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1. Introduction

From Bequerel’s discovery of radioactivity almost a century ago, the study

of weak interactions has matured through a series of well-defined stages. The

most recent of these began in the early 1970’s with the experimental discovery of

neutral currents and the theoretical discovery of renormalizable gauge theories with

massive vector bosons. These discoveries led to a study of the neutral current effects

through a wide variety of processes and, eventually, to a remarkable convergence of

the data to the predictions of the now-standard weak interaction model of Glashow,

Weinberg, and Salam.

Last summer, this era of the study of weak interactions ended and a new era

began. Instead of data dominated by resuits on effective interactions at relatively

low energy, we are beginning to see the most important data come from direct

measurements of the weak gauge bosons. Instead of measurements to an accuracy

in the weak interaction parameter sin2 0, of 10v2, we can look forward to accuracies

of 10v4. And, most importantly, instead of looking forward to the convergence of

all measurements to the predictions of a particular model, we can look forward to ,-

the discovery of disagreements between weak interaction experiments, at a level of

detail that might give clues to new phenomena at higher energies.

In these lectures, I will review the theoretical concepts needed to understand

the goals and implications of experiments in this new era of weak interactions. I

will explain how to compute the most important order-o radiative corrections to

weak interaction processes and discuss the physical implications of these correction

terms. I hope that this discussion will be useful to those-experimentalists and

theorists-who will try to interpret the new data that we will soon receive.

Of course, these brief lectures can only provide an overview of the the sub-

ject. The field of precision weak interactions, like any other area of precision

measurement, is full of technical complication. Fortunately, one has available orig-

inal papers of great beauty, beginning with the pioneering works of Sirlin PY21 and

Veltman,[3’41 and a number of recent excellent reviews. Among these, the article
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of Holliklsl  is a particularly complete and instructive summary of the theory, and

the 1989 LEP study volume I61 reviews the most recent numerical results. I hope

that my lectures will complement these works by providing an entryway into this

field not only for those who seek to be experts but for all those who would like to

understand its new stage of development.

These lectures are organized as follows: In Section 2, I will review the structure

-of the standard weak interaction model at zeroth order. In Section 3, I will discuss

the-measurement of the 2’ boson mass in e+e- annihilation. This measurement

is affected by radiative corrections to the form of the 2’ resonance, and so I will

review the theory of the resonance line shape. In Section 4, I will briefly review the

modifications of the properties of the 2’ which would be produced by additional

neutral gauge bosons. In Section 5, I will review the theory of the renormalization

of weak interaction parameters such as sin2 t&,, concentrating especially on the

contributions of the top quark and other heavy, undiscovered particles. Section 6

will give some conclusions and prospects.

4



2. The Standard Electroweak Model

Let us begin by recalling the basic zeroth order relations between boson masses

and coupling constants in the Glashow-Weinberg-Salam weak interaction model. I

will refer to this theory from here on as the standard model.

The construction of the standard model begins with the coupling of of fermions

to gauge bosons of the group SU(2) x U(1). This interaction is specified by the

minimal coupling

where the gauge-covariant derivative introduces the three SU(2) gauge bosons, A”,,

and one boson B,, associated with the U(1):

D, = & - i(gA$P + g/&Y). (2.1)

The parameters g, g’ are the-coupling constants of the two groups, r4 = cr4/2, and

Y denotes the U(1) charge, or hypercharge. _ .9.

The gauge bosons of the standard model acquire masses by spontaneous break- -

ing of the gauge symmetry. The simplest way to achieve this breaking is by intro-

ducing a scalar field 4(z), the Higgs field. This is a complex doublet under SU(2)

with hypercharge Y = 3. The kinetic term of the 4 field, which contains the gauge

fields via minimal coupling, then includes a term

L = ID&l2 ---) d+(gA - T + t~‘BY)~q5  . (2.2)

If 4 acquires a vacuum expectation value

(4 = CqO;i) 3

and we introduce this vacuum expectation value into (2.2), we find the gauge field



mass term

; (;)2[(A1)2 + (A2)2] + [gA3 ; “B12)

The mass eigenstates are then

A1 F iAWf= Jz m,+

sA3 - g’B JWv
z=J-$--g mZ= 2

v2 .

g’A3 + gB
A =  J--&p n-+=0*

It is convenient to define a weak interaction mixing angle 8, by

~0s 0, = d+---+

The standard electric charge is given by

e= J&=gsinB,=g’cos9W.

The formulae above imply the important relation

P-3)

$J
4 = cos2 8, . (24

Experimentally, this relation holds to within 1% accuracy, and so it is important to

understand its origin. In this analysis, (2.4) would seem to be a special consequence

of the assumption that the Higgs field 4 is the agent which breaks SU(2) x U(1).

But it may be shown that (2.4) holds at zeroth order in any model in which

the field which acquires the vacuum expectation value is an isodoublet, and in a

class of more general models, including models without elementary scalar fields,
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characterized by Sikivie, Susskind, Voloshin, and Zakharov.“I The essential feature

of these models is the presence of an unbroken W(2) global symmetry in the

Higgs sector. Throughout these lectures, I will assume that the Higgs sector is

constructed in such a way that (2.4) holds at leading order. My analysis will not

otherwise depend on the nature of the Higgs sector except in Section 5, where I

will specifically discuss the dependence of radiative corrections of the mass of the

scalar Higgs boson in the simplest symmetry-breaking scheme.

_ _Once the theory has been defined in terms of the three parameters g, g’, and

u, one can work out the predictions of the theory for a whole variety of weak

interaction processes. The leading-order predictions for the weak boson masses

have already been given above. To discuss the interactions mediated by these

bosons, it is useful to rewrite the basic gauge-covariant derivative (2.1) in terms of

the mass eigenstates:

(gA;P + g’B,Y) = (w,‘7++ wp-)

. (2.5)
+ e

sin Bu, cos 8,
Z,( FL - Q sin2 0,) + eA,Q ,D.

In this equation, T* = r1 f ir2, 13L is the third component of weak isospin,

and Q = 13L + Y is the electric charge. The photon then couples to the usual

electromagnetic current. The W couples to the charged current of left-handed

-fermions

Jr+ = Fyp7+L + . . . = i7LTreL + . . . , (2.6)

where fL = i(l - r5)f denotes the left-handed component. The 2’ couples to a

neutral current of the particular form

Jf = J,fL - sin2 t9,Jf , WI

in which J3L, Jz are, respectively, the weak isospin and electric charge currents.cc
The unusual properties of the 2’ and the weak neutral current all follow directly
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Figure 1. Diagrams contributing to effective low-energy weak interac-.- -
tions.

from the chirally  asymmetric 2’ charge (13L - sin2 &,Q). (I will label the weak

isospin 13L henceforth simply as J3.)

At high energies, the interactions of fermions with the 2’ and W currents

are made visible in the strength and angular dependence of the weak boson decays

to the various species. At energies well below the 2’ and W masses, however,

experiments probe the effective four-fermion interaction which results from 2’ and

W exchange. This interaction, corresponding to the Feynman diagrams of Fig. 1, ‘-

can be written in the compact form

-Due to the relation (2.4), the prefactor in this expression is identical for the W
and 2 contributions:

GF e2 e2-=
fi 8 sin2 9,m2, = 8 sin2 8, ~052 0,mi ’ (2.9)

Over the past decade, the dependence of this effective interaction on helicity  and

flavor has been tested in neutrino and electron scattering processes and found to

be in agreement with experiment to accuracies of 510%. The convergence of low-

energy scattering data to the standard model is well described in the reviews of

Kim, et aZ.,[Bl Amaldi, et a$’and Costa, et &.I”’
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Current and future experiments work at a higher level of precision. To compare

these to theory, we must replace the lowest-order relations that I have quoted

so far with more complete predictions which take into account order-a radiative

corrections. It is necessary to work out carefully how each of the relations I have

written between underlying parameters and observables is altered by radiative

effects. Already, though, we can understand the basic features that will emerge

from this program of calculation.

--Because the lowest-order relations contain three free parameters-g, g’, and

v-one must make three high-precision measurements to determine the predictions

of the theory. Only the fourth measurement can give a sensitive test. Before this

past summer, only two standard model observables were known with high precision.

These were the value of the basic electric charge

a = (137.0359895(61))-1 ,

obtained from precision QED measurements such as the electron (g 7 2) and from ,O

the measurement of the Josephson effect, and the value of the Fermi constant, the

prefactor of (2.8),

GF = 1.16637(2) x lo-’ (GeV)-2 ,

obtained from the muon lifetime. Now, however, experiments at SLC and LEP

have reported a very precise value of the 2’ mass [ll-151

mz = 91.150(30) GeV . (2.10)

This corresponds to a precision of 3 x 10L 4. Future experiments at LEP might

make further small reductions of the error. At the same time, these experiments

and those at the pjj colliders promise the precision measurement of additional

quantities-the W mass and the angular and polarization asymmetries of 2’

decays-will finally allow the standard model to be put to a stringent test.

9



On the other hand, the standard model implicitly contains many parameters

which do not appear explicitly in the lowest-order relations. These include the

quark and lepton masses and the masses and couplings of Higgs bosons. These

additional parameters affect the size of radiative corrections and thus influence the

precision comparison of weak interaction experiments. This adds some uncertainty

to the predictions of the standard model. But, conversely, it allows us to view

these comparisons as windows into the content of the standard model, illuminating

properties of heavy quarks and the Higgs sector which are otherwise difficult to

view-experimentally.
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3. The Z” Resonance Line-Shape

Before beginning a general analysis of higher-order weak interactions, I would

like to discuss the specific problem of the 2’ boson mass measurement in e+e-

annihilation. Since the 2’ creates an enormous resonance in the e+e- total cross

section, one can measure the 2’ mass at least roughly by locating the peak of

this resonance. However, the shape of the resonance is distorted by radiative

corrections, and this effect must be understood to use the position of the resonance

in a precise determination of weak parameters. In this section, I will discuss the

physics of this effect.

3.1. THE Z” RESONANCE AT LEADING ORDER

It is a standard exercise to compute the cross section for e+e- annihilation into

the various species of fermion  pairs. Since this will be a useful starting point for

our analysis, let me recall the basic formulae, at least in the limit where the various

fermion  masses can be neglected. In this limitcfermion helicity is conserved in the ‘s

couplings of fermions to gauge bosons. Thus it is most convenient to quote the

cross sections for e+e- states of definite helicity (eiei or eiez) to annihilate to

new fermions of fixed helicity (fLTR or fRfL). These polarized cross sections are

o(e-
47rc2

e-+ f7) = 3s

&e&f +
(I,” - Qe sin2 e,,,)($ - Qf sin2 0,) 2%

sin2 eu, ~052 em (s - mi + isrz/mz)

where I3 and Q denote the weak isospin and electric charge of the fermions involved

(Qe = -1).

In writing (3.1), I have set the imaginary part in the denominator to (sI’z/mz)
rather than the more usual (mzl?z). This reflects the fact that the imaginary part

arises as the imaginary part of a loop insertion in the 2’ propagator, as shown
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Figure 2. Feynman diagrams whose summation produces the Breit-

Wigner denominator of the 2’ propagator.

in Fig. 2. The loop diagram contains no heavy masses and is proportional to s.

This produces a minor kinematical perturbation of the 2’ resonance. I have also

introduced a renormalization factor ‘z into the 2’ propagator. This factor will *
remain very close to 1; its origin will be discussed in Section 5.7.

The total cross section for e+e- annihilation is built up out of the helicity cross

sections according to

ctot = i C C cr(e+e- + f7) - Nf . (3.2)
PO/s. f

The factor Nf denotes the effective number of species of flavor f: For leptons,

Nf = 1; for quarks, Nf = 3, plus the enhancement due to QCD. More precisely,

for quarks,

Nf = 3(1 + % + . ..) = 3.12 f .Ol at s = mZz , (3.3)

corresponding to aa = 0.12 f 0.01, Figure 3 shows the total cross section for

e+e- annihilation to hadrons predicted by (3.2).
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Figure 3. Total cross section, in units of R, for e+e- annihilation to

hadrons and to muon pairs.
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The helicity-dependence of the annihilation cross section also gives rise to asym-

metries in fermion  pair production. The forward-backward asymmetry is given by

The polarization asymmetry, between the cross sections of left- and right-handed

electrons, may be computed as

- .-&R = (o(eL ---) f~) + a(ei j fR)) - (o(ei 4 f~) + a(ei 4 fR))
OCei --) fL) + b(ei + f~) + tJ(ei --) fL) + a(e, --) fR)

* (3.5)

I will evaluate these formulae using the 2’ mass given in (2.10) and the fol-
-

lowing values for the other parameters: Q = l/129, sin2 8, = 0.235, 2 = 1.01. I

will defend these latter choices in Section 5.7. The dependence of these asymme-

tries on energy, over a wide energy range around the 2’ resonance, is shown in

Figs. 4 and 5. The leading-order values of the total cross section and the weak

asymmetries just in the neighborhood of the 2’ resonance are shown in Figs. 6, 7,

and 8. Notice that, just at the 2’ resonance, the polarization asymmetry becomes .D
independent of the final-state flavor and simply represents the asymmetry in the

left- and right-handed electron couplings to the 2’ boson.

Equation (3.1) predicts that the 2’ resonance has a simple Breit-Wigner form:

srzlmz
2

a(s) = Ukak  -
s- rni + isrg/mg ’ (3.6)

where the zeroth-order peak cross section is related to the total width and the

partial widths into initial and final channels by

0
upeak

127r I?( 2’ + e+e-)I(Z’ 3 fTj)=-
“22 r:cd

. WI

The various partial widths are given by

ri=Z amz

6 sin2 0, ~052 &
x(1; - &f sin2 &)2 - N, .
L R,

(3.8)

The prefactor z is the 2’ propagator renormalization from (3.1). Evaluating these
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Figure 4. Forward-backward asymmetry AFB for e+e- annihilation to

charged leptons, u quarks, and d quarks.
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Figure 5. Polarization asymmetry ALR for e+e- annihilation to charged

leptons, u quarks, and d quarks.
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Figure 6. Total cross section for e+e- annihilation in the vicinity of

the Z”, to leading order in CL
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Figure 7. Forward-backward asymmetries in ese- annihilation in the

vicinity of the Z”, to leading order in cr.
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formulae using the parameters listed below (3.5), we find the following the partial

width for each fermion  species:

e,w: 83 MeV

ue, up, UT: 166 MeV

u, c: 294 MeV

d, s, b: 381 MeV

making up a total width of 2.48 GeV.

3.2. THE GENERAL INFLUENCE OF RADIATIVE CORRECTIONS

Now that we have constructed a precise picture of the 2’ resonance according

to the leading order expressions of the standard model, we may ask how this

picture is changed by radiative corrections. It is useful to think that radiative

corrections produce two distinct effects: First, corrections to the 2’ propagator

and vertex shift the parameters of the resonance-the mass, the width, and the

peak cross section. Second, corrections producing radiation from the initial electron

and positron change the shape of the resonance by smearing out the’ peak toward’*

higher energy.

At some level, these effects blend into one another; however, the most impor-

tant radiative corrections can be separated into two distinct classes. Let me label

the diagrams shown in Fig. 9(a), the diagrams for real photon emission from the

initial electron and positron lines, and the virtual photon diagram needed to can-

cel their infrared divergences, as ‘soft’ radiative corrections. These diagrams are

essentially QED effects, since the typical momentum of virtual lines is much less

than mz. Let me label the diagrams shown in Fig. 9(b), the diagrams involving

2’ propagator corrections and the weak interaction contributions to the vertex,

as ‘hard’. In these diagrams, the typical momentum of virtual lines is of order

mz, so that weak and electromagnetic contributions appear on the same footing.

As the figure suggests, the hard radiative corrections give renormalized resonance

parameters which provide the input to the calculation of the smearing of the peak

20
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Figure 9. Classes of diagrams contributing to the shape of the 2’ res-

onance: (a) ‘soft’ radiative corrections discussed in Section 3; (b) ‘hard’

radiative corrections discussed in Section 5.

by radiation. In this section, I will treat these resonance parameters as fixed and

discuss the effect of radiation in determining the 2’ line shape. We will return to

the hard contributions, and determine their effect, in Section 5.

3.3. SOFT RADIATIVE CORRECTIONS: ORDER Q

At leading order in Q, QED aff’ects the Z” resonance through the diagrams of

Fig. 10. The evaluation of these diagrams leads to the famous Bonneau-Martin

formulal’61 for radiative corrections to a narrow resonance. In quoting this formula,

I will drop the contributions from vacuum polarization diagrams, for example, the

last diagram of Fig. 9(b); As that figure indicates, I will include these later with

the hard corrections.
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-- - Figure 10. QED corrections to the 2’ line shape, in the leading order

in Q.

The first two diagrams of Fig. 10 produce the following correction to the total

cross section:

h(s) = 2)dr [e (l.g$ - 1) (‘+(:-““)I ao(s(l -5)). (3.9)
0

The quantity in brackets is just the Weiszacker-Williams radiation spectrum ex-

petted  in any electromagnetic scattering process; the variable x is the photon

momentum fraction: x = Jc/E, where k is the photon momentum and E is the

electron beam energy. The actual e+e- annihilation takes place at the reduced

-center-of-mass energy given by i = s( 1 - 2). The integral in (3.9) diverges at

the limit x -+ 0. This is a standard phenomenon in QED; the divergence can be

removed by performing an analysis to all orders in a, but, more simply, it cancels

in the total cross section at any given order. Let us temporarily control it by

introducing a fictitious photon mass A, which gives an artificial lower limit to the

integral. The divergence as X + 0 is cancelled in the total cross section by the

contribution of the third diagram of Fig. 10, which diverges as

-2.g ( l o g - $ - l )  .210g~.00(s) (3.10)
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for small A. Collecting the full contribution from the three diagrams, we find

md(s) 2cr 7r2= i 1 + -;;- { (log 3 - l)(log$ + ;) + (6 - f444e
+ ;(log-$ - 1)

’ dxe / ,(’ + (1 - 4”) ao(s(l - 2)) ,
ME

(3.11)

which is finite in the limit X --) 0.
-_ _

The Bonneau-Martin formula (3.11) is compared to the zeroth-order 2’ line

shape in Fig. 11. The correction is formally of order a but, even after the can-

cehation of infrared divergences, it is enhanced by two large logarithms. First,

there is the logarithm from the Weiszacker-Williams formula, which implies that

the strength of the radiation is given by the dimensionless parameter

P = 0.108 . (3.12)

There is a second logarithm which arises from-the fact that the two lines of (3.11) .D

are mismatched when s is on the resonance but s(1 - x) is not. The full size of the

correction is then

-p * log? 2 -0.39 . (3.13)

This is indeed a very large correction; it indicates that we must compute to higher

order in Q to understand the 2’ line shape quantitatively.

3.4. MULTIPLE PHOTON RADIATION

The systematic calculation of QED diagrams to the next order in a is a very

complicated task. To make a precise analysis, one must of course perform the

complete calculation. However, it would aid our understanding more to isolate

those contributions which are producing the large corrections, understand their

origin, and sum them up, if possible, to all orders in cy.

23
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Figure 11. The effect of order Q initial-state radiation corrections on

the 2’ line shape. The order Q curve is computed from (3.11).
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Why is the QED correction so large? The problem is not with the size of

(Y, which is as small as one could wish; rather, it is that Q is enhanced by large

logarithms. In quantum field theory, large logarithms always have a physical origin;

they arise when one compares quantities with two very different characteristic

energies in an indelicate way. By understanding the origin of the large logarithms,

we can see how to tame them.

The identification and summation of large logarithms is a major part of our

understanding of perturbative &CD. Let me give two examples. Consider first-- _
the QCD correction to the total cross section for e+e- ---) hadrons, given by the

diagrams of Fig. 12(a). In these diagrams, all particles have typical momenta of

order the electron beam energy. Since all momenta are at the same scale, no large

logarithms should appear. Indeed, the standard QCD result for the total hadronic

cross section is

g=gp2;.3. (1+$-33;22n~(~)210g;+...).  ( 3 . 1 4 )

The term of order Q* has no large logarithm. The next term in the expansion does .-’

have a large logarithm if Q, is defined at a scale ~1 very different from s, to account

for the scale-dependent renormalization of this coupling constant. The related

process of Drell-Yan production of electron pairs, pfj -+ e+e- has an additional

complication. In this process, as a result of the diagrams shown in Fig. 12(b), the

quark and antiquark which annihilate have typical transverse momentum of order

@, where q is the momentum of the virtual photon. The amplitude for a quark

in the proton, with typical transverse momentum 300 MeV, to give rise to such a

highly virtual state contains powers of the logarithm of the ratio of these transverse

momentum scales. The effect of these logarithms is to produce an evolution of the

quark distribution in the proton with log q2; this evolution is just that described
P71by the Altarelli-Parisi equations.

The problem of computing the 2’ line shape is the QED analogue of this lat-

ter situation. The large logarithms in (3.13) appear when we relate the off-shell

25
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Figure 12. Two examples from QCD of the summation of large loga-

rithms: (a) e+e- + hadrons; (b) J@ + e+e- .

electron which finally annihilates into the 2’ to the on-shell electron from which

the process begins. To control these logarithms, we should reinterpret (3.11) as

the first step of an evolution process by which the virtual electron emerges from

the external electron. This strategy for calculating the 2’ line shape was first ad-

vocated by Fadin and [rslKuraev. However, it should be noted that these authors,

and also Altarelli and Parisi, took their inspiration from the QED evolution equa-

tion constructed by Gribov and Lipatov WI in their classic work on deep inelastic

scattering.

Let De(z,s) be the electron distribution function, the probability that the

annihilating electron has fraction z of the original beam energy. If there is no

radiation from the initial electron, we would have

De(%) = a(% - 1) . (3.15)

26



Order by order in cr, this result receives radiative corrections. I will now argue

that (3.11) may be interpreted as providing the order a correction to (3.15). In

this reinterpretation, we view (3.11) as a step in a process rather than as a simple

correction; this will allow us to represent this process by an evolution equation

which will generate the most important corrections to all order.

To make this reinterpretation of (3.11), let us divide this equation into three

parts. The second line of the equation represents the effect of radiation in moving

electrons and positrons from the full energy to an energy fraction (1 -x). Assigning-.- _
half of this contribution to the electron and half to the positron, we may represent

it as

AD,(z) = p . ’ + (l - X)2
4 X 1 (3.16)

As electrons radiate photons and move to lower energy, we should expect to find

fewer electrons at the full beam energy. The fractional depletion should be found

by integrating over x the probability of radition to energy fraction (1 - z):

ADe(z,S)  P ’ dx=--De(z,S) 4 I --(I + (1 - x)“) = +og ; + log? - 5) . (3.17) *

WE

Indeed, (3.11) contains exactly this depletion, in the term

ACJ(S) = +(log ; - ;)go(s) . (3.18)

The magnitude of (3.18) is double that of (3.17) in order to account the effect on

the electron and on the positron. We have now given a physical interpretation to

most of the pieces in (3.11). The only pieces of (3.11) not included in the above

accounting are the terms

Aa = 1 + t,) so(s) ; (3.19)

these last terms give a correction to the e+e- annihilation vertex which is explicitly

of order o, with no enhancement by large logarithms.
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The two terms (3.16) and (3.18) may be considered as the contributions of first

order in p to an evolution process in which an electron radiates and moves down

to lower energy fraction. The evolution parameter is /3, and thus the evolution

progresses further the higher the energy or the further the electron must go off-

shell. We may assemble the two pieces as the kernel of an integral equation for

De(z, s):

- .-
$De(L,S) = i -A6(x)1 (3.20)

0

The subtracted term depletes the electron distribution at the higher energy, the

Weizsacker-William term fills in the distribution of electrons after radiation. Both

terms are singular at x = 0, and, though this singularity is difficult to write

mathematically, it is easy to describe and implement in a computation. After one

cuts off the divergences in some way, the coefficient A is fixed by the requirement

that the total probability does not change:

I dtDe(z,s)  = 1 , (3.21)

for any value of s.

In QCD, we have no explicit solution of the evolution equation for quark dis-

tributions. In QED, however, the situation is much more promising. First, the

initial condition for the evolution equation is known: at /3 = 0, De(r) reduces to

the delta function in (3.15). Second, the evolution parameter /3 is still rather small

at the Z”, so we can imagine solving the (3.20) in an expansion in /?.

We can obtain a good first approximation to the solution by concentrating on

the region near z = 1. Let us try as an ansatz

D:‘)(z , s) = $1 - .)8/,2-l . (3.22)

This function satisfies (3.21) and contracts to a delta function at z = 1 when
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/3 + 0. Its derivative is

i3 (0) _ papDe - qlog(l - %) * (1 - *)P’2-1 + I(1

The most singular term of the integral in (3.20) is

(1-z)
1
5 J

+De( =
(1 -x)) -

*)W1 . (3.23)

(3.24)

In writing this expression, I have cut off the integral at a lower limit 7. Inserting

DdO) into this term, and approximating near z = 1, we find

(1-r)
1
5 J (3.25)

r)

The’logarithm of (1 - z) matches the desired form (3.23); the logarithm of q is a

resealing  of the original distribution function and so is naturally cancelled when A
in (3.20) is chosen to preserve the normalization of De(z). In fact, since Dk’)(t,s) .*
satisfies (3.21), the correct choice of A will reproduce the second term of (3.23).

In this way, we can see that the function D!‘)(z,s) actually gives the correct

dependence on .z in the limit z t 1 and thus is a good first approximation to the

exact electron distribution.

-

Fadin and Kuraev began with this function as a first approximation and sys-

tematically computed corrections to it as a series in p:

De(z,s) = $1 - ~)~‘~-‘(l + ;p) - +I + 2) + *-* - (3.26)

The distribution function (3.26) is displayed, and compared to the Weiszacker-

Williams distribution, in Fig. 13. An exact evaluation of the distribution function

De(z) would also include effects of pair-production (Fig. 14), which require addi-

tional terms in the evolution equation. The first such contributions are of order cr2

and so are omitted here, though they may be found in Ref. 18.
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Figure 13. The distribution De(z,s) of the energy fraction carried by

a virtual electron.
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Figure 14. An additional contribution to the electron distribution func-

tie-n from pair-production.

To compute the 2’ line shape, we must compute the cross section as a function

of S, given this distribution in energy fraction for the electron and position. That

is,
1 1

u = dz1 D&1)
I I

fizz D&2) aO(i) , (3.27)
0 0

where B = ziz2s. It is useful to work out more explicitly the distribution of the

effective electron-positron collision energy. This may be described by computing
.d

1 1

I
dr1 &(Zl)

I
da D&Z) a((1 - 5) - 2122)

0 0 (3.28)

= /3P(l + ;a, - /3( 1 - f ) + * * * .

In (3.28), I have inserted z to represent the fraction of total radiated energy. Using

the distribution function in z, and restoring the order-o correction to the annihi-

lation vertex written in (3.19), we find the following formula for the radiatively

corrected cross section:

u =
I [

da: /w-y1 + $3) - /?(I - ;,I * [1 + $ ($ - i)] 00 (a(1 - 2)) .
0

(3.29)

One might view this as a,n improved version of the Bonneau-Martin formula (3.11)
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in which the logarithms are exponentiated to powers of z. The formula (3.29)

is compared to the zeroth- and first-order approximations to the cross section in

Figs. 15 and 16. Cahn[201 has pointed out that the integral over z in (3.29) can

be carried out analytically for a Breit-Wigner resonance, and the resulting formula

has been useful in analyzing data on the shape of the 2’ resonance.

In the past few years, there has been considerable further theoretical effort

to refine the calculation fo QED effects on the 2’ line shape. Fadin and Kuraev

actually carried out this analysis to order Q2. The complete order-o corrections

to e+e- + j.~+p- have been computed by Berends,  Burgers, and van WINeerven.

Other higher-order analyses have been carried out by many authors and are re-

viewed by Berends  in Ref. 22. A useful comparison of calculations of the 2’

line shape at various levels of approximation has been given by Alexander, Bon-

vicini, Drell, and PIFrey. Their results (computed assuming mz = 93 GeV) are

reproduced in Fig. 17. These authors estimate the theoretical errors in the ex-

traction of the mass, width,and  peak cross section of the 2’ arising from residual

uncertainties in this calculation at well below 1%. 0

3.5. EXTRACTION OF THE RESONANCE PARAMETERS

Since the QED radiative corrections broaden the 2’ peak and smear it asym-

-metrically, it is not useful to quote the resonance parameters in terms of the ob-

served peak position or the visually extracted width. Rather, one should para-

metrize a zeroth-order cross section in terms of a resonance position, width, and

peak height, integrate this cross section together with the effects of radiation by

inserting it into (3.29) (or a higher-order formula for the soft radiative corretions),

and compare the result to the data. Since (3.29) does not include hard radiative

corrections, the effects of these corrections will be included in the fitted resonance

parameters. These effects must be taken into account in comparing the extracted

parameters to other weak interaction measurements and to deeper theoretical pre-

dictions.
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Figure 15. Total cross section for e+e- annihilation to hadrons in the

vicinity of the Z”, computed in zeroth  order, first order (eq. (3.11)), and

from the Fadin-Kuraev formula (3.29).
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Figure 16. Magnification of Fig. 15 in the vicinity of the 2’ peak. For

each of the two radiative correction formulae, I have indicated the shift

of the location of the peak and the decrease in the peak height from the

zeroth-order value.
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Figure 17. Comparison of the 2’ line shape calculation at different

levels of approximation, from Ref. 23.
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To show the utility of this theory, I have displayed in Fig. 18 a calculation

of the total cross section for e+e- annihilation to hadrons in the vicinity of the

Z”, obtained by inserting (3.1), with the parameters used in Section 3.1, into the

radiative correction formula (3.29). The result is compared to the recent cross

section measurements of the ALEPH [13’experiment. The mass of the Z” has, of

course, been obtained from fitting such a curve to the data; however, the peak

height and width of the 2’ have been calculated from the standard model. The

detailed agreement of theory and experiment for the line shape is quite remarkable.-- _

In addition to its effects on the resonance line shape, initial-state radiation has

other important effects on weak interaction experiments at the 2’. In experiments

which depend on specific exclusive final states, the effect of experimental cuts

may be modified by radiation. For example, in the measurement of the forward-

backward asymmetry in e+e- + p+p-, a strict collinearity cut changes the shape

of the 2’ resonance slightly by suppressing its tail. The values of asymmetries

measured at the 2’ peak are affected by the smearing of the e+e- annihilation

energy which arises from radiation. In Figs. 19 and 20, I have redrawn the plots ,-

of AFB and ALR versus beam energy taking into account the effects of radiation

by computing the various helicity cross sections using (3.29) before forming the

asymmetry. Notice that the various quantities ALR are relatively weakly affected

by radiation, but that the forward-backward asymmetry in e+e- + /J+P- is very

strongly perturbed. This effect was pointed out by Bohm and Hollik in ref. 24.
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Figure 18. Total cross section measurements on the 2’ peak reported
1131by the ALEPH experiment, compared to the line shape computed from

(3.29).
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Figure 19. Forward-backward asymmetries in the vicinity of the Z”

resonance, computed at lowest order (dashed curves) and including soft

radiative corrections according to (3.29) (solid curves).
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Figure 20. Polarization asymmetries in the vicinity of the 2’ reso-

nance, computed at lowest order (dashed curves) and including soft radia-

tive corrections according to (3.29) (solid curves).
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4. Extension of the Weak Interaction Gauge Group

Now that we have seen how to obtain the values of the 2’ resonance param-

eters, we should analyze the implications of the values of these parameters for

the standard model and its variants. In principle, any particle which couples to

SU(2) x U(1) can appear in loop diagrams correcting the weak boson propagators

and vertices and thus can modify the leading-order predictions of the standard

model in order cy. In the next section, I will discuss such loop corrections in a

systematic framework. However, it is possible-even with our present detailed ex-

perimental knowledge-that the gauge group of the weak interactions is somewhat

larger than that of the standard model. In this case, one expects variations from

the standard model predictions even at leading order in o. In this section, I will

briefly discuss the effects of a new heavy weak boson in modifying the properties

of the 2’ resonance.

4.1. AN EXTENSION FROM &j GRAND UNIFICATION

If there does exist a second weak vector boson Z”, it should mix, at some level,

with the standard 2’. This mixing will induce a modification of the zeroth-order

2’ current; instead of (2.7), the physical 2’ will couple to a rotated current

Jf = cos 8, [ JjL - sir? 6, Jf] + sin 8, J$ ,

where the second term is the current of a charge Q’ which is orthogonal (in some

extended space) to the SU(2) x U(1) h gc ar es of the standard model. This addition

will cause modifications of the 2’ asymmetries and partial widths. These mod-

ifications are independent of the mass of the 2” depending only on the mixing,

angle 8,. Of course, they also depend on the explicit form chosen for Q’.

It would be wonderful to understand the systematics of the effect of the mod-

ified current (4.1) for the most general charges Q’; however, I do not know how to

present such an analysis compactly. Instead, I will restrict myself to a specific class
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of models which have been used by many authors as a laboratory for exploring the

effects of a 2”. As is well known, grand unification in W(5) contains precisely the

gauge bosons of the standard model, plus additional heavy bosons which mediate

proton decay. However, this grand unification group may be extended to SO(l0)

and further to &, producing at each stage one extra neutral boson whose charge

commutes with the standard model gauge group. These bosons, or at least some

linear combination of them, might well have a mass in the region of a few hun-

dred GeV. Langacker, Robinett, and Rosner 1251 have presented a specific scheme

in-tiich they consider one arbitrary linear combination of these two addition neu-

tral bosons to represent the 2”. The linear combination is characterized as second

mixing angle 0, which is essentially unconstrained. This leads to a family of models

with

Q' = sine, ~0~0. (4.2)

In this formula, x and 11, are quantum numbers, which, for the various species of

fermion,  take the values

(4 4L eR (&)L UR dR
,O

X 3 1 - 1 1 - 3

tc, 1 - 1 1 - 1 - 1

(A transparent derivation of these quantum numbers from & may be found in

Ref. 26.) By adjusting the parameter 6 in (4.2), we can sweep through a variety

of structures for the 2” charges. This gives some robustness to this scheme of

phenomenology.

I should note that there are strong experimental constraints on the size of the

mixing angle 6,. For most values of 0 (cos 8 2 0), low-energy neutral current

experiments restrict 8, to roughly the range -0.05 < 8, < 0. The precise allowed

regions, for some specific choices of 8, are displayed in the papers of Amaldi, et al.,

Ref. 9 and Costa, et al., Ref. 10.

In addition, the recent precise measurements of the W boson mass by the
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CDF and UA2 collaborations WI put a further, and rather model-independent,

constraint on 8,. It is expected that a second charged weak boson cannot appear

with a mass below a few TeV, since otherwise it would give a large enhancement

of KL-KS PImixing. Assuming, then, that there is no new light W, the mass of

the W should be unperturbed from its standard model value, while the mass of

the 2’ is affected  by mixing with the 2” The unperturbed mass of the Z”, mzs,.

may then be recovered from mz, mp, and the mixing angle 6, using the simple

properties of two-level mixing. One finds:

40 = rni cos2 6, + m2,, sin2 8, . (4.3)

The value of rnzo obtained in this way must be related to the measured value of

mw through the usual standard model calculation (reviewed in Section 5.6). To

understand this constraint, I have taken the average of the CDF and UA2 values

of mw:

mw = 80.22 f 0.35 GeV , (4.4) .*

raised the value by 1 0, computed the corresponding unperturbed 2’ mass as

described in the next section, and plotted in Fig. 21 the contour in the plane

of sin&, versus mp along which this calculation agrees with the value of rnzo
from (4.3). The region inside the contour is allowed at probable confidence. This

constraint turns out to be quite sensitive to the value of the top quark mass, since,

as I will explain in Section 5.6, a heavy top quark tends to decrease the Z-W mass

splitting. This method for constraining 6, was introduced by Langacker in Ref.

29; he pointed out there that this same constraint is an upper bound on 0, in

models with several 2”s if mp is taken to be the mass of the lightest 2”.

A second effect of the mixing between the 2’ and 2” is a change in the

relation between mz and the value of sin2 8, which enters the prediction of the 2’

resonance cross sections and asymmetries. In the results of the next section, I have

taken this effect into account by computing rnzo from (4.3) and using this value to
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Figure 21. Probable confidence allowed region for 6,, for rnt = 100,

200 GeV, based on the value (4.4) for the W mass.
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extract sin2 e,, assuming rnp = 500 GeV. This correction has only a minor effect

on these calculations.

4.2. OBSERVABLE CONSEQUENCES OF AN EXTENDED GAUGE GROUP

Now that we have defined a model with extended gauge symmetry, let us

compute the effects of this model on the properties of the 2’. CvetiE and Lynn [301

have suggested that the 2’ asymmetries are particularly sensitive to the mixing of

the-Z0 with a 2”. More recently, Altarelli and collaborators [311 have sketched out

-a systematic program of experiments to search for the effects of a 2”. My analysis

will concentrate on the simplest observables that they discuss.

If, for each left- or right-handed species, we let

Qz = cose,(~3 - Q sin2 6,) + sin 6,Q’

the relation (3.8) for the .Z”-partial  widths is modified to

r; = amz

6 sin2 6, COST 6, am - Nj -L R

(4.5)

(4.6)

From this equation, we can compute the zeroth-order peak cross section of the Z”,

using (3.7), and the polarization asymmetries into various species, using

On the 2’ pole, the forward-backward asymmetries are given by the simple rela-

tions

&Bk+e- -+ jf;> = 4 LR LR -?A” Af (4.8)

In comparing the predictions of models with extended gauge groups to experi-

ment, it is important to compute quantities which are directly observable, avoiding
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as much as possible the necessity for using standard model calculations of unmea-

sured quantities. For example, since the partial width of the 2’ to neutrinos

depends on the mixing with the Z”, one should compare the directly measured ra-

tio of leptonic to hadronic branching fractions of the Z”, rather than using the 2’

branching fraction to leptons, which is inferred from this quantity by adding the cal-

culated neutrino partial width to the denominator. In this spirit, I have considered

the effects of the 2” on four of the most accessible 2’ resonance parameters-the

zeroth-order total hadronic cross section, the total width of the resonance, the

ratio of leptonic to hadronic branching fractions, and the polarization asymmetry

from e+e-. In Figs. 22, 23, and 24, I have plotted these quantities against one

another for (-7r/2) < 8 5 (r/2), for the values 8, = -0.01, -0.02, -0.03. The

standard model reference values, obtained for ml = 100 GeV, rnH = 100 GeV,

44) = 0.11 f 0.0.1, is indicated by the stars. The lines through these stars

indicate the variation of the standard model prediction as mt is varied from 50 to

200 GeV. This dependencewill be discussed in detail in Section 5.7. Notice that

observables involving leptons are particularly sensitive to the effects of a Z”, since m.
the couplings of the charged leptons to the standard 2’ are relatively weak. The

standard and nonstandard predictions are compared to recent measurements from

LEP. It is clear that measurements at the 2’ will soon dramatically constrain, and

may perhaps discover, the influence of a 2”.
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Figure 22. Effect of Z”-2” mixing on the rapport between the 2’ peak

hadronic cross section and the ratio of leptonic and hadronic branching

fractions. The stars denote the range of the standard model predictions.

The three curves correspond to 8, = -0.01, -0.02, -0.03; each sweeps out

the region -n/2 < 6 < n/2. The predictions are compared to data from

recent publications of the ALEPH [13’,. L3!14’and OPAL’151experiments  at

LEP.
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Figure 23. Effect of Z”-2” mixing on the rapport between the 2’

total width and the ratio of leptonic and hadronic branching fractions.

The notation is as in Fig. 22. The horizontal lines show the effect on

the standard model prediction of a variation in mt from 50 to 200 GeV

and a variation in a,(mi) from 0.10 to 0.12. The stars indicate the cases

mt = 100 GeV. The mt effect was included in Fig. 22, but it was almost

invisible there.
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Figure 24. Effect of Z”-Z”’ mixing on the rapport between the polar-

ization asymmetry ALA and the ratio of leptonic and hadronic branching

fractions. The notation is as in Fig. 23.
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5. Renormalization of Weak Interaction Parameters

For the remainder of these lectures, I will assume that the standard W(2) x

U(l) model is the correct picture of weak interactions at zeroth order. However,

the new precision experiments make it necessary to compute order a radiative

corrections in order to allow a detailed comparison of theory with experiment. This

gives us an opportunity to use these radiative corrections to probe the standard

model in detail, and even to look beyond it. The opportunity comes from two

sources. First, the typical size of radiative corrections is no longer a small number

in the era of weak boson experiments. Indeed,

Q
G-mz - 100 MeV , (5.1)

an accuracy already reached for the 2’ mass and soon within reach for the W mass.

Second, as I will explain in this section, radiative corrections from specific sources

are often larger than this simple estimate, as a result of the essential chirality of

the standard model. These two points apply equally-and the second may apply

even more strongly-to radiative corrections due to undiscovered heavy species.

In this section, I will review the theory of these order-a corrections to weak

interaction parameters, the corrections which I termed ‘hard’ in the discussion of

Section 3.2. I will explain how these corrections may be calculated and how they

influence measureable quantities. The effect of the top quark in weak radiative

corrections is particular easy to understand. Since its influence is large and also

quite topical, I will use this effect as my main illustrative example.

-

5.1. RENORMALIZATION OF Q

The prototype of hard radiative corrections is the electromagnetic vacuum

polarization. Let us begin by studying this correction, which gives a momentum-

dependent renormalization of the electric charge. This correction provides a con-

ceptually simple renormalization effect to introduce our program. It also has some

practical significance for precision calculations in weak interactions.
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Figure 25. Conventions for the electromagnetic vacuum polarization.

I will define the electromagnetic vacuum polarization IIQQ(q2) as the coefficient

of gJ’” in the photon self-energy, as indicated in Fig. 25(a). I have extracted from

DQQ the coupling constant e2; throughout this section, unembellished coupling

constants e, g will refer to bare parameters from the standard model Lagrangian.

The full kinematic structure (9“’ - qfiq”/q2) follows from the conservation of the ,D,

electromagnetic current. Since the photon self-energy has no zeromass pole, we

must have IIQQ w q2 as q2 -+ 0. Then it is convenient to define

(In textbooks on QED, it is (e211b,)  that is usually called the vacuum polarization.

My notation differs from this in order to treat vacuum polarization diagrams for

the photon and the heavy gauge bosons on the same footing.)

If the photon self-energy corrections are summed up to all orders, as suggested

in Fig. 25(b), one finds the complete photon propagator

-ie2
q2 (

1 + elnQQ-$ + . . .
>

-igw
- g” = - * e2

q2 (1 - e211&) ’ (5.3)
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The form of this equation suggests that we should define a running electric charge

e9(q2) =
e2

1 - e211&(q2) ’ (5.4)

The value of a measured from the electron (g - 2) or the Josephson effect is the

coefficient of l/q2 in the photon propagator at q2 = 0; that is 47ra = e:(q2 = 0).

Replacing the bare coupling constant e by cr using this relation, and also setting

47r&+) = ez(q2), we have

1
4m(q2)

= & - [“&Qk2) - G&91 * (5.5)

The vacuum polarization II& due to a fermion  loop is ultraviolet divergent; how-

ever, this divergence cancels in the difference of vacuum polarization amplitudes

which appears in (5.5). This equation can thus be the basis for concrete physical

predictions. .s,

It is interesting to use (5.5) to compute the change in the value of the effective

electric coupling as q2 changes from 0 to m8. Let us approximate HQQ, for each

fermion  flavor, by the simplest l-loop diagram, and evaluate this diagram in the

limit rn; >> m2. (I will present a more general formula in the next section.) This

gives

where Qr is the electric charge and Nf is the factor (3.3). Evaluating this ex-

pression for the various quarks and leptons (using current algebra masses for the

quarks), we find

e CL 7 U d s C b

mass (MeV) 0.5 106 1784 5.5 8 150 1200 5000:
A(d) 2.4 1.3 0.7 2.5 0.6 0.4 1.0 0.1
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so that in all 0-l -a,’ (mi) - 8. A more accurate estimate, presented just below,

gives a 6% upward renormalization of cr. Intuitively, one would expect that it is the

value of a at rni, rather than at 0, which should enter the evaluation of standard

model predictions for the weak boson masses. For example, the relation between

the Fermi constant and the W mass, in leading order, is

-_ _
GF e2-=
fi 8 sin’ &m& ’ (5.7)

If cr,(mi) is used in this relation instead of Q to compute mw from GF, the

prediction for mw is shifted upward by 3%. Almost ten years ago, Marciano  and
Sirlin [32’331 showed by detailed calcuation  that this large shift indeed appears in

the standard model radiative corrections to mw.

Since the electromagnetic vacuum polarization is such an important contribu-

tion to weak interaction radiative corrections, it is worth a digression to explain

how it may be evaluated more exactly. Our estimate above was adequate for the

leptons, but for the quarks it was little more-than a guess. However, the quark ‘*’

contribution to IIQQ can be evaluated accurately by using the optical theorem

to relate the hadronic corrections to forward Bhabha scattering, indicated in Fig.

26(a), to the total cross section for e+e- + hadrons. This yields

Irn @JQb2) = 12n’ R(q2) (5.8)

where R(q2) is the usual ratio of e+e- cross sections to hadrons versus muon pairs.

Thus ,  nbQ qa uires an imaginary part for real positive values of q2. It follows that,

when this function is considered as an analytic function of q2, it has a discontinuity

across the real q2 axis given by Disc nbQ = 2iIm “6Q. This allows us to use (5.8)

to evaluate a Cauchy  integral for “bQ about the contour in the q2 plane indicated

in Fig. 26(b):

f

ds’ 1
nb,(q2) = - -

2?ri s’ - q2 nQQ(S') 4

Inserting (5.8) into (5.9), and subtracting the same integral evaluated at q2 = 0
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Figure 26. Evaluation of the hadronic contribution to the electromag-

netic vacuum polarization. II

we find

-e2nbQ(q2) - e2nbQ(o) = z Pfds’R(s’) [& - $1 . (5.10)

0

A recent evaluation of the integral (5.10) from the measured e+e- annihilation

cross section by Burkhardt, Jegerlehner, Penso, and Verzegnassl‘[341 gives the result

*-l - O;l(,%)]hdrotic  = 3.95 f 0.12 . (5.11)

Combining this with a more accurate evaluation of the lepton vacuum polarization

diagrams, one finds

cr$(mi) = 128.77 f 0.12 . (5.12)

(The subscript o indicates that this value of a+ takes into account only the renor-
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malization effects due to observed quarks and leptons, and not the possible addi-

tional effects due to the top quark and other heavy species.) The relative error in

c+(rn~) is 9 x 10-4. This error is dominated by the uncertainties in the e+e-

total cross section measurements from 2 GeV to the J/rl, and from 4 GeV to the

highest energies of SPEAR.

In calculating weak interaction radiative corrections, we will also encounter

vacuum polarization diagrams for weak gauge bosons, and these contain simi--.- -
lar corrections from hadronic intermediate states. However, as Lynn, Penso,  and

Verzegnassi 13” have explained, the most important of these contributions are ac-

tually proportional to (5.11). The remaining terms are small and are dominated

by contributions from the well-studied vector mesons w and 4.

5.2. THE STRUCTURE OF VACUUM POLARIZATION AMPLITUDES

To evaluate more general weak radiative corrections, we will need to discuss a

wider variety of vacuum polarization amplitudes. Thus, in Fig. 27, I have presented _,

in a standard notation the vacuum polarization amplitudes of the photon, Z”, and

W, and the amplitude for photon-Z’ mixing. In this figure, and henceforth, I use

the abbreviations

sin2 8, + s2 , cos2 8, -+ c2

in writing the values of loop amplitudes. It is most useful to break up the 2’

vacuum polarizations into the contributions of electromagnetic and weak isospin

currents (replacing the 2’ current by (2.7)), and this has been done in setting the

conventions shown. For later convenience, I have written the W vacuum polariza-

tion as a matrix element of weak isospin currents JLL.

If we wish to evaluate the effect of the top quark on weak interaction param-

eters, we must compute the contributions to this vacuum polarization amplitudes

from top and bottom quark loops. In general, the contribution from heavy fermions

is well approximated by the simplest fermion  loop diagram, shown in Fig. 28(a).
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Figure 27. Vacuum polarization diagrams arising in the evaluation of

weak interaction radiative corrections.

The evaluation of this diagram for vector currents is a standard exercise in QED.

However, for the weak interactions, we also need to consider chiral currents, and

these add some interesting complications. Let me, then, display separately the

contributions to the fermion  loop diagram from left- and right-handed currents,

and allowing the particle and antiparticle in the diagram to have different masses.

These terms take a relatively simple form when expressed as Feynman parameter

integrals
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IlLL(mf,m&  q2) = IIRR(mf, mS, n2)

1

I [

A2
=

- -(4:)2 dx log M2 _ x(1 _ x)q2 ’I(x(1 - x)42 - 5lM2)
0

=

1

A2

(5.13)

where

M2=xm~+(l-x)mz. (5.14)

The parameter A is an ultraviolet cut-off (though actually these expressions are

most easily obtained using dimensional regularization). Adding these four con-

tributions, with equal mass fermions, we find the vacuum polarization of vector

currents

1
IIvV(m2,m2,q2)  =  - -

( 4 $ I (dx log
A2

,2 > x(1 - x)q2 (5.15)- x ( 1  - x)q2 *
0

which is the standard QED result. The approximate formula (5.6) is simply ob-

tained from the limit q2 >> m2 of this expression. The integrals in (5.13) and

(5.15) are straightforward to evaluate analytically; detailed expressions are given,

for example, in ref. 5.

The various vacuum polarization amplitudes shown in Fig. 27 are straightfor-

wardly reconstructed from these functions. For a fermion  doublet of weak isospin

+, fermion  masses m,, md, and electric charges QU, Qd (Q,, = Qa + l), the four
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Figure 28. Contributions to the vacuum polarization amplitudes from

(a) heavy fermions, (b) the Higgs boson of the minimal standard model.

amplitudes are given by

I-&(g2) = QE Qw(m;, m:, q2) + Q: b+-& mi, a2)

= i [Q,, I'Ivv(m~, mz, q2) - Qd hw(mfi, m$, g”)]

H33(q2) = [MmE, 4, n2) + h(m:, & q”)]

l-b&12) =
(5.16)

For quarks, multiply these expressions by 3 colors.

The amplitude IIvv in (5.15) vanishes at g2 = 0, in accordance with our earlier

argument. In fact, only one vector current is needed to achieve this cancellation,

so IILv, and therefore the term II~Q in the photon-Z’ mixing amplitude, also

vanishes at q2 = 0. However, the purely chiral vacuum polarizations do not in

general vanish at zero momentum. From (5.13), we see that the zero-momentum
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limit of If~r, is not only nonzero but actually increases with the masses of the

fermions in the loop:

b$& mf,g2) s -(*:)2
A2m: 1% m,2

(5.17)

-.- _

for rnf >> q2, rni. This unusual behavior has important physical consequences,

as we will see below.

For completeness, I also display the contributions to the various vacuum po-

larizations from the Higgs boson of the minimal standard model, which appears in

the diagrams shown in Fig. 28(b). These are

nQQ(q2) = hQk2)  = 0

1
- A2 1 1.

0
xm$ + (1 - x)m$ - x( 1 - x)q2

- ((1 - 2x)2q2  + 4ml+ (1 - 2x)(mi - m2,)) (5.18)

1
~11(42) = -q-& 112

xrng + (1 - x)mb - x( 1 - x)q2 1
0

’ ((1 - 2X)292 + 4m2, + (1 - 2x)(,& - mi)) ,

where rnH is the mass of the Higgs scalar.
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5.3. RENORMALIZATION OF WEAK INTERACTION ASYMMETRIES: I

Armed with this technical information, we are ready to study the radiative cor-

rection to some particular experiment. Let begin with a rather simple example, the

correction due to the top quark to the prediction of weak interaction asymmetries

at the 2’ resonance. In particular, I would like to focus on the renormalization of

the polarization asymmetry ALR, defined as

.- -

ALR=
b(eLe+ + 2) - b(eie+ + 2)
a(ele+ + 2) + o(eie+ + 2) *

(5.19)

The particular asymmetry ALR is an important quantity for two reasons. First,

it is observable not only in its own right but also as an ingredient in the various

forward-backward asymmetries at the 2”. .The leading order relation

(5.20)

is true to all orders for the contribution of the 2’ resonance. More generally, I will

argue below, all weak interaction asymmetries measure the same radiative correc-

tion amplitude, up to some unimportant residual effects. ALR is thus representative

of a class of radiative corrections that we would like to investigate.

Second, among the various weak asymmetries, ALR is the most sensitive to

radiative corrections. The formula for ALR in the standard model at leading order

is

ALR = 1 8+(;f~4~~2~\2 E 8(1/4 - sin2 0,) .
W

(5.21)

Evaluating this expression with the parameters of Section 3.1, we find ALR 2 0.13.

But ALR is an asymmetry, and, better, the asymmetry of a total cross section with

respect to changes in the polarization of a physically isolated source. This means

that almost all systematic errors cancel in the measurement of ALR, so that, with

enough statistics, it should be ,possible to measure this asymmetry to 1% or so of
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its value. To convert this error to an error on sin2 6,, one should divide by the

factor of 8 in (5.21), giving the possibility of achieving an accuracy

(5.22)

With this promised precision in mind, let us evaluate the contribution of the

top quark to ALR. The basic ingredients of the calculation are displayed in Fig.

29..-The leading order vertex for e+e- annihilation into a 2’ follows directly from

(2.7). The corrected polarization asymmetry may be found from the ratio of the

terms proportional to 13L and Q in the complete, radiatively corrected vertex.

In the second line of 29, this ratio has been labelled s:. The corrected value of

ALR is obtained by replacing sin2 8, by sf in (5.21). This complete vertex gets

contributions from the various diagrams shown in the third line of 29, some of which

are rather complicated to compute. However, since there are no direct couplings

between the top quark and the electron, the top quark enters the renormalization of

this vertex only through the last diagram shown in Fig. 29, the vacuum polarization *’

diagram involving photon--Z’ mixing.

This particular simplification occurs quite generally for radiative corrections

due to heavy or exotic particles. Because exotic particles often have no direct

couplings to light fermions, and in all other cases these couplings are highly con-

strained, it is usually true that the only important effects of heavy particles on the

weak interactions of light quarks and leptons occur by the indirect effects of these

particles through their vacuum polarization amplitudes. An interesting example
[36,37-Jis the case of supersymmetric particles. The diagrams involving the direct

coupling of leptons to their superpartners turn out to be quite small, while the

largest corrections come from the vacuum polarization of the t quark and the i

squark. In Ref. 38, contributions arising through vacuum polarization amplitudes

were termed ‘oblique’ radiative corrections. As we continue this analysis, we will

see that such corrections are not only numerically important but also quite easy

to understand in a systematic way.
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Figure 29. Calculation of the l-loop renormalization of weak interac-

tion asymmetries at the 2’.

In principle, we might try to illustrate this in the calculation of ALR, by adding

together the leading order diagram and the oblique contribution of the vacuum

polarization amplitude for photon-Z’ mixing. The result is

e I3 - [s2 - e2(niQ - s211&)]Q ,
f23

(5.23)

and so we can identify
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sin2 Bw - e2(niQ(m;)  - sin2 @wnbQ(  mi)) . (5.24)

Unfortunately, this result is a disaster; the two vacuum polarization amplitudes

are both ultraviolet divergent, and so the answer makes no physical sense.

5.4. AN EXHORTATION ON sin2 0,

In a renormalizable quantum field theory, the appearance of ultraviolet diver-

gences in a physical amplitude is a sign that we are asking the wrong question.

In the previous section, we computed the radiative correction to the polarization

asymmetry by computing the shift of the left-right asymmetry of electron-positron-

2’ vertex from its value in leading order. But this leading order value is a ratio of

bare parameters; it cannot be measured directly. To make a physically meaningful

statement, we must predict the value of the asymmetry from other measureable

weak interaction quantities.-

One straightforward way to structure such a prediction is the following: First, ‘-’

imagine measuring sin2 8w using other observables of the weak interactions, for

example, o, GF, and rnz. We may consider the evaluation (5.21) using this value

of sin2 8, as giving a reference value. We may then predict the deviation of the

actual value of ALR  from this reference value by computing a set of Feynman

diagrams. This process depends, in its intermediate stages, on the exact definition

of sin2 6, in terms of observable quantities. Many different definitions are possible,

and I will discuss a few of these below. The final result of the process is a prediction

for ALR in terms of Q, GF, and mz, and this result will of course be independent

of the definition of sin2 8, used. In principle, we might simply discard sin2 Bw and

speak only about relations between directly measureable quantities. This purist

attitude has been advocated recently by Passarino.13’11 must admit, though, that I

find the value of sin2 8, a useful point of reference, if I know exactly what it means.

The most common definition of sin2 0, in the literature on weak interaction

radiative corrections is one introduced by PISirlin, which elevates the leading order

62



I

mass relation (2.4) to a definition

“&sin28,(s E 1 - 2 .
m,

This definition is technically very useful, but I feel uncomfortable with it, for two

reasons. First, the mass of the W cannot be measured with the highest precision,

so that in practice one must compute mw in terms of mz, a, and GF in order to

apply this definition. This problem is exacerbated by the fact that the Feynman

diagrams which renormalize the W-Z mass splitting depend rather strongly on

the top quark mass, through the relation .(5.17). Thus, the use of this definition

introduces a strong dependence on rnt into processes such as the weak asymmetries

at the Z”, which do not otherwise contain this singular dependence. Similarly, the

value of sin2 6,ls depends on other new physics which might be added to the

standard model.

Another possibility is to define sin2 0, as a ratio of coupling constants renor-
[3W’lmalized by minimal subtraction. In this way, we define the weak interaction

couplings just as the strong interaction coupling oS is defined in QCD. This defini-‘-’

tion has the advantage of removing the strong dependence on the top quark mass.

It has a further advantage for theorists who wish to predict the value of sin2 8,

from grand unified theories, since that computation is done most naturally in this

framework!411 However, this definition gives up the clear physical picture which is

available when sin20, is constructed from quantities which are directly measure-

able. In some sense, using sin2 OWJm introduces into the weak interactions all the

conceptual problems that experimenters-and theorists-have in understanding

the meaning of Q~ or Am

As a compromise between these two viewpoints, let me propose a new standard

for sin2 8,--the 2’ standard: Define 6, and sin2 6, by the formula:

In this formula, aL,o(m$) is the value of Q, at the 2’ mass, including the renor-
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malization due to observed quarks and leptons, as determined in Section 5.2. Re-

gardless of the definition of a, the formula is a correct lowest-order relation in the

standard model and may then be the basis for a definition to all orders. The use

of cr*,,(mi) rather than Q incorporates into the formula the Marciano-Sirlin renor-

malization effect described below (5.7); this is the largest renormalization effect

coming from the conventional states of the standard model.

The value of sin2 B,Iz is now known extremely precisely; in fact, the error in

this-quantity is a good measure of the real accuracy of our understanding of the

standard model, before theoretical uncertainties due to the top quark mass and

other types of new physics are included. Using the value of the 2’ mass given in

(2.10) and the value of a,,,(m$) from (5.12), we have

sin2 0,jz = O-2317(4) .

The error in sin2 0,lz arises from

A sin2 0,jz Z 0.3 A % Amz- , 2 -
>

= (3.1, 2.2) x 1o-4 .
a mz

(5.27)

(5.28) -

Let me stress again that, by definition, sin2 0,lz is independent of the mass of

the top quark, the Higgs boson, or any other type of new physics. The dependence

on these parameters is introduced when sin2 6,lz is used to predict the values of

other observables of the weak interactions, such as the W boson mass or the polar-
c
ization asymmetry ALR.* It is my hope that the use of sin2 &,lz as a standard will

clarify conceptually the process of using precision weak interaction measurements

to constrain or to discover new physical processes.

rt This sentiment accords with Taylor’s Dogma: (421 “One should not apply to the data a
radiative correction which depends on the masses of undiscovered particles.”
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5.5. RENORMALIZATION OF WEAK INTERACTION ASYMMETRIES: II

Now that we have clarified the meaning of the parameter sin2 0,, we can see

that the calculation we were performing at the end of Section 5.3 was misguided.

There, we tried to compute the difference between st, the measureable ratio of the

I3 and Q terms in the weak neutral current, to the bare parameter sin2 6,, which

is not directly observable. A more meaningful calculation would be to compute

the-difference of two quantities which are completely defined by experiment, for

example, to compute

s: - sin2 6,lz . (5.29)

Let us, then, assemble the complete contribution to (5.29) arising from top and

bottom quark loop diagrams.

We may take the shift of S: from its bare value to be that given in (5.24). With

no extra effort, we might evaluate this vertex at a general value of q2, where q is

the momentum of the 2’. The parameter S: (9”) is given by .s.

9 12
sz = g2 + 9’2 - e2[I&(q2) - s2n&dq2)1 . (5.30) y

But to compute (5.29), we must also work out the shift of sin2 &,lz from its bare

value. To do this, we need the shifts of o, GF, and mz. Figure 30(a) shows the

shift of CY:

47ro = e2(1 + e2nb,(0))  . (5.31)

(To be careful, we should exclude here the contribution of the b quark loop to

(5.31), since this effect was already included when we exchanged CY for cr,,,(mH).)

Figure 30(b) shows the shift of m$: .

rni = a (s2 + g’2)v2 (1 -I $ -$J (h - 2s2&~ + s~&,~J) (ma)) . (5.32)
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Figure 30. Shifts of the quantities needed to define sin2 B,Iz generated

by l-loop diagrams involving the t quark. -
s

Figure 30(c) shows the shift of GF, as it would be extracted from p decay:

--i-E! l-l,,(O)77$ s2 . (5.33)

Note that in each case, the contribution of t and b comes only from vacuum po-

larization diagrams. In the language of Section 5.3, all of these contributions are

purely ‘oblique’.

We can now compute the shift of sin2 &(z from its bare value with only a bit

of algebra. In general,

6(sin2 0,) = 2scb9, = 2 J:C,, 6sin26, 2s2c2
6 sin 29,= ~2 (5.34)

w - s2 sin28, *
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Then, inserting the shifts of cr, GF, and mb,

9 12
sin26,1z  =

g2 + g’2

12
g t

s2c2
= g2 + g’2 c2 - 32

. 33 - 2S2n3q t S’nQQ)(mi) .
.- - 1

(5.35)
By combining this result with (5.30), we find following contribution to (5.29) from

l-loop diagrams involving the top quark:

2 k2) = sin2 e,lz

e2
t-

{ [

n33(ms) - 2s2n3q(m;) - WO>
c2 - s2 4

- (c2 - g) n$q2)]

e2s2
t- [s211&(m$) - c211bQ(0)  + (c2 - s2) IIb,(q2)]

>
. ._.c2 - s2
(5.36) -

In fact, this formula did not make of any special property of the top quark, other

than that it does not couple directly to light quarks and leptons. The formula

(5.36) holds for any oblique weak interaction radiative correction.

We should immediately check that our new analysis solves the problem of

ultraviolet divergences which was raised at the end of Section 5.3. Recall from

Section 5.2 that the vacuum polarization amplitudes I133(q2) and IIil(q2) contain

two separate divergent terms, in their value at q2 = 0 and in their first derivative

at this point. However, each divergence of II33 is related to a divergent term in

IIll by weak isospin symmetry. In particular,

II33(0)  = IIll(O) + finite  ; ll3~(0) = IIQQ(O) = 0 . (5.37)

This formula insures that the divergent terms from I&3(0) and IIll cancel in

(5.36). The divergences in the first derivatives are also related by weak isospin
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symmetry:

-$ n33cq = + h(O) = + n3Qw * (5.38)

The last part of this relation follows from the fact that Q = I3 + Y; thus n3Q =

II33 + II3y. Since the weak hypercharge is orthogonal to 13, the second piece of this

expression has no divergence in its first derivative. The first derivative of any II at

a different value of q2 differs from the value at q2 = 0 only by finite terms. Then

the-relation (5.38) implies that (after a bit of algebra) these divergent terms also

cancel out of (5.36). Finally, the divergent terms in the last line of (5.36) assemble

into differences of first derivatives of HQQ, and these are again finite. Thus, the

relation (5.36) is a completely well-defined theoretical prediction, which may now

be compared to experiment.

Let us, then, evaluate (5.36) and examine the properties of this relation, The

formula is easily evaluated numerically by inserting the formula of Section 5.2 for

vacuum polarization amplitudes. In Fig. 31, I have plotted the prediction for

sZ(m$) in the standard model as a function of-the top quark mass, for fixed Higgs .-’

boson mass, and as a function of the Higgs mass, for fixed mt.

The next few sections contain many figures similar to Fig. 31 which give the

dependence of various weak interaction parameters on ml and ma, so it is worth

pausing to clarify the conventions reflected in these figures. The figures include

not only the effects of rni and mH but also the additional l-loop corrections of

the standard model. However, these additional corrections are added in a rather

simplistic way, by introducing fixed shifts of sz and other basic quantities. The

explicit procedure is spelled out in Section 5.10. This gives a simple calculational

scheme, which I hope that you can straightforwardly reproduce. However, the

simplicity of the method limits the accuracy to about 0.5% in sin2 6,. The best

current calculations of weak readiative corrections are reported in Ref. 6; these

results are typically good to 0.1% in sin2 6,. A calculation at this level is not

recommended as an educational exercise, but it is essential to extract the full

information from a precision experiment. The three curves in each set reflect
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Figure 31. Dependence of sz(mb) on rnt and mg predicted by (5.36),

using the known value of mz. The two bands show the result of varying

ml, with mg held fixed at the two values 100 GeV, 1000 GeV. The width

of each band reflects the 1 u error in mz.
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the 1 u uncertainty in the 2’ mass value (2.10). In the present situation, where

the dominant uncertainty in sin2 6,lz comes from the renormalization of cr, this

understates the true errors by about a factor of two. Hopefully, new data on low-

energy e+e- annihilation cross sections will decrease this uncertainty and make

these errors appropriate for future comparisons.

The results of Fig. 31 may be translated into predictions for the weak asym-

met&s. Thus, in Figs. 32 and 33 I display the predictions for ALR and for the

forward-backward asymmetries at the 2’ in e+e- + d and e+e- 3 p+p-. The

solid curves apply to the idealized situation in which the hard amplitudes are

evaluated at the resonance peak. The dashed curves show the effect of including

soft radiative corrections according to (3.29) and evaluating the expressions at the

true peak cross section mz + 100 MeV. This soft radiative correction is a small

perturbation of ALR and AbFs, but is has a large effect on AFB.

We argued in Section 5,3 that ALR is exceptionally sensitive to effects which

perturb sin2 6,, and that is borne out here. Since the polarization asymmetry for .n
b quarks at the 2’ is close to 1, we would expect from (5.20) that this forward-

backward asymmetry would behave quite similarly to ALR, and this, again, is clear

from Fig. 32. In principle, this forward-backward asymmetry might be used as

a substitute for the measurement of ALR. The use of this measurement brings

two new difficulties. First, the b forward-backward asymmetry is diluted by B-B

mixing; for a precision measurement, the mixing parameter z of the &-Bd system

and the fraction of Bs production must be known to about 10%. Second, this

asymmetry suffers a QCD correction: [431

(5.39)

Neither of these effects would seem to be an obstacle to measuring AbFB to an

accuracy of 3 x 10-3. Another possible substitute for a precision measurement of

ALR is the forward-backward asymmetry to lepton pairs. However, we see from

Fig. 33 that this quantity is unfortunately very small, so that its measurement will

be hindered at an earlier stage. by systematic errors.
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For large values of the top quark mass, the parameter S: decreases quadratically

with ml. Let us evaluate this dependence using the relation

e2(n33(0)  - IIll( E -g m,2 , (5.40)

which follows from (5.17). This singular dependence on ml cancels out of all other

differences of vacuum polarization amplitudes. Thus,-- _

3a 1sz(mi) Z sin2 @,jz - - l-4
16x (c2 - s2) m?, ’

(5.41)

Because this dependence comes from vacuum polarizations which originate in the

renormalization of mz and GF, rather than in (5.30), this quadratic sensitivity

to mt may properly be considered an artifact of the definition of sin2 0,Iz. This

dependence does not appear, for example, in the comparison of s: with sin2 8,.

However, this dependence is also a true aspect of the precision calculation of sz

from mz and, as I have pointed out, the effect is quite observable experimentally’-

for large mt. The quadratic dependence on ml is expected to be independent of

q2. This is illustrated in Fig. 34, where I have displayed the dependence on rnt

and mH of s:(O). This quantity is measureable from the ratio of cross sections for

neutrino-electron and antineutrino-electron scattering. It also plays a role in the

radiative corrections to deep-inelastic neutrino scattering, as I will discuss below.

The physical origin of this quadratic dependence on rnt is easily described. In

the standard model, a heavy top quark cannot be weakly coupled. Since the mass

of the top quark originates from the top quark coupling At to the Higgs field, its

coupling must grow with rni according to

where w is the Higgs field vacuum expectation value. If the weak bosons were

replaced by Higgs fields, the top quark vacuum polarization diagrams would be of
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order

(5.43)

But, when the weak bosons receive mass through the Higgs mechanism, they do

absorb components of the Higgs multiplet to form their longitudinal polarization

states. Thus, (5.43) should also correctly estimate the contribution of a heavy top

quark-to the vacuum polarization diagrams of weak gauge bosons. Indeed, (5.41)

is precisely of this order.

From (5.40), one might conclude that the large radiative corrections due to

mt are a manifestation of weak isospin violation. However, (5.36) has the curious

property that, even if the masses oft and bare set equal and then taken to infinity,

the effect of this doublet of quarks does not vanish. Rather, it approaches the

constant value

s*b-&
3a

= sin26,(z + -
1

24x (3 - 92) -

The asymptotic value is quite closely approximated already when ml = rnb = mz.
In principle, then, after the top quark mass is known so that this contribution may

be computed and subtracted, the measurement of sz from ALR will be sensitive to

additional generations of quarks and leptons, all of whose members are very heavy.

The error quoted in (5.22) is slightly less than the contribution of one new quark

doublet.

-

It would be wonderful if (5.36) were also sensitive to the mass of the Higgs

boson. Unfortunately, the antisymmetric factor (l-22) under the integral in (5.18)

implies that the quadratic dependence on ma cancels out. Indeed, Veltman 131has

demonstrated a screening rule which states that no l-loop corrections to processes

involving light fermions depend more strongly than logarithmically on ma.
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5.6. RENORMALIZATIONOFTHE  W BOSON MASS

i

Using the method of the previous section, we can assemble the effect of the

top quark loop diagrams-or any other oblique correction-on the W boson mass.

The direct renormalization of mw is

mw
g2v2 e2

= 4 + 7 h(m&) . (5.45)

However, to make a physical prediction, we must compare mw to another physi-

cally observable quantity. To do this, we may make use of the simple lowest-order

relation (2.4) between mw, mz, and cos20,. Taking the shift of mz from (5.32)

and the shift of cos2 8,(z from (5.35), we may compute

m2, = rng cos2 8,1z

e2c2

i

2-
s2(c2 - s2)

ll33(m$) - 2s2113Q(ms) - -7g nil(o)
c2-s2

- 7 h(m2w) 1
e2s2m2- w p&+2,)  - “bQ(O)]  *c2 - s2

(5.46) -

By using (5.37) and (5.38), you may easily show that this expression is free of

ultraviolet divergences, just as we found for (5.36).

The dependence of mw on mt and ma is plotted in Fig. 35. Once we have

computed mw from mz, we can construct sin2 &Is, the value of sin2 8, as defined

from the ratio of weak boson masses. The dependence of this quantity of the top

quark and Higgs boson masses at fixed mz is shown in Fig. 36. The dependence

on mt is much more pronounced than that of s:. By applying (5.40), it is easy to

see that the quadratic dependence on mt is

m2w -
3a

m~cos20,1z Z - c2 2
16~ s2(c2 - s~)~’ ’

(5.47)

The formula (5.46) may be viewed as a formula for the difference (sin2  tI,(s -

sin2 0,lz) as a function of mt, &z, and other parameters. Using this formula, it is
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easy to convert the relation (5.36), which governs the radiative corrections to weak

asymmetries, to a formula based on sin2 &Is. I will quote only the asymptotic

dependence of this relation for large mt:

&q2) -
3a 1 rnt

sin20,1s  Z +K-~ .
W

(5.48)

-‘-Another measure of the ratio of the W and 2’ masses is the relative strength

-of the charged and neutral weak currents near q2 = 0. If we include the l-loop

oblique corrections to the lowest-order formula (2.8), this equation is modified to

the form

L J,‘“J,-” + p*(O) (JiL - 2 :J s (0)) ]2 . (5.49) .

The overall coefficient is, by definition, GF. The factor p*(O) arises from the

difference between vacuum polarization corrections to the W and 2 propagators.

Since  n3Q( 0) = IIQQ(O)  = 0, this difference reduces to .e

e2P*(O)  = 1 - s2c2m2 (l-I,,(O) - h(O)> -
Z

This quantity is quite sensitive to large mt, behaving as

(5.50) -

(5.51)

I hesitated to use the symbol p in the previous paragraph. Veltman 1410riginally

defined the ‘p-parameter’

P= n2W
rn$ ~09~ ew (5.52)

to call attention to the zeroth-order relation p = 1 in the standard model (eq.

(2.4)),  and to compute the corrections to this relation, using yet another definition

of sin2 8,. Since that time, the literature on weak interaction radiative corrections
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Figure 35. Dependence of mw on mt and ma, for rnz fixed at its

measured value. The notation is as in Fig. 31.
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Figure 36. Dependence of sin* &Is on mt and mg, for rnz fixed at its

measured value. The notation is as in Fig. 31.
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has been filled with a bewildering variety of definitions of p as ratios of the W and

2’ propagators at many different kinematic points. By this time, it is probably

most sensible to drop the use of p altogether, except (as in the usage of Amaldi,

et al., Ref. 9) to parametrize models in which the relation (2.4) is violated at zeroth

order. I ask your indulgence, though, for my use of p*(O) to represent a particular,

precisely defined, amplitude which is measureable in the ratio of neutral to charged

current neutrino scattering. The notation meshes with a general analysis of the

weak neutral current which I will present in the next section.

5.7. RENORMALIZATION OF NEUTRAL CURRENT AMPLITUDES

As we analyze the observables of the weak interactions one by one, it is nat-

ural. to raise the question of whether different observables measure essentially the

same weak interaction renormalizations, or, conversely, which observables we must

measure to cover the complete set of possible renormalization effects. This ques-

tion is most easily addressed by turning to a somewhat more abstract framework.‘-

Kennedy and Lynn [441 have shown how to construct a general formalism for treating

the renormalization of any process which involves photon or weak boson exchange

between light fermions by writing an effective interaction which generalizes the

zeroth order formula (3.1). In the notation of Kennedy and Lynn, we would write

the effective neutral current amplitude in the form

+ -& (I~ - sf&) q2 TM2 (13' - s:Q')
* * l

where (r3, Q) and (13’, Q’) are the quantum numbers of the external fermions and

all starred quantities are functions of q*.

It is straightforward to verify that (5.53) takes account of all l-loop oblique

corrections to the scattering of two light fermions by the photon and the 2’. The

diagrams we must consider are shown in Fig, 37. To lowest order, the parameters
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e:, sf, M:, 2, in (5.53) may be taken to equal 4rrcr, sin*&jz, rni, and 1, respec-

tively; we define cz = 1 - sz to all orders. If we expand the starred functions to first

order in their deviations from these values, add in the l-loop diagrams which shift

sin26,jz according to (5.35), and compare the resulting expression to the l-loop

corrections, shown in Fig. 37, we find a general expression for the four starred

functions in terms of vacuum polarization amplitudes. For ef(q*) and s:(q*), we
find exactly the relations (5.5) and (5.36). The remaining functions AI: and

Z&*) may be readily worked out. If we introduce

nzz = &(n33  - 2s2n3q  + s41-&) ,

these functions may be expressed as

q*.-- M,2(q2) =(q2 - rni) 1 + -j$nz~l~~=~;)  - (flZZ(q*)  - n.Zz(mi))
(

+w2) =I + s*c* dq*?d(Il33  - 2s*Il3~  +-s~IIQQ)  / 2- IQ -m$
- e*II&(O) -

e*(c* - s*)
$3 P1,(q2) - ~*~&?(q*)) -

The function @(q*) has been arranged to satisfy

(5.54)

(5.55) ‘*

(5.56)

These two functions provide two new and independent finite combinations of vac-

uum polarization amplitudes.

In writing these formulae-and the formulae for sf above, I have assumed that

the various vacuum polarization integrals are real. If this is not true (that is, if

some intermediate state can be produced at the Z”, we should take the real part of

each vacuum polarization integral II except for the term IIzz(q*) in the first line
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Figure 37. Feynman diagrams contributing l-loop oblique corrections

to the scattering of light fermions by the photon and the 2’.

of (5.55). The imaginary part of this correction will then generate the 2’ width,

which would then appear in (5.53)a.s

(5.57)

Kennedy and Lynn have shown that, even though the standard model weak ra- ‘-

diative corrections involve vertex and box diagrams as well as vacuum polarization

graphs, the most important of these corrections can also be written in the form

(5.53). Terms which cannot be shoehorned into this form (for example, nontrivial

form factors of box diagrams) are small-a several tenths percent corrections-at

the Z” and below. (The one important counterexample to this general statement

will be discussed in Section 5.8.) Thus, the effective neutral current amplitude

(5.53) is a very useful way to summarize the effect of radiative corrections both

from within the standard model and from new physical processes.

The Kennedy-Lynn effective amphtude  is sometimes described as merely a

‘scheme’, that is, yet another definition of sin*&,. I hope this discussion, and the

analysis to follow, clarifies that it is actually a general phenomenology of weak

interaction renormalizations, and a very useful one. The starred parameters can

be predicted in any scheme by trading sin2 f&,lz in the formulae above for any other

definition of sin* 8,.
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The effective amplitude (5.53) clarifies which aspects of the neutral current

coupling can be measured with precision at the 2’. In essence, experiments at the

2’ measure values of the starred parameters at q* = rni, and, of these, the only

nontrivial ones are sz(m$) and 2, (mi). We have already seen that st (mi) governs

the weak interaction asymmetries at the 2‘. The factor z+(mi) renormalizes the

2’ propagator; it also multiplies the 2’ width. In fact, the effective amplitude

justifies the expressions (3.1) and (3.8) for the total cross section and the partial

widths at the Z”, with the parameters of this formula evaluated as

Q --$ a.(f-&) ; sin* 8, + sf(ms) ; Z ---) &(mi) . (5.58)

The values quoted in Section 3.1 correspond to mt = rnH = 100 GeV.

.It is unfortunately difficult to extract the value of 2, from experiment. It

is much easier to obtain an accurate value of the peak cross section of the 2’

resonance than to obtain an accurate value of the width. (It is the measurement

of the peak cross section, for example, which gives the strong constraint on the’-

number of neutrino generations.) But the factor Ze(mb) cancels out of the peak

cross section, because it appears in the numerator of the second term of (5.53), as

well as in the factor I7z in the denominator.

The dependence of the 2’ width on mt and rnH is shown in Figs. 38 and 39.

In Fig. 38, 1 have blown up the standard model prediction from Fig. 23, showing

the theoretical uncertainty due to the QCD corrections to the effective number of

colors Nf and the variation as mt is raised from 50 to 200 GeV. In Fig. 39, I have

plotted directly the variation of rz with the top quark and Higgs boson masses.

The rather narrow focus of 2’ resonance experiments, in terms of their sensitiv-

ity to the parameters of the weak effective amplitude, highlights the importance of

obtaining orthogonal measures of weak interaction radiative corrections from other

sources, by precision measurements of mw and of the low-energy parameters s:(O)

and p,(O). However, even though the 2’ experiments must concentrate on the

extraction of the single parameter sf(mi), it is likely that this measurement will
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Figure 38. Enlargement of the standard  model prediction from Fig.

23, showing the dependence on mt, x&d from 50 to 200 GeV, and on the

QCD correction to the hadronic widths, which is varied over the 1 0 error

in (3.3).
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Figure 39. Dependence of the 2’ total width on mt and mg. The

notation is as in Fig. 31.
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give the single most incisive test of the radiative corrections to the standard model.

Perhaps it is fortunate that this parameter can be measured in many different and

complementary ways.

5.8. A RENORMALIZATION UNIQUETO THEN QUARK

There is one interesting example of a weak interaction renormalization which-.- _
falls outside the scope of the effective amplitude (5.53), specifically because it in-

volves the top quark and can be enhanced by a power of (mf/mw) when mt is

large. This is the one direct correction which involves the top quark: the renormal-

ization due to t of the vertex for 2’ + bb. The correction arises from the diagrams

shown in Fig. 40, plus the additional diagrams required to make a gauge-invariant

set., This correction is particularly interesting because it has the t quark as its spe-

cific origin. Up to this point, all of the renormalizations we have studied receive

contributions from general vacuum polarization diagrams; in some sense, they are

integrals over all types of new physics. We have concentrated on the contributions

of the top quark and the Higgs boson, but this has been mainly for pedagogical

reasons; it is not unlikely that s$ and other weak parameters also receive contribu-

tions from other types of new physics. In an unlucky situation, these contributions

might even be of the opposite sign. It is fortunate, then, that there is one correction

which can arise only from the top quark and allows an unambiguous test of the

rapport between the value of the top quark mass (when it is eventually measured)

and a weak interaction l-loop correction.

The diagrams of Fig. 40 and their partners have been evaluated by Akhundov,

Bardin, and R.iemann~51 : [46]BernabCu, Pith, and Santamaria, and Beenakker and

Hollik.14” I will quote only the asymptotic formulae here and refer you to these

papers for more exact results. Their effect is simply described by noting that

these diagrams involve W exchange and so, if we ignore the mass of the b, they

couple only to the left-handed components of the b quark. Thus, the effect of these

86



I

+ + . . .

3-90
6581A40

Figure 40. Renormalization of the vertex for 2’ -+ d, due to l-loop

diagrams involving the top quark.

diagrams is a multiplicative renormalization of the vertex for 2’ -+ bLxR:

(5.59)

where, in the limit of large mt,

Q 1 rnfFS---
16a s* m* (5.60) ;

W

In principle, this correction alters the relation between s:(mi) and the forward-

backward asymmetry at the 2’ for e+e- + bi;. However, since the 2’ couples

much more strongly to bt than bR, a small change in the larger coupling has an

insignificant effect on the polarization asymmetry AiR and, through this, on AkB.
The size of the effect is indeed of order lo-’ in AkB. However, the correction does

noticeably affect the 2’ branching fraction to b8 if the top quark mass is large. In

Fig. 41, I have plotted the variation of the ratio I’(Z” + @/I’(Z’ + hadrons)

with mt. The individual partial widths are affected by the dependence of 2, and

SE on mt, as was illustrated for the total width in Fig. 39. However, 2, cancels

in this ratio, and most of the dependence on sz cancels as well. I have illustrated

this in Fig. 41 by comparing the mt dependence of the Z” branching fractions to
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b& and d;i.  The latter is essentially flat as a function of ml. Thus, a measurement

of the 2’ branching fraction to b& is almost entirely a measure of the top quark

vertex correction.

Unfortunately, this is a tough experiment. The magnitude of the effect is a

4% decrease in the b?; fraction for a t quark mass of 200 GeV. If the measurement

is done by tagging b quarks with leptons, the leptonic branching ratio must be

kacuvn to 1%. If the b quarks are identified by their vertices, the lifetime must be

known to a few percent. This measurement thus challenges both the large data

sets that will be available at LEP and the precision vertex information that will be

provided by the SLC. I hope that careful experimenters will take up this challenge

and isolate this curious but interesting effect.

5.9. DETERMINATION OF sin2 0, FROM NEUTRINO  SCATTERING

No review of precision measurements in weak interactions would be complete.,.

without some discussion of the constraints imposed by experiments on neutrino-

nucleon deep-inelastic scattering. It is fair to say that the precision study of the

weak neutral current really began with the precision measurement of the ratio of

neutral to charged current neutrino cross sections by the CDHS1481  and CHARM14”

experiments. Deep inelastic scattering has new difficulties which are not shared by

experiments on the weak gauge bosons. These all stem from the fact that the target

is a nucleon, and so the analysis of the scattering process eventually falters on our

uncertain quantitative understanding of &CD. However, it is amazing to me what

accuracy can actually be achieved by a combination of clever insights and careful

analysis. Since the analysis of these deep inelastic scattering experiments is rather

subtle, I have no room for a complete discussion here. For those who wish further

information, I recommend the most recent paper of the CDHS [501collaboration,

which also gives references to the earlier literature.

The deep inelastic scattering experiments have concentrated on measuring the
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Figure 41. Dependence of the 2’ width to b& as a fraction of the total

2’ width to hadrons, as a function of mt. The solid line includes the b&’

vertex corrections; the dashed line shows the result of omitting this effect,

while retaining the top quark renormalization of st(m$).

89



I

ratio of neutral to charged current cross sections

R” = J dxdy
du( u, NC)

dxdy
dxdy du(u, “)

dxdy ’ (5.61)

where x and y are the standard dimensionless kinematic variables and the integral is

taken over the experimental acceptance. These cross sections are readily estimated

. in the naive parton model: If f*(x) is the parton distribution of the species q in the

proton, the cross sections, for neutrino-proton scattering, at lowest order in weak

interactions, are proportional to

da( v, CC) GF2sx
= -dxdy T fd(x) + (1 - Y)2fdx)

>

(w4w GF2sx 1 2= k 2 -d x d y 3 sin2 6w)2fu(x) +A (i - i sin2 6w)2fd(X)]

+ (1 - y)2 I( i sin2 &)2fu(x) + cf sin2 ew)2fd(X)] (5.62)
. .

+ (1 - Y,“[$2 - i sin2 fL)2f?r(x)  + (f - a sin2 t9,)2f~(~)]

+ [(i sin2 0,)2f1;(x) + (1 sin2 &J2/,(x)]) ,

plus contributions from heavier quark species. In the neutral current cross sec-

tion, the two sets of terms for each quark refer to left- and right-handed species,

respectively. The two prefactors are identical by virtue of (2.9). However, this is

the only simplification available, and otherwise the integrands of (5.61) are compli-

cated functions of z and y. When we include the QCD corrections to (5.62), these

integrands will also depend on &2. How, then, can we extract any information to

1% accuracy?

The required strategy was set out in a beautiful paper by Llewellyn Smith!511 In

this paper, Llewellyn Smith encourages us to think about a world containing only

u and d quarks. This allows three important simplifications in the computation
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of R“. First, if we consider, instead of the proton, an isoscalar target, jU = jd,

fii = f& and the only x-dependence in the ratio of the two parton model cross

sections above occurs through the function jq(x)/jdx). In fact, the only x- and

y-dependence appears in the particular combination

(1 - Y12 + h/h
1 + (1 - Y)2f*lf7 -

(5.63)

Th’e second simplification occurs if we recognize that (5.63) is precisely the parton

model expression for the ratio of antineutrino versus neutrino charged current cross

sections. Thus, if we define

u(F, CC)
r = u(u, CC) '

(5.64)

R" can be expressed, within the parton model, as R" = Ri’(sin2  0,), where

Ris(sin2 0,) is the simple function

1
R[s( sin2 0,) = 2 - sin2 0, + f sin4 0,( 1 + f) . (5.65).

Similarly, the ratio of neutral to charged current antineutrino cross sections is equal

to

Rfs(sin2 0,) = (f - sin2 0,)r + f sin4 0,(1 + r) . (5.66)

I have quoted these results as applying to the theoretical total cross sections;

however, they apply equally well if the differential cross sections in the numerator

and denominator are integrated over the same experimental acceptance. Thus, the

dependence of R" on acceptance is completely summarized in the parameter r,
which can be directly measured. It is noteworthy that r is rather different for the

two CERN neutrino experiments:

0.393 f 0.014 CDHS
r=

0.456 f 0.011 CHARM ’
(5.67)

reflecting the lower energy threshold of the CHARM detector.
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These two insights produce a remarkable simplification, but they have been

derived within the naive parton model, and so they would not be of much use

without the crucial third step: In a world with only u and d quarks, the above ex-

pression for R” can be derived using isospin arguments only by directly comparing

strong interaction matrix elements. Thus, this expression is insensitive to QCD

corrections.

In a realistic setting, one must of course correct the Llewellyn Smith expression

for--R’ to take account of the non-isoscalar components of the target, the presence

-of strange quarks in the proton, and the soft radiative corrections. However, all of

these are small corrections to a well-understood basic formula. The most trouble-

some correction is that due to charm production. Since the energy region of the

CERN experiments overlaps the charm threshold, charm is produced at relatively

low energy and so the production must be described phenomenologically, with pa-

rameters fit to the experimental data. This produces a sizeable systematic error,

of order f0.003, in the fina determination of sin2 6,.

Once these corrections have been made, the value of R” may be’ compared to’*’

the theoretical prediction, modified by the inclusion of hard radiative corrections.

Using (5.49) (and making the oversimplification that Q2 << m2W), these give

RU = ~dO)~%(s:tO)), (5.68)

where RL, is the function given in (5.65) and p*, sz are the effective amplitudes

defined in the previous sections. The dependence of (5.68) on ml and ma, for

the CDHS value of r, is shown in Fig. 42.
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Figure 42. Dependence of R” on rnt and mar, using the CDHS value
I

of the parameter r. The notation is as.in Fig. 31.
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5.10. RECONCILIATION OF WEAK INTERACTION MEASUREMENTS

In the previous few sections, we have seen how to compute the weak interaction

radiative corrections to a variety of observable quantities. Many of these predictions

depended rather strongIy  on the mass of top quark. It is thus important to ask

two questions: First, are the observed values of these quantities simultaneously

consistent with a single value of sin2 8a? Second, is this consistency contingent on

some limits on the top quark mass, so that it actually constrains the possible range

of values for mt?

To address this question, we first need to know the value of the standard

model radiative corrections due to conventional species-light quarks and leptons

and weak gauge bosons. It is impossible to give a complete computation of these

effects--or even to summarize the result-compactly. (For a rather complete dis-

cussion, see ref. 6.) However, because these effects are relatively small compared to

the sensitivity of current experiments, one may account them roughly by quoting

the relation of the parameters of the effective amplitude to sin2 6,jz for particular.-,

values of mt and ma. For mt = 40 GeV, rnH = 100 GeV:

sin2 SW/s = sin2 0,lz + 0.0050

40) = sin2 0,(z + 0.013

sz(rni) = sin2 t?&,lz + 0.0036 (5.69)

2, = 1.009

p,(O) = 1.000 .

Given these offsets, one can then compute the dependence of observables on ml,
mH, and other corrections using the formulae I have presented in previous sections.

I have cribbed these offsets from the current version of the program EXPOSTAR,

described in Ref. 52. Because the effective amplitude does not include non-oblique

corrections in an exact way, the actual values required for these offsets may vary

by about 10% depending on the particular process considered; in addition, the

corrections actually depend on. sin2 0, and in (5.69) are simply evaluted near the
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physical value. This method is too crude to use in analyzing a particular precision

experiment, but it is useful to give a quantitative feeling for the sensitivity of each

experiment to standard and nonstandard radiative corrections.

To assess the consistency of our present weak interaction measurements, Ellis

and Fogli ls31 have suggested making the following plot: Given the highly accurate

values of Q and GF, plus one additional measurement, one can compute the value

of sin2 &Is. This computation of course depends on mt, ma--and on the assump--.- _
tion that there are no other large corrections from beyond the standard model.

Assuming the standard model and fixing mar, one may then plot the extracted

value of sin2 e,ls as a function of mt. In Fig. 43, I have constructed this plot

by taking each of the three best-measured weak boson parameters-mg, the ratio

mw/mz, and W-as third input. The bands correspond to 1 o measurement

errors, and I have assumed ma = 100 GeV. For mz and mw, I have used the

values (2.10) and (4.4). (Note that mw/mz determines sin2 8,ls directly.) For

R”, I have used the value

R” = 0.3081 f 0.004 , (5.7Oj _

which I obtained by converting the CHARM measurement of R” to the value

appropriate for the CDHS value of r. The calculation is simple, but instructive

for anyone who wishes to understand this subject in detail, and I hope I have

provided enough information here that you can reproduce it straightforwardly. For

comparison, I have reprinted in Fig. 44 a ‘professional’ version of this analysis done

by Paul 1541Langacker. The main difference between the two figures comes in the

band from neutrino scattering, where Langacker has included the world sample of

neutrino and antineutrino experiments, taken proper account of the Q2-dependence

of the radiative correction, and refitted the charmed quark mass as sin2 8, varies.

It is also instructive to replot this analysis against the variable sin2 &lz, and this

is done in Fig. 45.

The results of this analysis are striking. The ratio mw/mz gives a horizontal

band in the Ellis-Fogli plot. The band due to R” is also almost horizontal, by virtue
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Figure 43. Interval in sin2 &Is allowed at 1 IY confidence based on the

measured values of mz, mw /mz, and R”. The intervals are plotted as a

function of ml, assuming mH = IO0 GeV.
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Figure 44. Interval in sin2 &Is allowed at 1 o confidence based on

the measured values of mz, mw/mz, and neutrino deep-inelastic cross

sections, from Ref. 54. The intervals are plotted as a function of mt,
assuming ma = 100 GeV. The shaded region is the 90% confidence allowed

region in the plane of sin2 &Is versus mt.
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Figure 45. Interval in sin’ &,lz allowed at 1 u confidence based on the

measured values of mz, mw/mz, and R”. The notation is as in Fig. 43.
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of the accidental compensation of the strong mt dependence of p,(O) by the strong

mt dependence of the relation between s:(O) and sin2 &Is. On the other hand, the

band from mz falls sharply on this plot, reflecting the steep dependence of sin2 &,,ls

on mt shown in Fig. 36. Bands extracted from direct measurements of sz(m$)
(from 2’ asymmetries) or s:(O) (from electron-neutrino scattering) will have a

similar steep decrease across the plot. The 2’ mass measurement becomes seriously

inconsistent with the neutrino measurements for mt > 200 GeV. At a somewhat

lower level of confidence, the measurements of mz and mw become inconsistent if

the top quark mass is too low. In Ref. 54, Langacker has reported a 90% confidence

interval 51 GeV < mt < 186 GeV for mfl = 100 GeV; these limits are weakened
* [531slightly by variation of the Higgs boson mass. Ellis and Fog11 have, somewhat

less conservatively, quoted the result rnt = 132 f 34 GeV. The result that the top

quark mass is bounded from above by the consistency of weak interaction radiative

corrections is not new; for example, the 1987 analysis of Amaldi, et a$lgave the

restriction mt < 180 GeV at 90% confidence. However, in the new data this,,

restriction arises not as the integrated effect of many different experiments but

rather as the direct contradiction of two well-measured observables.

How can we obtain more precise information on the top quark and other sources

of weak interaction radiative corrections? To indicate the expectations for the near

future, I have presented in Fig. 46 the expectation for the mid-1990’s, when mw

has been measured to f50 MeV at the Tevatron or at LEP II. I have also added a

band from ALR, which I assume has been measured to f0.003 at the SLC. I cannot

judge how much high-statistics neutrino scattering experiments at Fermilab can

improve the value of sin2 8, extracted from R”. At the moment, a large part of

the error in this measurement is systematic, though this systematic error should

be diminished by using the new high-energy neutrino beam from the Tevatron to

measure the deep inelastic cross section well above charm threshold. However, I

have indicated the effect of a measurement of RF, the neutral to charged current

ratio in antineutrino-nucleon scattering, to f0.003. This measurement is difficult,

since the systematic uncertainties of R“ are larger for antineutrinos; however, it is
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a powerful probe of mt and other effects that renormalize p+(O), since the function

RI, defined in (5.66) is almost independent of sin2 0, in the region of physical

interest.
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Figure 46. Future prospects for constraints on sin2 &,lz. The 1 o con-

fidence intervals are plotted versus mt as in Fig. 43. The bands indicated

come from mz, mw fmz, ALR, and R’. The expected errors in these

quantities are described in the text; the central values are, of course, ch*

sen arbitrarily.
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6. Conclusions and Prospects

The comprehensive analyses discussed in the previous section bring this re-

view to a natural conclusion. We began by discussing the general features of the

standard model and the detailed properties of the lowest order predictions. We

then made a lengthy digression on the extraction of the 2’ mass from the reso-

nance line-shape. Following this, we computed a certain class of weak interaction

radiative corrections and saw how these influence the detailed predictions of the

electroweak theory. Along the way, I included a brief discussion of the effects of

an extended gauge sector, to remind you that new physics may appear not only in

the loops, but also in the lowest order formulae.

When the top quark is eventually discovered and its mass measured, we will

have an interesting confrontation between this mass value and the size of precisely

measured weak corrections. However, it is possible, and even almost expected, that

this comparison will fail. Through the example of the top quark loop corrections,

we have seen that the weak interactions may be strongly perturbed by loop effects o

of heavy species. These effects may in fact be our first view of new physics beyond

the standard model. In the last two figures, I have presented two manifestations

of an additional quark doublet which might appear at very large mass. Figure 47

shows the effect of this doublet on the mw and ALR, assuming that mz is well

known and that the top quark contribution is known and subtracted. Figure 48

shows a more futuristic application of weak interaction radiative corrections in the

context of future, very high energy e+e- colliders. At energies of order 1 TeV in the

center-of-mass, a heavy quark doublet of mass rnQ which is still above threshold

produces a radiative correction to the amplitude for e+e- + W+W-, for which

the enhancement factor m$lm& expected from (5.43) constitutes a substantial

modification of the differential cross 1551section. In both cases, the measurement of

l-loop corrections allows a glimpse of physics at energies well beyond the nominal

collision energy of the e+e- reaction.

I have high hopes, then, for this new era of precision weak interaction exper-
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Figure 47. Effect of a heavy quark doublet (U, 0) on the rapport be-

tween ALR and mw, as a function of the mass of the D. The effects are

plotted as shifted from the standard model prediction. The two curves

refer to rngfrnu = 0.5 and mg/mU = 1. The value of mD at the starred

points is indicated.
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iments, in which the weak interactions become a tool to probe for the next scale

of fundamental physics. I wish my experimental colleagues the skill, perseverence,

and, above all, the good luck to follow this road to its promised end.
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