corre- 
lation does not shift the point of maximum MW sensitivity. 
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As one might expect, the third scan strategy which allocates 400 pb-’ to 

z the threshold measurement provides the most precise Mw measurement, SMw = 

150 MeV. The Mw precision obtained from the optimized mass scan (Scan 1) is . . 
worse by ?‘%. Note however, that Scan 1 produces nearly 60% more events than 

does Scan 3. Surprisingly, the second scan strategy provides a slightly better width 

measurement than does the third strategy. This occurs because the second scan 

produces a smaller B-I’w correlation than does the third scan strategy. 

It is clear from equation (4.21) that the functions S(Eb, aj) are sensitive to the 

level of residual background and to the W-pair detection efficiency. We investigate 

these effects by reducing the background constant to B = 0.5 pb . (Mw)~ and 

by increasing the detection efficiency to .zww = 0.70. The results are listed in 

Table IX. The error SMw is improved by approximately 20 MeV in the case that .- . 
the background is reduced by a factor of two. The mass error is improved by 

approximately 30 MeV when the efficiency is increased. Note that the optimal 

luminosity ratio L(0.5 GeV)/L(-5 GeV) is nominally sensitive to both effects. 

However, the optimal region is so broad that the use of a 2/l ratio degrades the 

result by less than 1%. 
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Table IX 

The predicted results of three different five-point measurements of the W- 
pair threshold. Scan 1 is optimized for the measurement of Mw. Scan 2 is 

-. an attempt to improve the measurement of rw. Scan 3 is identical to the 
threshold scan used in Reference 20. The results are presented for several 
assumptions about the level of residual background B and the W-pair 
detection efficiency. 

. . 

Quantity 

L[-5 GeV] (pb-‘) 

L[-1 GeV] (pb-‘) 

L[O GeV] (pb-‘) 

L[O.5 GeV] (pb-‘) 

L[l GeV] (pb-‘) 

L[15 GeV] (pb-l) 

B = 1.0 pb . [2Mw12 
& wu = 0.53 

Number of Events 

SMw (MeV) 

SI’W (MeV) 

SB (pb. [2Mw12> 

B = 0.5 pb . [2Mw12 
& ww = 0.53 

Number of Events 

SMw (MeV) 

SI’W (MeV) 
SB (pb - PMw12> 

B = 1.0 pb . [2Mw12 
E ww = 0.70 

Number of Events 

SMw (MeV) 

SI’W (MeV) 

SB (pb - [2Mw12> 

Scan 1 Scan 2 Scan 3 

85 85 100 

0 55 100 

55 0 100 

55 55 0 

55 55 100 

250 250 100 

2951 2912 1863 

160 176 150 

531 482 492 

0.12 0.12 0.12 

2737 2698 1627 

137 154 130 

508 450 448 

0.096 0.098 0.098 

3760 3709 2309 

130 144 123 

453 407 410 

0.12 0.13 0.13 
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Systematic Errors 

-. 

The measurement of the W-pair threshold is affected by systematic uncer- 

tainties on the energy scale and cross section normalization. The energy scale 

uncertainty affects the Mw measurement directly. Assuming that the fractional 

error on the beam energy scale is constant, the uncertainty on Mw should be com- 

parable to the one that applies to the Mz measurement. By 1994, this uncertainty 

is expected to be -20 MeV. 

The sensitivity of the results given in Table IX to normalization errors can 

be estimated from equation (4.17). Taking the first scan strategy as an example, 

we estimate that the uncertainties on the parameters are related to an overall 

normalization uncertainty 6a/a as follows, 

SMw = - 2.26 GeV. E 
u 

6l?w = - 19.3 GeV. E. 
u 

The normalization error must be controlled to the 3% level to avoid inflating the 

Mw error. 

Sensitivity to Assumptions 

Our analysis assumes that we have complete a priori knowledge of the W 

resonance parameters. Although the characteristic width in Eb space of the Mw- 

sensitive region is larger than the current uncertainty on Mw, our precision esti- 

mates are likely to be somewhat optimistic. It is possible to alter the results by 

510% by varying the resonance parameters over reasonable intervals. 

Conclusions 

Despite the uncertainties on the ultimate W-pair detection efficiency and resid- 

ual background contamination, several conclusions can be drawn from this analysis: 

1. The most sensitive scan region for the measurement of Mw is Eb = O-l GeV. 

The mapping of the entire threshold shape would produce a less precise mea- 

surement. 
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2. It is not possible to remove the correlation between the background parameter 

rc and Mw by a clever choice of scan point energies. This implies that a scan 

point of energy below the nominal threshold is quite important. If the energy 
-. 

is chosen to be Eb = -5 GeV (Eb = 75 GeV), an Mw-optimized scan strategy 

would allocate twice as much integrated luminosity to the Mw sensitive 

region as is allocated to the low energy point. 

3. A measurement of Mw at the 2160 MeV level is possible with the dedi- 

cation of a large integrated luminosity (250 pb-‘) and good control of the 

background contamination. 

4. The measurement of l?w to an interesting level is difficult or impossible. It 

is probably unwise to attempt anything more than a cursory measurement. 

4.4. FORWARD-BACKWARD ASYMMETRIES 

In the next several years, several asymmetries of the 2’ cross section will be 
- 

used to test the electroweak portion of the Standard Model. Note that all of these 

tests work by measuring the ratio of the vector and the axial vector couplings of 

the 2’ to the fermionic current. As was described in the Introduction, this implies 

that the sensitivities of the various tests can be characterized in terms a single 

parameter sin2flw. Note that this parameter differs from the Sirlin definition that 

was used to describe the ratio Mw/Mz. 

Let us begin by considering the cross section for the process e+e- + ff. 

We assume the electron and positron beams can be longitudinally polarized. The 

beam polarizations, P- and P+, are described in terms of a helicity basis (P = +l 

describes a right-handed beam, P = -1 describes a left-handed beam). We can 

then write the tree-level cross section in the cm frame as follows, 

daf _ 2Nf C -- 
dQ 64s sin4 20, 

(1 - P+P-)[o;’ + a,Z] + (P+ - P-)[c$’ + a,z] 
> 

(4.22) 

where: the unpolarized partial cross sections due to yZ interference and pure 2 
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exchange are defined as, 

2ewRe[I’(s)] [(l + cos2 B*)vvf + 2 cos 8*aaf 1 -. 
1 + cos2 0*)(v2 + CX~)(TJ; + + + 8~0s 8*wawfaf 1 ; 

0* is the angle of the outgoing fermion relative to the incident electron; the polar- 

ized partial cross sections due to yZ interference and pure 2 exchange are defined 

as, 

ayZ = 8&f sin 2 P 2 ewRe[I’(s)] [( 1 + cos2 @*)awf + 2 cos O*uaf] 

OP z = -lr(s)I”[( + 1 cos2 8*)2vu(vj + u?) + 2 cos f9*(V2 + U2)2VfUf 
1 ; 

the constant N{ is the color factor (3) f or q uark final states; and where the nor- 

malized 2 propagator is defined in equation (3.12). Note that we’ve assumed that 

the masses of all final state fermions are small as compared with fi and that 

the unpolarized cross section for pure photon exchange is small as compared with 

the pure 2 and interference terms. In the case that the beams are unpolarized 

(P+ = P- = 0), equation (4.22) is identical to the expression that we used to 

describe the cross section for the process qQ + Z”, y t P+!- (equation (3.12)). 

We have already defined the forward-backward asymmetry in the context of 

the process qi.j + !+J? (see equation (3.19)). Th e asymmetry is defined in exactly 

the same way for the process e+e- + f f. For unpolarized electrons and positrons, 

the form of the asymmetry at the 2’ pole is identical to the form that was given 

in equation (3.20), 

where the function F(z) = 42/(3 + x2) accounts for incomplete coverage of the 

detector in x = cos 8* space, and AiR is defined as a particular combination of 
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coupling constants, 

-. 
& E -2vfuf 

v;+u;- 
(4.24) 

The forward-backward asymmetries are fairly sensitive to sin28, due to the 

presence of the vector coupling constants (see equations (2.2) and (2.3)). The 

expected size and sensitivity to sin28, of each asymmetry is listed in Table X 

(assuming that the appropriate value of sin28, is 0.233). 

Table X 

Fermion Type AL 
(sin28, = 0.233) 

Sensitivity to sin”8, 

. u-quark 0.063 SA>, E 4.2Ssin28, 

d-quark 0.089 SAC, 21 5.6Ssin28, 

charged lepton 0.012 SA$, N 1 .6Ssin26, 
- 

- 

Table X illustrates a Peter Principle of experimental physics, the most easily 

measured quantities are usually the least interesting ones. The forward-backward 

asymmetry for muons is undoubtedly the most straightforward one to measure but 

is the least sensitive to sin28,. The identification and measurement of quark jets 

is more difficult. The DELPHI Collaboration [221 have studied the flavor tagging of 

simulated of hadronic jets (which makes use of the particle identification capability 

of their detector). The identification criteria, tagging efficiency, level of residual 

background, and the corresponding uncertainty on AiB are listed in Table XI. They 

find good consistency between several different fragmentation models. The obvious 

(and difficult to answer) question is whether nature agrees with the fragmentation 

models to the same level of consistency. It is clear that believable results must be 

based upon very detailed experimental fragmentation studies. 
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Table XI 

The result of a Monte Carlo study of the flavor tagging of hadronic jets 
with DELPHI detector.[221 

Flavor 

b-quark 

c-quark 

Significant Criteria 

e*K* pairs, 
PePK > 25 GeV2 

l*Kr pairs, 
reconstruct D* 

Efficiency Background f 
SAFB 

11.2% 16.1% 0.0013 

8.1% 32.2% 0.0013 

s-quark 

u-quark 

high momentum 
Kf ,A-; ,lir”* 

high momentum 
protons 

2.9% 45.5% 0.0026 

1.4% 30.5% 0.002 

Initial State Radiative Corrections 

We have already seen that the emission of initial state radiation causes the - 
effective center-of-mass energy & to be skewed from the nominal value. At tree- 

level, the electroweak interference term causes a shift in the asymmetry as the 

energy varies away from Mz. Ignoring a small term in the denominator, the energy 

dependence of the asymmetry can be expressed as follows, 

A$B(i) N A$B(Mi) - 6&f sin2 26 (4.25) 

The interference term becomes large as & varies from Mz. Note that a shift 

A&= -148 MeV is sufficient to cancel the tree-level muonic forward-backward 

asymmetry ! 

The energy dependence of the forward-backward asymmetries is plotted[231 Fig- 

ure 16. Note that the d-quark forward-backward asymmetry is the least sensitive 

to changes in &. The steep energy dependence of the leptonic forward-backward 

asymmetries implies that they are quite sensitive to uncertainties on the initial 

state radiative corrections. The uncertainty on AcB is currently estimated[241 to 
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be 0.001. The corresponding uncertainties on the quark asymmetries are much 

smaller. 

QCD Corrections 

The quark forward-backward asymmetries are affected by QCD corrections to 

the Zqij vertex and by real gluon emission (which produces three-jet events). The 

QCD corrections have been computed to first order in CY, by Kleiss, Renard, and 

Verzegnassi F5’ They find that the corrected asymmetry A~,(cY,) can be described 

in terms of the tree-level asymmetry as follows, 

A’$B(Q~) = AQFB(aS = 0) [l - 721, (4.26) 

. where the parameter 77 is four if all two- and three-jet events are used. If the three- 

jet events (according to a purely theoretical definition) are excluded, the parameter 

7 decreases to one. The value of 77 that is appropriate to a real experiment must 

therefore be in the range l-4. This leads to an uncertainty that is a few percent of 

the native asymmetry. 

Statistical Uncertainties 

The statistical uncertainty that is associated with the measurement of an asym- 

metry A is given by the following expression, 

SA = 1 - A2 112 
[ I N 

(4.27) 

where the number of events N is assumed to be large enough that a Gaussian 

treatment is applicable. Note that most asymmetries are small as compared with 

unity so that the A2 term in the numerator can be ignored. 

Bottom Line 

The LEP experiments are expected to accumulate a sample of 6x lo6 hadronic 

2’ decays (which corresponds to an integrated luminosity of 200 pb-r) in the next 
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several years. Combining the expected statistical and systematic errors, the preci- 

z sion of the various forward-backward asymmetry measurements can be predicted. 

The total uncertainty &A$, and the corresponding uncertainty on sin2fl, are listed -. 
in Table XII. 

Table XII 

The expected precision of measurements of the forward-backward asym- 
metries with a sample of 6~10~ 2’ events. 

. . 

Asymmetry SAFB (all effects) &sin2 8, 

ACB 0.003 0.0020 

4B 0.01 0.0030 

4B 0.007 0.0016 

4B 0.007 0.0021 

4B 0.006 0.0010 

- 

Note that the b-quark asymmetry offers the most sensitive test of the Stan- - 
dard Model. This particular asymmetry has a particular difficulty that must be 

addressed. The measured asymmetry can be diluted by the mixing of neutral B 

mesons. A complete reconstruction of each B meson or baryon would permit the 

exclusion of the Bi and L$? mesons from the asymmetry measurement. Unfortu- 

nately, this is beyond the capability of most detectors. The tagging of b-jets is 

more easily done with large Pi (with respect to the jet axis) leptons. The mea- 

sured asymmetry Ab FB(meas) is then related to the native quark asymmetry by 

the following expression, 

A$g(meas) = (1 - 2~~) . A$B, (4.25) 

where xm is the mixing-induced probability of measuring a wrong-sign lepton. The 

parameter xm can be extracted from a measurement of the ratio of the number of 

same-sign lepton pairs to the total number of lepton pairs, 

N(&+e+) + N(l-l-) 

NW 
= 2x,(1- xm), 
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where the notation is obvious. Note that x m is not the actual mixing parameter 

but is a phenomenological average quantity that depends upon the neutral meson 

. . fractions and upon the selection criteria. 

A reasonable value for xm is in the range -0.1. Therefore, a sample of 6~10~ 

hadronic 2’ decays would produce several thousand same-sign lepton pairs. This 

number should be adequate to correct the measured asymmetry for mixing effects 

without inflating the combined error greatly. 

4.5. THE LEFT-RIGHT POLARIZATION ASYMMETRY 

At the beginning of this lecture, we mentioned that the SLC will have a polar- 

ized electron beam with a degree of polarization PO 21 40%. There are also plans 

to produce longitudinally polarized electron and positron beams at LEP. These 

enterprises are designed to measure the polarization dependent part of the total 

cross section as defined in equation (4.22). Th e f orward-backward asymmetries 

are defined to select the part of the e+e- cross section that is odd under spatial 

reflection. The left-right polarization asymmetry is designed to select the part of 

the cross section that is odd in difference of the beam polarizations P+ - P-. It is 

therefore useful to define a generalized beam polarization Pg that is proportional 

to P+ - P- and has a convenient normalization, 

p 3 p+-p- 
9 l-P+P-’ 

(4.29) 

Note that Pg is positive whenever the electron beam is left-handed and/or the 

positron beam is right-handed. It is negative whenever the reverse is true. The 

generalized polarization becomes unity when either beam is completely polarized. 

The positron beam of the SLC is unpolarized. The generalized polarization there- 

fore has the simple form, Pg = -Pm. 

The left-right polarization asymmetry is defined as the ratio of the difference 

of the total 2’ production rates with left-handed and right-handed beams to the 
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total rate. This can be expressed more precisely as, 

Cf { j-f;, dcaf(c, pg = +1> - s-“;, dcaf(c, pg = -I,} 
ALR - Cf {s_“;, dcaf(c, Pg = +1) + J_“L, dWf(C, Pg = -1)} ’ 

(4.30) 

where: c EZ co&*; af(c, Pg) is shorthand for the differential cross section &f/do*; 

fzf are integration limits that depend upon fermion type; and where the sum is 

taken over all visible final state fermions except electrons (to exclude the t-channel 

scattering process). Note that the integrals must be taken over symmetric limits 

(which is a natural property of most e+e- detectors). 

.- . 

Substituting equation (4.22) (actually, the version of equation (4.22) with finite 

final state masses) into equation (4.30) ‘t I is straightforward to show that the left- 

right asymmetry takes the following form on the 2’ pole, 

- ALR = 
-2va Cf S_“;, dc[(vj + a?)(1 + Pjc”, + ($ - a;)(1 - @I 

(4 + u2) Cf J:;, clc[($ + “2f)(l + @“) + ($ - “;I(1 - Pj)l’ 

where ,Bf is the velocity of the final state fermion in the ff center-of-mass frame. 

Cancelling the common factor, we recover a familiar expression, 

A 
-2vu 2(1 - 4sin20,) 

LR = 
v2 + u2 = 1 + (1 - 4sin28,)2 ’ 

(4.31) 

A number of conclusions can be drawn from this derivation: 

1. ALR depends upon the Z”-electron couplings alone. The dependence on the 

final state couplings cancels in the ratio. 

2. ALR is independent of the detector acceptance. This remains true even if 

each final state fermion is accepted differently. 

3. ALR is independent of final state mass effects (which would cause ,Bf to differ 

from unity). 
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4. All of the visible final states except the electron pairs can be used to measure _- 
t ALR. The measurement therefore utilizes about 96% of the visible decays. 

The various other Standard Model tests that are performed on the 2’ pole . . 
make use of much smaller fractions of the event total (- 4% for the muonic 

forward-backward asymmetry, N 0.9% for the r polarization measurement, 

and N 4% for the b-quark forward-backward asymmetry). 

5. ALR is very sensitive to the electroweak mixing parameter sin2eW. This is 

shown graphically in Figure 17. Small changes in ALR are related to changes 

in sin2B, by the following expression, 

SALE 21 -8Ssin20,. (4.32) 

For 1Mz = 91.17 GeV, the asymmetry is expected to be in the range 13%- 

15%. 
- 

Radiative Corrections 

The left-right asymmetry has the property that it is insensitive to a large 

class of relatively uninteresting real and virtual radiative corrections and is very 

sensitive to an interesting set of virtual electroweak corrections. This behavior can 

be summarized as follows: 

1. The left-right asymmetry is very insensitive to initial state radiative correc- 

tions. The emission of real photons by the incident electron and positron 

causes a smearing of the center-of-mass energy of the ff system (A). The 

left-right asymmetry is quite insensitive to small changes in &. The en- 

ergy dependence of ALR is compared with those of several forward backward 

asymmetries in Figure 16. The size of the initial state radiative correction 

to ALR is calculated to be1261 SALE N 0.002 (this is a 2% correction to the 

asymmetry). The uncertainty on the correction to ALR is smaller by an order 

of magnitude. 
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2. The QCD corrections to the left-right asymmetry vanish entirely to all orders - 
c in the strong coupling constant CX~ at the leading order in the electromagnetic 

coupling constant a. The leading QCD corrections to ALR are the (extremely -. 
small) corrections to the weak vector boson box diagrams. 

3. The theoretical uncertainty on A,T,R is completely dominated by the uncer- 

tainty on the renormalization of the electromagnetic coupling constant to the 

2’ mass scale. The current value of this uncertainty is ‘271 SALR N 0.002. 

4. The left-right asymmetry is quite sensitive to virtual electroweak corrections 

and to the presence of new particles. The sensitivity of the asymmetry to the 

top quark mass (mtop) and the Higgs boson mass (vzH~~~~) will be discussed 

in the last section of this document. 

. Experimental Errors 

At the SLC, the measurement of ALR is performed by randomly flipping the 

sign of the beam polarization on a pulse-to-pulse basis and by counting the number 

of 2’ events that are produced from each state. The measured asymmetry, A::, 

is related to the theoretical asymmetry, ALR, by the following expression, 

ALR = Nz(P, = +Po) + Nz(Pg = -PO) 
ezp _ Nz(pg = +‘o> - Nz(pg = -‘o) = poALR 

7 (4.33) 

where PO is the magnitude of the beam polarization (PO N 0.40), and Nz( P) is the 

number of 2’ events logged with beam polarization P. Since the left-handed and 

right-handed 2’ cross sections are measured simultaneously, any systematic effects 

due to variations in detector livetime, luminosity, beam energy, beam position, etc., 

are cancelled in the ratio of the cross sections. This technique was used success- 

fully to measure a very small polarized asymmetry (- 10T5) in electron-deuteron 

scattering in 1978!281 The dominant systematic error is expected to be the uncer- 

tainty on the beam polarization measurement. We expect that the SLC Combton 

polarimeter is capable of measuring the beam polarization with a precision of l-2% 

(SPo/PrJ = l-2%). 
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There are a number of consistency checks that can be made with the SLC 

* polarization hardware. It is possible to reverse the circular polarization optics of the 

electron source laser to search for systematic problems in that system. The polarity 
--. 

of the spin rotation system can be reversed to check for systematic problems in the 

damping rings. The polarization direction of each polarimeter target is reversible. 

The beam polarization can be measured separately with each target polarization 

direction (and must be consistent). Finally, the left-right asymmetry for small- 

angle Bhabha scattering is very small (- 10H4). Th e 1 uminosity monitors therefore 

provide an important check that the left-handed and right-handed luminosities are 

equal (the left-right asymmetry of the Bhabha signal must be consistent with zero). 

Assuming that the dominant systematic error is the beam polarization uncer- 

tainty, the combined statistical and systematic uncertainty on ALR is given by the - . 
following expression, 

- &AL,= ALR 
[ 2 (z)" + 1-$g;d2]1'2, 

where Nt,-,t is the total number of 2’ events. The expected precision of the ALR 

measurement and the corresponding precision on sin20, are listed in Table XIII 

for several values of Nt,t. Note that the statistical uncertainty dominates the total 

error in the region NtOl 5 106. At N tot = 3 x 106, the statistical and systematic 

components are comparable. 
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Table XIII 
- 

t 

. . 

The expected error on ALR and sin20, as a function of the number of 2’ 
events. The left-right asymmetry is assumed to be ALR = 0.135 (which 
is in the middle of the range that is expected for Mz = 91.17 GeV). The 
beam polarization is assumed to be PO = 0.40 and the precision of the 
polarization monitoring is assumed to be SPo/Po = 0.01. 

I Ntot I ~ALR I &in2 8, I 

1OOK 0.008 0.0010 
300K 0.005 0.0006 

1M 0.003 0.00035 

3M 0.002 0.00025 

.- Note that a measurement of A&R with lo5 events determines sin20u, to a level .- . 
that is comparable to a measurement of A>B that is based upon 6 x lo6 hadronic 

2’ decays. 

4.6. THE T-LEPTON POLARIZATION ASYMMETRY 

- 

The left-right polarization asymmetry measures a combination of coupling con- 

stants that is particularly sensitive to sin2dw. It is obvious to ask whether there 

is comparable information in the degree of polarization of the final state fermipns. 

We define the final state polarization of a fermion as the difference in the cross 

sections to produce right-handed and left-handed particles, 

ifi - g(h) Pf(cose*) 3 d 
Zi%fR)+ g(h)' 

(4.35) 

where the notation is obvious. Assuming that the incident electron and positron 

are unpolarized, it is straightforward to show that the final state polarization is 

given by the following expression, 

~ALRCOS~* + AfLR(l + cos2B*) 

pf(cos6*) = - (1 + cos26*) + 2Ar,~A;~cos6* ’ 

where the combination of coupling constants AfLR was defined in equation (4.30). 
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-. At any given angle, the polarization of the final state fermion depends upon 
z 

ALR (the natural 2’ polarization) and the final state couplings AfLR. The depen- 

dence upon the initial state couplings can be removed by integrating the numerator 

and denominator of equation (4.35) over symmetric limits. The average value of 

the final state fermion polarization is then given by the following simple expression, 

(Pf) = -A-JR. (4.36) 

. 

The fermion species that is the most obvious candidate for use as a final state 

polarimeter is the r-lepton. It decays via a pure V-A current* into low multiplicity 

final states. Since (P,) is formally equivalent to the left-right asymmetry, the 

measurement of the average r polarization has some of the same advantages that 

are inherent in the measurement of ALR: 

1. (P,) is very sensitive to the electroweak mixing parameter sin20W. This is 

- shown graphically in Figure 17. Small changes in (P,) are related to changes 

in sin28, by the following expression, 

- S(P,) N 8Ssin28,. (4.37) 

For Mz = 91.17 GeV, the average polarization is expected to be in the range 

13%-15%. 

2. The measured value of (PT) is independent of the detector acceptance (as- 

suming that T- and r+ are accepted equally). 

3. The theoretical value of (P,) is insensitive to initial state radiative correc- 

tions. The energy distributions of the final state decay products are affected 

slightly by the initial state radiation (which has a small effect on the mea- 

sured polarization). 

* Experimentally, the V-A character of 7 decays is not well established. The best measurement 
of the Michel p parameter is”’ p = 0.73 f 0.07 which is consistent with the V - A value of 
0.75 but does not rule out significant deviations. 
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4. (PT) is very sensitive to the interesting virtual electroweak corrections. It is 

t affected by the same theoretical error that affects the interpretation of ALR. 

. . The 7 as a Polarimeter 

The dominant decay modes of the r-lepton are the four single-prong modes 

listed in Table XIV. 

Table XIV 

Decay Mode Branching Ratio 

-- 
e VeYr 17.5&0.4% 

p-~/&VT 17.8&0.4% 

P-VT 22.3&1.1% 

77-u, 10.8&0.6% .- . 
4-mode tot al 68.4&l .37% 

_ The two leptonic modes are S-body decays and the two hadronic modes are 

even simpler 2-body decays. We can consider these decays in the rest frame of the 

7. It is assumed that the r spin is’oriented along the z axis. It is straightforward 

to show that the angular distribution of the charged hadron from the 2-body decay 

r* -+ h*tv is given by the following expression, 

1dN 1 
-~ = - - (1 - cvhPTQ~cosfl*), 
N dcosB* 2 

(4.38) 

where: 8* is the angle between the spin direction and the hadron direction; P, is 

the r polarization; QT is the charge of the 7; and the constant CY~ is given by the 

following expression, 

1, for h = r 

ah = $$$ = 0.457, for h = p 

where m, and mp are the r and p masses, respectively. Ignoring the lepton mass, 

the energy-angle distributions of the S-body leptonic decays are given by the fol- 
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lowing expression, 

t 
1 d2N 

z dydcosB* 
= y2[3 - 2y - P,Q,(l - 2y)cos0*], (4.39) 

where y is the scaled energy of the outgoing lepton y = 2Ef/m,. 

Equations (4.38) and (4.39) h s ow that the angular distributions of the T de- 

cay products are sensitive to PT. Unfortunately, the r-leptons that are produced 

in 2’ decay are not at rest but have the beam energy (as smeared by the initial 

state radiation). In the case of the a-body decays, we have a sufficient number 

of constraints to calculate co&* from the observed hadron momentum. Unfortu- 

nately, the non-observation of the two neutrinos from the leptonic decays makes 

this impossible for the S-body decays. We therefore consider the laboratory energy 
.- . distributions of the observed particles. 

Let zT be the ratio of the observed energy of the r decay product to the beam 

energy. It is then straightforward to derive a simple relationship between zT and - 
cosO* that is valid for the Z-body decays, 

Eh 1 
X r=-=-* 

Eb 2 
[l + 2 + (1 - r)cos0*] ) (4.40) 

where z is the ratio of square of the hadron mass to the square of T mass, z G 

rni/mz. Changing variables from cos0* to xT, equation (4.38) can be expressed as 

the laboratory energy distribution, 

1dN 1 2x, - 1 - z 
--=-* Ndx, 1-Z 1 - z )I 7 (4.41) 

where x, is constrained to the interval z _< x, 5 1. 

For the 3-body leptonic decays, we can express xT in terms of y and cos@*, 

zr = ; * (1 + cos@*), (4.42) 

where the lepton mass is ignored. Changing variables from co&*,y to xT,y and 

integrating over all values of y (note that the allowed range for y is O-x), equation 
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(4.39) can be expressed as a laboratory energy distribution, 

. . 1 I 8 3 - PTQT $ - 3x2 + %x 1 (4.43) 

Statistical Sensitivity 

The sensitivity of the laboratory energy distributions given in equations (4.41) 

and (4.43) to the average r polarization PT (note that we’ve simplified the notation) 

that is expected from the Standard Model is shown in Figure 18 for the 7 + ~VV and 

the r + TV decays. The curves correspond to the polarization that is expected 

for sin2B, = 0.20,0.23,0.25,0.30, respectively. At sin28, = 0.25, the average 
.- . polarization is zero, and the 7r spectrum is flat. Note that the 7r final state seems 

much more sensitive than do the leptonic final states. 

- 

There are generally two approaches to the extraction of P, from the measured - 
xr distributions. The first is to fit the measured distributions to the functions 

defined in equations (4.41) and (4.43). Th e second approach is to measure the 

first moments of the 2, distributions. It is straightforward to calculate the average 

value of X~ for each distribution, 

(XT) = a + b&Q, = 
C 

i(l + Z) - &PTQr(l - z), 2-body decays 

&, + &Q,, S-body decays. 
(4.44) 

Numerically, the mean values of xr for the ru, pv, and &VV final states are, 

(XT)* = 0.50 - 0.17 - P,Q, 

(x&j = 0.59 - 0.062 . P,Q, 

(x& = 0.35 - 0.050 . PTQp 

The average x, distribution for the n-u final state has the most sensitivity to PT. 
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A third technique that can be applied only to the 2-body decays is to convert -. 
* ..~ the measured value of x7 into a value of co&* (using equation (4.40)) and to form 

the forward-backward asymmetry of the emitted hadrons, .^. 

A*FB z 
Nh(QrcosO* < 0) - Nh(QrcosO* > 0) 
Nh( Qrcos6’* < 0) + Nh(QrcosO* > 0) 

(4.45) 

where Nh is the number of detected hadrons with a positive or negative value for 

the product QrcosO* and where co&&,, is the maximum accepted value of co&* 

(this is the appropriate form of the acceptance function F that was defined for the 

2 forward-backward asymmetries). 

._ . 

In order to evaluate the statistical precision that is possible with each of the 

three techniques, we assume that our ideal detector has complete acceptance (this 

is to avoid considerable complexity). The uncertainty on the measurement of (x~) 

is given by standard error of the mean which is the ratio of the variance of the 

distribution Axe, and the square root of the number of events N that are used to - 
measure the distribution. The precision that is obtainable from a likelihood fit is 

given by an expression that we’ve used several times (see equation (3.14)). The 

precision of a measurement of AkB is given by N- ‘i2 These estimates are listed . 

in Table XV. 

Table XV 

Expected Error I ( SP, 2-body) SP, (3-body) 

[N j- dx,( -&2/L]-1/2 

2.1 
(yh fl 

’ 3 
J- cyh m 

L-L 
ffh fi 

N J- 
2$ 

not applicable L 

Note that the measurement of the average (x~) determines P, as precisely 

as a full likelihood fit to the X~ distribution. The measurement of AgB for the 

2-body decays is less sensitive than either of the other techniques. Using the 

expressions given in Table XV, we can estimate the statistical precision of an ideal 
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experiment. (In reality, a minimum energy cut is necessary to reject background, 

* hence the entire range of x r cannot be used.) Assuming that our experiment 

acquires a sample of 6x lo6 hadronic events, a total of 2.49 x lo5 T+T- pairs would 
-. 

be produced. We assume that the overall selection efficiency is 60%. The number 

of produced and observed events for each decay mode are listed in Table XVI. The 

estimated error on PT from each mode is listed in the last column. We conclude 

that the 7ru and pv final states are the most statistically sensitive decay modes. 

Table XVI 

Decay Mode Produced Events Observed Events SPT 

7 + 77-u 5.38x lo4 3.23 x lo4 0.0096 

7 + pu 1.11x105 6.66 x 104 0.0147 

7 ---+ euu 8.79x 104 5.28x . lo4 0.0195 

7 + puu 8.79x lo4 5.28x lo4 0.0195 

Systematic Errors 

There are several sources of systematic uncertainty in the measurement of the 

average 7 polarization. The two most sensitive final states are quite similar. The 

p* meson decays into a pair of pions, 7r * ’ The pu final state therefore differs 7r . 

from the from the 7ru final state only by the presence of an additional TO. The 

dominant systematic uncertainty is due to contamination of the 7ru sample by the 

pu final state. Other systematic errors are the uncertainty on the energy scale of 

the decay products (from radiative effects and detector calibration uncertainties) 

and an uncertainty due to detector biases. The combined systematic error has 

been estimated to be in the range Pgl SP, 21 0.005-0.008. 

Bottom Line 

The measurement of the average polarization of the r-leptons in 2’ decay is a 

reasonably sensitive test of the Standard Model. It appears that the polarization 

could be measured to the 0.012 level with a sample of 200 pb-’ at LEP. This 

corresponds to an uncertainty on the effective sin28, of 0.0015. 
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5. Conclusions 

-. 
The recent measurements of the mass of the 2’ have determined the parameters 

of the electroweak portion of the Standard Model at tree-level. Precise measure- 

ments of other physical quantities will test the electroweak theory at the loop level. 

The most promising of these are the measurements of the W boson mass that will 

be performed by experiments at the Tevatron and at LEP II and the measurements 

of the ratio the vector and axial-vector couplings of the 2’ that will be performed 

with a variety of techniques at the SLC and LEP I. It is interesting to compare 

the sensitivities of these measurements to loop-level corrections. 

We have seen that measurements of Mw to a level of precision SMw N loo-150 

MeV are possible in the next several years. The dependence of Mw upon the top 

quark mass is shown in Figure 19. The solid curves enclose the 68.3% confidence 

region that is expected for a f20 MeV uncertainty on Mz (it is assumed that Mz = 

91,17 f 0.20 GeV) as mtop is varied from 60 GeV to 240 GeV. The Higgs boson 

mass is assumed to be 500 GeV. The 68.3% confidence interval that corresponds to 

a flO0 MeV measurement is shown as a solid error bar. The theoretical error that 

is due to the uncertainty on the renormalization of the electromagnetic coupling 

constant to the W mass scale is also shown. Note that a measurement error 

SMw = flO0 MeV corresponds to an uncertainty on mtop of roughly 16 GeV. The 

analagous dependence of Mw upon mHiggs is shown in Figure 20. The dashed 

curves enclose the 68.3% confidence region that is expected as mHiggs is varied 

from 100 GeV to 900 GeV. The top quark mass is fixed to 150 GeV. Note that 

future measurements of Mw are unlikely to constrain the Higgs mass. 

The ratio of the vector and axial-vector couplings of the 2’ is best determined 

from measurements of the b-quark forward-backward asymmetry and the left-right 

polarization asymmetry. Note that the precision of a measurement of A$B that is 

based upon a sample of 6x lo6 hadronic 2 decays is comparable to a measurement 

of ALR that is based upon lo5 2 decays. We therefore use the left-right asymmetry 

as a standard to determine the loop-level sensitivity of this class of measurements. 
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The experimental confidence intervals that are presented in Table XIII are com- 

* pared with the theoretical expectation for ALR in Figures 21 and 22. The solid 

curves in Figure 21 enclose the 68.3% confidence region that is expected for mHiggs 
-. 

= 500 GeV and mtop varying between 60 GeV and 240 GeV. The finite width of 

the region is due to a f20 MeV uncertainty on the 2’ mass (we assume Mz = 

91.17 f 0.02 GeV). Th e solid curves in Figure 22 enclose the 68.3% confidence 

region that is expected for mtop = 150 GeV and mHigg, varying from 100 GeV to 

900 GeV. The size of the theoretical error on ALR (*0.002) is shown as the dotted 

vertical error bar in each figure. The sizes of the experimental 68.3% confidence 

intervals that correspond to the various values of Ntot are indicated by the solid 

vertical error bars. Since the r polarization asymmetry is formally equivalent to 

ALR, we plot the confidence region that is expected from a measurement with a 

6M 2’ sample. It is clear that ALR is quite sensitive to mtop. A measurement ihrith 

300K 2’ events constrains the top quark mass to a region of roughly Smtop = f17 

GeV which is comparable to a 100 MeV determination of Mw. The sensitivity to 
- 

mHiggs is clearly much smaller. A very high statistics measurement of ALR could 

provide, at best, an indication of mHiggs. 

- It is important to note that the sensitivities of Mw and the 2 pole asymme- 

tries to higher order corrections and to new physical processes are quite different. 

They are, to a large degree, quite complementary. This is particularly true if 

deviations from the Standard Model expectations are found. In that case, several 

precise measurements would be required to constrain the space of new physical 

possibilities. An example of this complementarity is shownL3” in Figure 23 for the 

case that the Standard Model is extended to include a 500 GeV, x-type 2’ [311 boson. 

The contours show the expected values of Mw and ALR as mtop is varied from 50 

GeV to 200 GeV (??2Hisss is fixed to 100 GeV). The three contours in each group 

correspond to the three values of the 2’ mass, Mz = 91.17 f 0.02 GeV. Each 

group represents a different value of the 2’ - 2’ mixing parameter sin 8,. The 

four groups correspond to the four values sin 8, = 0.0, -0.005, -0.010, -0.015 (top 

to bottom). The precision expected from a 300K event measurement of ALR and a 
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100 MeV measurement of IMw is shown by the error bars in the corner of the plot. 

I ..~ It is clear that the unfolding of deviations from the Standard Model expectations 

is greatly aided by the presence of several different high precision measurements. . 
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FIGURE CAPTIONS 
* 

1) The Drell-Y an mechanism for the production of W and 2 bosons in pp colli- 
-. sions. The incident proton and antiproton have momenta Icr and k2, respec- 

tively. A parton carrying the fraction 21 of the proton momentum collides 

with a parton carrying the fraction x2 of the antiproton momentum. The 

two lowest order subprocesses that produce gauge bosons are shown in parts 

a) and b). 

2) The scaled longitudinal momentum distribution x2 - x1 for W- bosons pro- 

duced at fi = 630 GeV. Th e mean of the distribution is 0.06 indicating that 

the average longitudinal momentum is along the antiproton direction. Note 

that 22 - x1 = 0.4 corresponds to a W boson longitudinal momentum of 125 
._ . GeV. 

3) The electron transverse momentum distribution from W bosons produced at 

- 

- fi = 630 GeV. The Pf distribution is shown for three phenomenological 

W boson transverse momentum distributions. Top to bottom, the average 

values of the W boson transverse momentum are: 0 GeV (dashed curve), 7 

GeV (dashed-dotted curve), and 14 GeV (solid curve). 

4) The electron and neutrino transverse momentum distributions of 1203 W --+ 
PI eu candidates measured by the UA2 Collaboration . 

5) The transverse mass distributions corresponding to the Pf distributions shown 

in Figure 3. Top to bottom, the average values of the W boson trans- 

verse momentum are: 0 GeV (dashed curve), 7 GeV (dashed-dotted curve), 

and 14 GeV (solid curve). The neutrino Pt resolution is assumed to be 

w& = 0.5fi GeV along the x and y axes. 

6) The angular distribution of electrons from W decay as measured by the UAl 

collaborationL1’]. 

7) The electron and muon pair mass distributions in the 2’ region that have 

been measured by the CDF Collaboration!121 
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- 8) The 2’ lineshape as measured by the Mark II Collaboration!’ The dashed 
f curve is the result of a single parameter fit (for Mz). The results of two and 

-. three parameter fits are indistinguishable and are shown as the solid curve. 

9) The sensitivity function for A&z as a function of center-of-mass energy about 

the 2 pole, E - Mz. 

10) The sensitivity function for rz as a function of center-of-mass energy about 

the 2 pole, E - Mz. 

11) The sensitivity function for &,(A@ as a function of center-of-mass energy 

about the 2 pole, E - Mz. 

. 

12) The cross section for the process e+e- --+ w+w- as a function of Eb - Mw. 

The mass and width of the W are assumed to be 80 GeV and 2.1 GeV, 

respectively. Note that three curves are plotted: the dashed curve is the 

basic tree-level cross section; the dashed-dotted curve is the cross section 
- 

including the effect of initial state radiation; and the solid curve is the cross 

section including initial state radiation and the effect of a finite W width. 

- 13) The sensitivity function for iWw as a function of the single beam energy 

about the W pair threshold ,?& - Mw. 

14) The sensitivity function for l?w as a function of the single beam energy about 

the W pair threshold Eb - Mw. 

15) The sensitivity function for the background parameter B as a function of the 

single beam energy about the W pair threshold Eb - iUw. 

16) The forward-backward asymmetries for leptons, u-quarks, and d-quarks are 

plotted as a functions of the center-of-mass energy about the 2’ pole. The 

asymmetries are also shown for the case that the incident beams are polar- 

ized. The energy dependence of the left-right asymmetry and an improved 

polarized forward-backward asymmetry AfpB (from Reference 23) are also 

shown. The 2’ mass is assumed to be 94 GeV. Note that the unimproved 
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forward-backward asymmetries are much more sensitive to the center-of-mass - 
* ..~ energy than are the improved ones and the left-right asymmetries. 

_. 17) The left-right asymmetry ALR is plotted as a function of sin20, and AIz (for 

some choice of rnt and mh). The leptonic forward-backward asymmetry AFB 

is shown for comparison. 

18) The normalized laboratory energy distributions of the observed decay prod- 

ucts of polarized r-leptons. Figure (a) shows the energy distribution for the 

r + &IV decay. The various curves correspond to the polarization that is ex- 

pected for sin20, = 0.20,0.23,0.25,0.30. Figure (b) shows the same curves 

for the decay r + TV. Note that sinad, = 0.25 corresponds to zero net 

polarization. 

19) The W boson mass as a function of the top quark mass. The Higgs boson 

mass is assumed to be 500 GeV. The solid curves enclose the 68.3% confidence 

region that is expected for a 620 MeV uncertainty on Mz (we assume AIz 
- 

= 91.17 f 0.02 GeV) as mlop is varied from 60 GeV to 240 GeV. The size of 

the experimental 68.3% confidence interval (f100 MeV) is indicated by the 

solid vertical error bar. The size of the theoretical error (~t25 MeV) is also 

shown. 

20) The W boson mass as a function of the Higgs boson mass. The top quark 

mass is assumed to be 150 GeV. The dashed curves enclose the 68.3% confi- 

dence region that is expected for a A20 MeV uncertainty on Mz (we assume 

Mz = 91.17 f 0.02 GeV) as ~~~~~~ is varied from 100 GeV to 900 GeV. The 

dotted vertical error bar shows the size of the theoretical error (*25 MeV) 

on &lw. The size of the experimental 68.3% confidence interval (&lo0 MeV) 

is indicated by the solid vertical error bar. 

21) The left-right asymmetry as a function of the top quark mass (mtop). The 

Higgs boson mass ~~~~~~~~ is assumed to be 500 GeV. The solid curves en- 

close the 68.3% confidence region that is expected for a f20 MeV uncertainty 

on Mz (we assume Mz = 91.17 f 0.02 GeV) as mtop is varied from 60 GeV 
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to 240 GeV. The dotted vertical error bar shows the size of the theoreti- 

t . . cal error (f0.002) on ALR. The sizes of the experimental 68.3% confidence 

intervals that are expected for the various values of Ntot are indicated by . . 
the solid vertical error bars. The confidence interval that is expected from 

a measurement of the r polarization asymmetry with 6M 2’ events is also 

shown. 

22) The left-right asymmetry as a function of the Higgs boson mass. The top 

quark mass is assumed to be 150 GeV. The dashed curves enclose the 68.3% 

confidence region that is expected for a f20 MeV uncertainty on Mz (we 

assume IMz = 91.17 f 0.02 GeV) as ~~~~~~ is varied from 100 GeV to 

900 GeV. The dotted vertical error bar shows the size of the theoretical 

error (f0.002) on ALR. The sizes of the experimental 68.3% confidence 

intervals that are expected for the various values of Ntot are indicated by 

the solid vertical error bars. The confidence interval that is expected from 

- a measurement of the r polarization asymmetry with 6M 2’ events is also 

shown. 

23) The expected values of Mw and ALR are shown as mtop is varied from 50 

GeV to 200 GeV (maims, is fixed to 100 GeV) for the case that the Standard 

Model is extended to include a x-type 2’ boson (see Reference 13). The 

mass of the 2’ boson is assumed to be 500 GeV. The three contours in each 

group correspond to the three values of the 2’ mass, Mz = 91.17 f 0.02 

GeV. The dots along each contour indicate the points rntop = 50, 100, 150, 

200 GeV. The four groups of contours show four values of the 2’ - 2 mixing 

parameter, sine, = 0.00, -0.005, -0.01, -0.015. The precision expected from 

a 300K event measurement of ALR and a 100 MeV measurement of Mw is 

shown by the error bars in the corner of the plot. 
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