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INTRODUCTION 
_- 

f General relativity is an incomplete theory because it is scale invariant, resting 

I. 

.- 

as it does only on the two fundamental constants G and c. It can be enriched, as 

Wheeler (1) showed long ago, by coupling it to the source-free Maxwell field to form, 

among other things, geons, but this does not change the dimensional situation. To 

complete the theory, the currently available candidates for dimensional constants 

are all quantized, for example the elementary unit of electric charge, the proton or 

electron mass (to mention the only two elementary masses that are stable within 

current experience), h/ f e rom the Josephson effect, the quantum of action h, the 

quantum of angular momentum, FL, . . . . Once a third dimensional constant is chosen 

in a fundamental theory we are required to compute all the others as dimensionless 

ratios. That this task is not so difficult as one might imagine is evidenced by our 

summary Table. If we choose F, as our third dimensional constant, our unit of mass 

[M] is the Planck mass Mp = [hc/G]i, our unit of length [L] is Lp = h/Mpc, and 

our unit of time [T] is Tp = h/Mpc2. 

- 

Wheeler’s approach (2) is to reduce everything to geometry in terms of the 

Planck length. Time, as is usual in special and general relativity - and has now 

been made a matter of definition by the Conf. Generale de Poids et Mesures- is 

linearly related to length by [T] = [L]/c. V o ume, 1 [L3], is related to space-time cur- 

vature [R] = [L] by th e curvature induced by mass of uniform density and specified 

radius. The new feature compared to classical treatments is that it is now possible 

to calculate the entropy of a black hole using Planck’s constant, G and c. This 

turns out to be proportional to the area, [L2], completing Wheeler’s geometrical 

picture (2, p. 220). 0 ur equivalent choice of units emphasizes the connection to 

elementary particle physics expressed by the relation & = (Mpl,,,k/mproton)2. 

CONSTRUCTING A BIT-STRING UNIVERSE 

The quantum theory of gravitation and elementary particles which we are 

in the process of constructing comes from interweaving several different lines of 
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research, the earliest of which started with Bastin and Kilmister in the 50’s and 

led to the discovery of the combinatorial hierarchy - i.e. the terminated sequence 

3,10,137, 21z7 + 136 - by Parker-Rhodes in 1961. This discovery was reported 

by Bastin (3), and further developed by Bastin, et.a1.(4). The most fundamental 

recent development, which has also shed new light on the work of Stein, Gefwert, 

Manthey and Etter, is McGoveran’s (5) ordering operator calculus. Some physical 

consequences have been published by Noyes and McGoveran (6), and the theory is 

undergoing rapid development. 

The common thread which unites this work is the representation of the funda- 

mental entities by bit-strings: 

a(S) = (..., bz ,..... )s; bf E 0,l; s E 1,2 ,.... 5’; O,l,..., S E ordinaZ integers (1) 

which can combine by discrimination (XOR) symbolized by “$“: 

- a $ b = (..., bq@*, . ..)s = b $ a; bj‘@ = (b4 - bf)2 

or concatenation symbolized by “[I”: 

Arab = (.... bs . . . . )s,ll( . . . . b:...)s* = (......, b$‘*, . . . . . )so+s6 

b‘$b allb =br, i~1,2 ,..., Sa; b, =b;, jE1,2 ,..., Sb,k=S,+j 

(2) 

Disagreement as to the proper foundations for the theory stem from different 

assumptions about how the symbols “0” and “1” are to be generated or constructed 

in the first place, how the two operations themselves are generated or constructed, 

and how they are to be interleaved to generate strings of sufficient complexity to 

model physical cosmology and elementary particle physics. These differences will 

be actively discussed next week at the twelfth annual international meeting of the 

Alternative Natural Philosophy Association (ANPA 12) to be held at the 

Department of History and Philosophy of Science, Free School Lane, Cambridge, 

14-17 September 1990. Anyone here who is interested is cordially invited to attend. 
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We will ignore these foundational differences here and take as our model the 
..- 

f class of algorithms called program universe (see 5, pp 87-88). These pick two 

arbitrary strings from a universe containing strings of length S, discriminate them, 
I. 

and if the result is not the null string (bt = 0 for all s) adjoin it to the universe; 

else we concatenate an arbitrary bit, separately chosen for each string, to the 

growing end of each string. If we think of this bit-string universe as a block of 

strings of length S and height H, the second operation (called TICK) amounts to 

adjoining an arbitrary column (Bernoulli sequence) and hence S + S+ 1. The first 

operation (called PICK) g enerates a string from the extant content and adds it as 

a new horizontal row (H --+ H + 1). I am still amazed that this simple algorithm 

can be used to construct the rich structures given in our summary Table! 

.- . COMBINATORIAL HIERARCHY LABELS 

- 

Finite sets of non-null bit-strings which close under discrimination are called 

di-scriminately closed subsets (dcss). F or example, two discriminately independent 

bits-strings (i.e. a @ b # 0) g enerate 3 dcss: {a}, {b}, {a, b,a $ b}. The three 

member set closes under discrimination because any two members discriminate to 

the third. Similarly 3 discriminately independent bit-strings generate 7 dcss: 

b,b,a@b}; {b,c,b$c}; {c,a,c@a} (4 

{a, b, c, a$b, b@c, c $a, a&3 b@c} 

Clearly, given j non-null discriminately independent strings one can form 2j - 1 

dcss. If one starts with two discriminately independent bit-strings of length 2 

w, (10) or (Ol), (11) or (WY PO>1 and forms the three dcss, these can be 

mapped by three non-singular 2 x 2 matrices which are discriminately independent 

to provide three basis elements for a new level. This mapping can be repeated using 
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4 x 4 matrices with 7 = 23 - 1 < 16 non-singular and discriminately independent 
-. 

f exemplars, and once again using 16 x 16 matrices because 127 = 27 - 1 < 256; 

however the mapping cannot be carried further because 256 x 256 matrices have 
f. 

only 2562 discriminately independent exemplars and 2562 << 2127 - 1. This is still 

the simplest way to explain how the combinatorial hierarchy can be generated and 

why it terminates. 

At ANPA 2 (1980) Kilmister (7) p ro p osed a specific scheme for generating the 

combinatorial hierarchy (CH) which did not necessarily rely on bit-strings. Soon 

after, Noyes and Kilmister recognized that any generation scheme could go on gen- 

erating bit-strings beyond those needed for the CH construction. This suggested 

that the early part of the string could represent a label corresponding to the quan- 

tum numbers of the elementary particles - which could be closed off once the 

- 

labels were long enough to represent the 4 levels of the CH - concatenated with a 

content string which would represent a space-time expanding out to an event hori- 

zon given by the string length at any particular stage in the construction. In order - 
to explore this situation Noyes and Manthey created program universe as described 

above. When the label strings have reached length 16, they can be organized into 

three orthogonal dimensions corresponding to the first 3 levels of the CH contain- 

ing 3, 7 and 127 strings of length 16. Th ese strings can be used to represent the 

fermion number, weak isospin and baryon number of the three generations of the 

standard model of quarks and leptons, and the confined color charges (see Noyes, 

6). The next step in the construction closes with 2127 - 1 strings of length 256 

making a cumulative total of N = 2127 + 136 N 1.7 x 103* states available to us. 

QUANTIZED SPACE-TIME 

Once we have constructed the label-content concatenation, we can interpret the 

situations where PICK leads to a non-null string (i.e. c = a $ b, or equivalently 

a $ b $ c = 0) as the production (eg by pair annihilation or bremstrahlung) or 

absorption of a single label which either initiates or terminates a propagation of 

the label that continues for (or ends after) some finite number of TICKS. This is a 
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discrete model for a Feynman vertex. The completed process combining two such .- 
f vertices models a 4-leg diagram a $ b $ c $ d = 0 which we call a 4-event. 

The choice of this criterion is not arbitrary. McGoveran (5, Theorem 13) has 

shown that any discrete space of D “homogeneous and isotropic” dimensions syn- 

chronized by a universal ordering operator can have no more than three indefinitely 

continuable dimensions; three separate out and the others “compactify” after a sur- 

prisingly small number of constructive operations. The proof rests on the fact that 

if we consider D independently generated Bernoulli sequences (i.e. arbitrary se- 

quences of the symbols 0, l), Feller (8) h as shown that the probability that after 

n synchronized trials all will have accumulated the same number of “1” ‘s is less 

than n-fCDel ). It can be shown that the requirement that D + 1 strings of length 

n discriminate to the null string is equivalent to Feller’s condition. Consequently 

the probability of continued sequences of events involving D labels vanishes like 

n-z for D = 4, and increasingly rapidly for higher numbers. Applying McGov- 

eran’s Theorem to the label space allows us to understand why there are only 

three asymptotically conserved quantum numbers. We have mentioned fermion 

number, weak isospin and baryon number in making connection between the first 

three levels of the hierarchy and the standard model. Once we have made this 

identification, the colored quarks and gluons have to be confined independent of 

any “dynamical mechanism”. 

- 

To map bit-strings onto integer and half-integer coordinates first note that the 

Hamming measure a := Cf=, bz takes the null string as the “reference ensemble” 

in McGoveran’s definition of attribute distance (see 5). We restore the symmetry 

between the symbols “0” and “1” by using for our measure the signed coordinate 

qa(S) defined by 

S s s -_ 
2- 

qlz:=u-2<+2 

There are 2s such integrally spaced coordinates for S even and 2S + 1 for S 

odd. These integer or half-integer coordinates can be related to the usual angular 
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momentum “space quantization” of elementary quantum mechanics by defining 

J(S)cos 0, := qa; J2(S) := ;(; + 1) (6) 

Then integer steps correspond to “rotations” leave the string length and hence J2 

invariant. Alternatively we can define 

T(S)COSh & := qa; 72(S) := ;(; + 1) (7) 

with ,L& =:= tanh fa := F - 1 and “Lorentz transformations” which leave r2(S) 

invariant. Extending these definitions to 3+1 dimensions for 4-events as defined 

above, we find that we can map the content strings (space-time) onto the C4 

Clifford algebra (quaternions) in Greider’s (9) f ormulation of non-interacting rel- 

ativistic quantum mechanics for particles and fields. This fact can be used to 

establish the “Poincare’ invariance” of our representations in the context of our in- 

teger restrictions that make all 4-vector components signed integers or half-integers. 

Applied to our finite label space, this mapping also can be used to establish the 

conservation of fermion number, weak hypercharge and baryon number across the 

intervals connecting two scattering events. 

GRAVITATIONAL STABILIZATION OF THE PROTON 

In order to connect our dimensional constants to quantized particle physics, we 

assume that N states of mass m are bound together by Newtonian gravitation to 

form the largest possible mass allowed within their common Compton wavelength 

h/me. Adapting an argument given by Dyson (10) for quantum electrodynamics 

to gravitation (Noyes, 11) we take NGm2/r = NGm2/(fi/mc) = mc2. Trying 

to add one more particle will create a free particle of energy mc2 in addition to 

this “Laplacian black hole”; in other words, this small black hole is indubitably 

unstable against Hawking radiation once we try to go from N to N + 1. Hence 

the largest possible mass for an elementary system is indeed the Planck mass. 

7 



.- 
- 

If we take this maximum number N to be the terminating cardinal of the CH, 
-. 

f m = (1k/G)~/(2’~~ + 136) and we find that m is equal to the proton mass to an 

accuracy of about 1%. The unit of particle mass for our theory can be taken to 
I. 

be the proton mass. (A correction we will not have time to discuss here brings 

Newton’s constant G computed from mp, c and fi into agreement with experiment, 

as noted in the Table.) Our interpretation of this calculation is that the mass of 

the proton is due to its gravitational self-energy, necessarily finite in our theory. 

For us, as for Wheeler (a), both black holes and the Hawking radiation are basic; 

the two approaches are closer than one might think at first glance. 

QUANTUM GEONS 

Looking at our interpretation of the labels (6) in more detail, we see that 

- 

electromagnetism enters only after we have constructed the third level of the CH; 

this is where we have the first opportunity to interpret the cumulative cardinal 

137 as a first calculation of &/e 2. As was discovered by Parker-Rhodes (12) and - 
afterwards argued by us (Bastin, et. al., 4) once we have accepted the proton 

mass (now gravitationally generated) as specifying our local unit of mass, we can 

calculate the electron mass as due to its electromagnetic self-energy and obtain the 

surprisingly accurate result given in the Table. This calculation is reviewed below. 

Before our construction reaches level 3, we have only the 3+7=10 states of the first 

two levels of the CH. These cannot as yet refer to electromagnetism. For massless 

content strings, We interpret these ten labels as two chiral neutrinos, two chiral 

photons, five chiral gravitons, and the ubiquitous “interaction” represented by the 

anti-null string bi = 1 for all s. This string couples strings of any composition into 

a possible metric relationship. We interpret this string as an early version of the 

“Newtonian” interaction which ties all identifiable objects together. For massless 

content strings it will have a “coupling constant” of l/10, which will become weaker 

and weaker as more and more degrees of freedom are constructed until the closure 

of the hierarchy labels allows us to interpret it as “Newtonian gravitation”. 

Because we start out with massless states, one would think that only two chiral 
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gravitons are allowed. But thanks to the “gravitational” self-interaction, we can 
_- 

f form massive objects (“quantum geons”) and hence macroscopic orbits relative to 

which all five states of the chiral gravitons with spin 2 can be defined. Note that 
t. 

this is basically the same argument we used to correctly calculate the precession 

of the perihelion of Mercury in the paper presented at the first conference in this 

series (Noyes, 13). As our construction proceeds, we will get one of these “quantum 

geons” with relative probability l/10 compared to the probability of getting “visible 

matter” of l/127. Th erefore our candidate for “dark matter” should be 12.7 times 

as prevalent as visible matter, which is consistent with current observations. 

COSMOLOGICAL CONSEQUENCES 

Thinking about this construction, we realize that there will be N2 initial scat- 

- 

tering events which conserve baryon number, providing our universe with this 

number of baryons, and hence about 1% of the closure mass. Our 2562 initial and 

2562 final states would, in the absence of further information, be equally divided - 
between baryons and anti-baryons, i.e. on the average contain an equal number 

of zero’s and one’s, leading to baryon number zero for the universe. However, the 

asymmetry inherent in our construction stemming from the special role played by 

the null string in discrimination and the CH requires us to start the labels with 

a one, rather than a zero. This asymmetry will persist throughout the statistical 

“averaging” which follows. In our theory strings with an odd number of “1” ‘s cor- 

respond to fermions; we expect 1/2564 baryons per photon in our universe, which 

is about right (see Table). 

Our time steps are of length h/ mpc2 once the universe is dilute enough so 

that we can make a linear local connection between space and time, and recognize 

electromagnetic processes as improbable by about one part in 137 compared to 

“first law motion”. It takes at least N2 events (TICKS) after the label strings 

have closed to construct content strings (space-time) which has these properties 

and the gravitational scale for stabilizing mp at the value which freezes the time- 

step. Using a linear time scale (i.e. backward extrapolation from this stage of 
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the construction), this marks a transition between and “optically thick” and an 
-. 

f “optically thin” universe. We call this backward extrapolation to the start of the 

content string - label string boundary “fireball time”. Using the linear scale gives 
t. 

us 3.5 million years. This is consistent with our other numbers and the currently 

observed 2.7’11’ cosmic background radiation. 

Having established our gravitational-cosmological framework, the constructive 

enterprise can now address more local questions about particle masses and coupling 

constants. After protons, the other easily recognized stable mass value is the 

electron mass, so our next step is to calculate their ratio. 

THE PROTON-ELECTRON MASS RATIO 

.- An elementary starting point for the calculation of the electron-proton mass . 
ratio is the assumption that, just as we have seen that the proton mass can be 

generated gravitationally, the electron mass can be generated electromagnetically. 

Although we could talk about this as the self-energy of the electron due to its 

interaction with vacuum fluctuations - whose only constituents we can recognize 

at this point in the construction are proton-antiproton pairs, the coulomb interac- 

- tion and/or gamma rays - it is simpler to calculate the mass of the electron as 

generated by its charge by taking some appropriate finite statistical average over 

its electrostatic self-energy 

m,c2 =< e2/r- > (8) 

Our unit of length for a spherically symmetric system is the proton Compton radius 

h/2mpc. The system has spherical symmetry and the calculation occurs before we 

have enough information about other quantum numbers to add any additional 

degrees of freedom. Consequently we cannot use the corrected (or empirical) fine 

structure constant, but must use the combinatorial hierarchy value 137 to define 

our unit if charge, i.e. e 2 = F~/137. Since the fluctuations involve both charged (eg 

proton-antiproton pairs) and neutral (eg y-rays) particles, the charge fluctuations 

are independent of the space-fluctuations, but must conserve charge, i.e. e + 
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ze+ (1 - z)e where z is some statistical variable; the contribution of the fluctuations 
.- 

f outside of the range 0 5 z < 1 must cancel by symmetry. Hence 

hC 
.L. < e2 >= yjy, < x(1 - x) > 

For the space fluctuations we scale by the proton Compton radius and conclude 

that 

< l/r >= F < l/Y > 

with 0 I l/y 5 1 and hence that 

mP - 1377r -- 
me < x(1 - Z) >< l/y > (11) 

This completes our dimensional analysis. .- . 

- 

The statistical calculation invokes the three degrees of freedom of space. For us, 

thanks to McGoveran’s Theorem (5, Theorem 13) that in any discrete theory such 

asours, space can have at most three asymptotic dimensions and one universal 

ordering operator - which in our cosmology is isomorphic to the time scale of 

the expanding event horizon - the expectation values are calculated with three 

degrees of freedom. Since the probability of finding a fluctuation falls off like l/y 

for the coulomb interaction along any radius, we use this as our weighting factor 

and obtain 

< l,y >= J~PlYlPlY)3wlY) 4 
J~wY)3411Y) = 5 

(12) 

Since the effective source of the interaction with the vacuum fluctuations is pro- 

portional to (xe) x (1 - ) x e and must end in a sink with the same strength we take 

the weighting factor for the calculation of < e2 > to be x2(1 - x)~ and for one 

degree of freedom find that 

I( = J;[x(l - x)1x2(1 - x)2dx 3 
1 

i$ x2(1 - x)2dx = 14 
(13) 

Once the charge has separated into pieces with charge ex and e(1 - x) the effective 
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squared charge in 

recursion relation 

the interaction is either e2x2 or e2(1 - x)~, so we can write the 

. . 
K = so’[x3(1 - x)~ + 1(,-lx2(1 - x)4]dx J;[x3(1 - x)~ + K,-lx4(1 - x)2]dx 

n 
= # x2(1 - x)2dx J; x2(1 - x)2dx 

(14) 

Putting all this together we find that 

mP 137r 
-= 

& x [l + + + ($21 x g 
= 1836.151497.... 

me 
(15) 

.- 
.- . 

This completes our gravitational-electromagnetic unification at the level of the 

static (Newtonian and Coulomb) interactions exemplified experimentally by the 

two stable particles with masses mp and me whose masses we have calculated 

relative to the Planck scale. 

WEAK-ELECTROMAGNETIC UNIFICATION 

Our connection between quantum numbers and space-time requires that GFrni 

x [&‘(265)2]-1, which is good to better than 7%, and McGoveran’s correction (see 

Table) brings this reasonably close to the empirical value, as does his correction 

of our original estimate sin2t?Weat = 0.25. The definitions of coupling constants 

and our bit string representation of the quantum numbers require, at this level of 

accuracy, that 

All; = M~,cos20~ea~ (16) 

We have seen above how the electromagnetic interaction of the electron with 

the vacuum fluctuations dominated by proton-antiproton pairs explains mp/me in 

terms of a statistically calculable geometrical factor. But since the electron also 
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t 

couples to the vacuum fluctuations of the W - w and 2 - L? via the massless neu- 

trino in the same geometrical fashion, self-consistency requires that the calculation 

using the Fermi interaction rather than a must lead to the same electron mass. 

Chasing this through, we find that 

(17) 

Note that we achieve a good first approximation (“tree level” in the conventional 

jargon) to weak-electromagnetic unification without invoking gauge bosons. In 

fact, if a negative prediction counts as a prediction, I will stick my neck out and 

assert that the Higgs boson will not appear during the next decade in any non- 

controversial form. 

SEWGUT 

The research goal of many contemporary elementary particle physicists is to 

find, establish or create a strong, electromagnetic, weak, gravitational unified the- 

ory (SEWGUT). F or many theorists, the gravitational aspect of a research program 

aimed at this goal (“quantum gravity”) is both the most challenging technically 

and the most difficult conceptually. Thanks to the CH and the ordering operator 

cuZcuZus we have been able to pick up the stick by that end, and construct a purti- 

cle theory in agreement with experiment to first order in e2/tic for electromagnetic 

effects, in GF ermim~/hc for weak effects, in sin20Weak for weak-electromagnetic 

unification, and in GNezo~onm~/hc for gravitational effects. We have also shown 

that the gross cosmological consequences of our theory are at least roughly in ac- 

cord with current observational facts as conventionally interpreted. This closes off 

our theory at the other end of the gravitational scale. What remains is to con- 

nect all this up with the strong interactions (quantum chromodynumics or QCD) 

self-consistently. 

The three axes in our label space, which we have chosen to name fermion 

number, weak isospin and baryon number relate to the first three levels of the 
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combinatorial hierarchy and provide precisely the quantum numbers needed for ..- 
t. describing the first generation of the standard model of quarks and leptons, as has 

been known for some time (6). Other conserved quantum numbers such as electric 
I. 

charge, lepton number, or weak hypercharge correspond to rotations and renam- 

ings in the S-dimensional label space. Color confinement occurs naturally, thanks 

to McGoveran’s Theorem, since the three axes mentioned exhaust the absolutely 

conserved quantum numbers. This is our version of “compactification”. Our origi- 

nal bit-string representation of the first three levels of the combinatorial hierarchy 

used up 2 + 4 + 8 = 14 of the sixteen slots available. Unfortunately we did not 

see in time that these provide a natural way to close off this structure with three 

generations, so we did not “predict” the width of the 20 before it was measured. 

But this clue has led to new results. 

- 

With this much solidly established, we can, tentatively, follow up our clue 

about the second and third generations by suggesting that the muon mass mp = 

3x7x10me= 210 me, and (less clearly) that the r-lepton mass m, M 21mP. The 

first prediction can be checked by chasing through the consequences in r - ,V and 

r - e decay lifetimes, the Goldberger-Trieman relation, and all that. In principle 

these are now all calculable, finite and if they don’t come out approximately right 

will give us a lot of headaches. Should this happen the discrepancies could be 

serious enough to cause me to abandon the whole scheme - as would a failure to 

get a good approximation for the Lamb shift to the next order in o. 

But the most exciting prospect, if we have really cracked the generation prob- 

lem, is to calculate the “mass” of the top quark. A start has been made. We have 
--- seven color states (three colors: r,y, b; three anticolors: r,y, b; black: r $ y $ b) 

and the colorless state 0 = r $ F = y $ g = b $ b = F $ g $ b (see 6). Consequently 

these seven states occur seven times as often as the colorless state, and the analog 

of e2/hc for QCD in our theory is 7. 

In order to make use of this strong coupling constant, we need a connection be- 

tween masses and coupling constants (Noyes, 14) which allows coupling constants 
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to be greater than unity. f2 > 1 is one way to characterize “strong interactions”; -. 
5 little technical use can be made of theories specified in this way using finite empir- 

ical constants within the framework of second quantized relativistic field theory. 
I. 

Thanks to our mapping onto finite particle number relativistic quantum mechanics, 

which will be discussed in more detail at ANPA 12 next week, we have an alter- 

native approach. The basic S-Matrix point of view associates a bound or resonant 

state of any two-particle system with a pole at invariant d-momentum squared so 

in the two-particle momentum-space wave function $(s, so) whose residue defines 

the “coupling constant” f 2. In the narrow width approximation this translates to 

- 

.- . Assuming the state contains only two particles of mass ml, rn:! yields the normal- 

ization condition 
co - I d4~(%SO)12 = 1 (19) 

(m +m*)* 

which forces us, for dimensional reasons, to include some mass p in the definition 

of the residue if we wish (in analogy with e2/fic) to keep the coupling constant 

f2 dimensionless. By performing the integration we obtain a simple connection 

between masses and coupling constants 

(f2p)2 = (ml + m2)2 - SO (20) 

Note that the magnitude of f2 is not seriously restricted by this algebraic connec- 

tion until we have inserted more information. We assert that this starting point is 

non-perturbutive and rests only on uniturity and relativistic quantum mechanics in 

a finite particle number space. 

Before proceeding further, we provide two specific examples where this simple 

(some may say simple-minded !,) approach obviously “works”. It is currently 
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unfashionable to think of the pion as a “bound state” of a nucleon-antinucleon 
-. 

f pair, even though Fermi and Yang (15) p rovided a good model for the quantum 

numbers of the pion in this way. These quantum numbers are still useful for 
L. 

large parts of nuclear and low energy particle physics. If we wish to use Eq.20 to 

supply the dynamics, we must take ml N mN = rnN N m2 and so = mz. Since 

we know the coupling to be strong, we must take p = m, rather than the only 

available alternative within the system (i.e. ?72N), and find that if mN/m, N 7 then 

G:NN 
N 14 or visa versa, which is a good starting point for low energy nuclear 

phenomenology. 

As another example, take the proton and the electron bound electromagnet- 

ically by f2 = e2/tic = cy N 1,137. To reduce this to a “single particle prob- 

lem” including recoil effects we take the free system mass to be the reduced mass 

“ml + m2” --+ mep = mr>mLP, which implies that so = (mep - ~~~~~~~ and use this 

also as the reference mass ,v. This gives us the relativistic Bohr formula 

- 
Crnep - ~)~[l + 02] = rnip (21) 

- 
first derived by Bohr (16) in 1915. This was Sommerfeld’s (17) starting point for 

calculating the fine structure spectrum of hydrogen, including the formula which 

is still correct to order cy2. For those of you who are puzzled by how a calculation 

based on the relativistic mass increase of the electron in elliptical orbits could lead 

to a result in agreement with experiment a decade before the discovery of spin and 

quantum mechanics, let alone Dirac’s theory, see Biedenharn’s (18) paper. 

Our way of arriving at the connection between masses and coupling constants 

contains some puzzles when we look at it in configuration rather than momentum 

space. Non-relativistically, if we talk about the radial wave function w,(r) = 

N e-yr, Eq.’ s 18 and 19 correspond to the asymptotic normalization Jo” ut(r)dr = 

1 and hence N2 = 2y = 2(2pc)’ 2 with /.L the reduced mass and E the binding energy. 

This model asserts that most of the time the particles are “outside the range of 

forces” and hence that only the asymptotic region contributes significantly to the 
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probability of encountering either of the particles when the system is probed. We 
-. 

z claim this is a proper way to define a low energy coupling constant in a relativistic 

theory, when we contemplate calculating corrections due to additional degrees of 
-1 

freedom (real or virtual particle creation) as the energy of the probe is raised. 

Application to the “infinite range” coulomb interaction is also justified, since the 

scale is set by the excitation of higher levels, which is of order cy2. That we 

can get the higher levels themselves by replacing o2 by (Cy/n)2 is somewhat more 

troublesome until we realize that the infinite range of the coulomb interaction 

always makes the asymptotic region the most important one if we go to high 

enough resolution. 

What most of you will find bizarre is that McGoveran derived this formula 

directly from our discrete theory, and was able to extend it to the Sommerfeld 

formula when a second degree of freedom is present, without any “space-time” or 

“momentum space” considerations (McGoveran, 19). Most people find it incredible 

that the calculation at the same time corrects our “first order” result (6) that - 
hc/e2 = 137 to a value in much better agreement with experiment (cf. Table). We 

will not have time to justify this result here. 

- We have a second way to calculate the mass of the pion, which goes back to 

our version (11) of Dyson’s argument (10) applied to electromagnetism rather than 

gravitation. Consider an assemblage of N, charged particle pairs each of mass m 

in a volume whose average radius is the pair-creation radius ti/2mc and whose 

electrostatic energy is 

e2 e2 e2 N”; = N”(h12mc) = N,g(2mc2) M  s(2mc2) (22) 

Thus when the number of pairs exceeds 137, we have enough energy to create an- 

other pair. Dyson used this fact to argue that the QED renormalized perturbation 

series with e2 + -e2 begins to diverge beyond 137 terms, and hence that the 

series is not uniformly convergent. I prefer to interpret the result as saying that 

we cannot count more than 137 charged particle pairs within their own Compton 
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radius. If we take the smallest known stable mass - i.e. the electron mass me - 
-- 

f for m we have an explanation for the termination of growth of the system. At the 

level of analysis we are invoking 2 x 137 particles, half electrons and half positrons, 

- 

within their individual Compton radius are indistinguishable from a neutral pion 

with m,o < 274me. The system is electrostatically bound. Of course this assem- 

blage is unstable against 2y decay, but if we add an electron plus an anti-neutrino 

(or a positron and a neutrino) to the assemblage the lifetime becomes much longer 

and the sum of the masses of the constituents comes close to m,*. For recent 

corrections due to McGoveran which bring these original estimates for m,o and 

rn,+ into agreement with experiment, see the Table. We also note that this gives 

us a start toward understanding why the range of nuclear forces is half the classical 

electron radius e2/mec2, and the dimensional memnonic 

e2/mec2 (nuclear) = a(ti/mc) (QED) = cx2(me2/ti2) (atomic) (23) 

which I learned from Joe Weinberg in 1947. 

Invoking our original S-matrix argument appropriately rewritten for massless 

constituents, this gives us ?‘m, = mN, which is clearly consistent both with our 

calculation of the pion as 137 electron-positron pairs and with our calculation of 

GZNiV = 14. The theory is starting to meet self-consistency checks. 

The next step is to note that we are now in a position both to calculate the 

nucleon mass from a relativistic version of the Chew-Low bootstrap and from a 

constituent quark model starting from massless quarks, using a version of finite 

particle number relativistic scattering theory which I have been developing along 

another line of enquiry. This should give us some clues as to the relationship be- 

tween current and constituent quark masses and the pressing problem of modeling 

“hadronization” in a simple way. If the weak interaction sector involving r - p - e 

works out all right, we can then bring in the strange quark and the weak K-decays 

to sort out the states, and go on from there to u, d, s strong interaction dynamics. 

Charm and beauty should follow in due course. Then on to the top! 
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We conclude with the conjecture that following through the implications of our 

t construction will lead to a theory which - at least to first order in e2/&, GFerrnimi/fic 

and GNewton mi/hc- that provides a self-consistent unification of strong, electro- 
. . 

magnetic, weak and gravitational interactions (SEWGUT). 

- 
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Table of Results, June, 1990 
General structural results 

0 3+1 asymptotic space-time 
l combinatorial free particle Dirac wave functions 
l supraluminal synchronization and correlation without supraluminal signaling 
l discrete Lorentz transformations for event-based coordinates 
l relativistic Bohr-Sommerfeld quantization 
l non-commutativity between position and velocity 
l conservation laws for Yukawa vertices and 4- events 
l crossing symmetry, CPT, spin and statistics 

Gravitation and Cosmology 
l the equivalence principle 
l electromagnetic and gravitational unification 
l the three traditional tests of general relativity 
l event horizon 
l zero-velocity frame for the cosmic background radiation 
l mass of the visible universe: (2127)2mp = 4.84 x 1O52 gm 
l fireball time: (2127)2fi/mpc2 = 3.5 million years 
l critical density: of Rvi, = p/pc = 0.01175 [0.005 5 &is 5 0.021 
l dark matter = 12.7 times visible matter [lo??] 
l baryons per photon = 1/2564 = 2.328... x 10-l’ [2 x lo-lo?] 

Unified theory of elementary particles 
l quantum numbers of the standard model for quarks and leptons 
with confined quarks and exactly 3 weakly coupled generations 
l gravitation: fic/Gmg = [2127 + 1361 x [l - &] = 

1.70147...[1 - &] x 1O38 =1.6934... x 1O38 [1.6937(10) x 103*] 
l weak-electromagnetic unification: 

GFmz/hc = (1 - &)/2562fi = 1.02 758... x 10m5 [1.02 684(2) x 10m5]; 
.sin20Weat = 0.25(1 - A)’ = 0.2267... [0.229(4)] 
i’kl& = ra/aGpsin20w = (37.3 Gev/c2sin 0~)~; Mzcos 0~ = MW 

l the hydrogen atom: (E/~c~)~[l + (1/137N~)~] = 1 
l the Sommerfeld formula: (E/~c~)~[l + a2/(n + dm)“] = 1 
l the fine structure constant: & = 1-13T 

3o)t127 
= 137.0359 674...[137.0359 895(6 1) I 

l mp/m, = 137x - 1836.15 1497... [1836.15 2701(37)] 
&(1,+,&J $ - 

l m:/m, = 275[1 - &] =273.1292... [273.12 63(76)] 
l m,o /m, = 274[1 - &]= 264.2 1428.. [264.1 160(76)] 
l ~G2,~m,o) 2 = (2m,)2 - rnzO = (13.86811m,o)2 

[ ( )] = empirical value (error) or range 
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