OBSERVATION OF $f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ IN RADIATIVE J / ψ DECAYS*

T. Bolton, ${ }^{e, 1}$ J. S. Brown, ${ }^{f}$ K. 0. Bunnell; M. Burchell, ${ }^{b, 2}$ T. H. Burnett, ${ }^{f}$ R. E. Cassell, D. Coffman, ${ }^{a, 3}$ D. H. Coward: F. DeJongh, ${ }^{a, 4}$ J. Drinkard, ${ }^{b, 5}$ - G. P. Dubois, ${ }^{a}$ G. Eigen, ${ }^{a}$ B. I. Eisenstein, ${ }^{c}$ T. Freese, ${ }^{c, 6}$ C. Gatto, ${ }^{b, 7}$ G. Gladding, ${ }^{c}$ C. A. Heusch, ${ }^{b}$ D. G. Hitlin, ${ }^{a}$ J. M. Izen, ${ }^{c, 8}$ P. C. Kim, ${ }^{e, 3}$ J. Labs, ${ }^{e}$ A. Lif W. S. Lockman, ${ }^{b}$ U. Mallik, ${ }^{d}$ C. G. Matthews: R. Mir, ${ }^{f, 9}$ P. M. Mockett, ${ }^{f}$ A. Odian, ${ }^{e}$ L. Parrish ${ }^{f}$ D. Pitman, ${ }^{e, 10}$ J. D. Richman, ${ }^{a, 11}$ H. F. W. Sadrozinski, M. Scarlatella, ${ }^{b}$ T. L. Schalk, R. H. Schindler, ${ }^{e}$ A. Seiden, ${ }^{b}$ I. E. Stockdale, ${ }^{c, 12}$ W. Toki, B. Tripsas, ${ }^{c, 13}$ M. Z. Wang, ${ }^{d}$ A. J. Weinstein: H. J. Willutzki, ${ }^{f, 14}$ W. J. Wisniewski, ${ }^{a}$ R. Xu, ${ }^{b, 15}$ and Y. Zhu ${ }^{a, 16}$

The Mark III Collaboration

${ }^{\text {a }}$ Department of Physics, California Institute of Technology, Pasadena, CA 91125
${ }^{b}$ Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064
${ }^{c}$ Department of Physics, University Of Illinois at Urbana-Champaign, Urbana, IL 61801
${ }^{d}$ Department of Physics, University of Iowa, Iowa City, IA 52242
${ }^{e}$ Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
f Department of Physics, University of Washington, Seattle, WA 98195

Submitted to Physics Letters B.

[^0]${ }^{1}$ Present address: Columbia University, PO Box 137, Irvington, NY 10533
${ }^{2}$ Present address: PPE Division, CERN, 1211 Geneva 23, Switzerland
${ }^{3}$ Present address: Wilson Laboratory, Cornell University, Ithaca, NY 14853
${ }^{4}$ Present address: Fermilab, PO Box 500, Batavia, IL 60510
${ }^{5}$ Present address: Centre de Physique des Particules de Marseille, F-13288 Marseille, CEDEX 9, France
${ }^{6}$ Present address: Systems Control Technology, 2300 Geng Road, Palo Alto, CA 94303
${ }^{7}$ Present address: INFN, 80125 Napoli, Italy
${ }^{8}$ Present address: University of Texas, 2601 North Floyd Road, Richardson, TX 75083
${ }^{9}$ Present address: Indiana University, Bloomington, IN 47405
${ }^{10}$ Present address: University of Victoria, Victoria, BC V8W 3P6 Canada
${ }^{11}$ Present address: University of California at Santa Barbara, Santa Barbara, CA 93106
${ }^{12}$ Present address: NASA Ames Research Center, MS 258-6, Moffett Field, CA 94035
${ }^{13}$ Present address: Center for Naval Analyses, 4401 Ford Avenue, Alexandria, VA 22302
${ }^{14}$ Present address: Brookhaven National Laboratory, Upton, NY 11973
${ }^{15}$ Present address: Institute of High Energy Physics, Academica Sinica, PO Box 918, Beijing, People's Republic of China
${ }^{16}$ Present address: International Telephone and Teledata, Inc., PO Box 80160, Goleta, CA 93118

Abstract
We present an analysis of $J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, using the Mark III detector at SPEAR, based on 5.8×10^{6} produced J / ψ events. We measure $B\left(J / \psi \leftrightharpoons \dot{\gamma} f_{1}(1285), f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(4.8 \pm 1.3 \pm 0.9) \times 10^{-5}$. We obtain a new measurement of the absolute branching ratio of $J / \psi \rightarrow \gamma f_{1}(1285)$. The mixing angle of the $f_{1}(1285)$ and the $f_{1}(1420)$ in the 1^{++}nonet is determined.

The observation of the $f_{1}(1285)$ in radiative J / ψ decays contributes to our understanding of the $\mathrm{C}=+$ axial-vector nonet. The rates of $J / \psi \rightarrow \gamma f_{1}(1285)$ and $J / \psi \rightarrow \gamma f_{1}(1420)$ are related to the degree of mixing in the axial-vector nonet $[1,2]$. The Mark III experiment has measured $J / \psi \rightarrow \gamma f_{1}(1285)$ in the $\eta \pi \pi[3], K \bar{K} \pi$ [4], and $\gamma \rho$ [5] final states. We report herein the observation of $J / \psi \rightarrow \gamma f_{1}(1285)$ in the $\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$final state. This completes the set of measurements of $J / \psi \rightarrow \gamma f_{1}(1285)$ in all known $f_{1}(1285)$ major decay modes [6].

The data sample consists of $5.8 \times 10^{6} \mathrm{~J} / \psi$'s, collected with the Mark III detector [7] at the SLAC $e^{+} e^{-}$storage ring SPEAR. Events are selected with four charged tracks of zero total charge and one to four neutral showers. Each charged track is required to satisfy $|\cos \theta|<0.85$, where θ is the polar angle of the track with respect to the beam axis. The neutral showers are required to have a detected energy of at least 50 MeV , to be inside well modelled regions of the electromagnetic calorimeter [8] and to be outside a cone with half-angle 18° around any charged track. Four-constraint kinematic fits to the $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$hypothesis are applied to the four charged tracks and each one of the neutral showers. The fit with the best probability, required to be greater than 5%, is retained. To suppress the $J / \psi \rightarrow \gamma K_{s} K_{s}$ background, events are rejected if both $\pi^{+} \pi^{-}$pairs have $0.48<M_{\pi^{+} \pi^{-}}<0.52 \mathrm{GeV}$.

The principal background to the $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$decay is the copious $J / \psi \rightarrow \pi^{0} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$reaction. To suppress this background, events with $P_{T}^{2}(\gamma)>$ $0.0015 \mathrm{GeV}^{2}$ are removed, where $P_{T}^{2}(\gamma)=\left[2 P_{\text {miss }} \sin (\delta / 2)\right]^{2}, P_{\text {miss }}$ is the momentum vector opposite to the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$system and δ is the angle between $P_{\text {miss }}$ and the observed radiative photon direction.

The $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$invariant mass distribution is shown in fig. 1. A clear enhancement is seen between 1.25 and 1.31 GeV , over a rapidly rising background. The
background under this enhancement is mainly due to residual $J / \psi \rightarrow \pi^{0} \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ events. To determine the resonance parameters, the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$invariant mass distribution is fitted with a nonrelativistic Breit-Wigner line shape, convoluted with a Gaussian resolution function, and a background parametrized by an exponential function. The result of the fit is 56 ± 15 resonance events, and a resonance mass of $(1.279 \pm 0.005) \mathrm{GeV}$.

To-determine the spin and parity of the resonance, we study the angular distributions of its decays. There are two angles that are particularly sensitive to different spin-parity assignments [9]: χ, the angle between the planes defined by $\pi^{+} \pi^{-}$pairs in the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$center of mass; and $\theta_{\pi^{+}}$, the angle between the π^{+}in the $\pi^{+} \pi^{-}$center of mass and the $\pi^{+} \pi^{-}$direction. The χ and the $\cos \theta_{\pi^{+}}$distributions are shown in figs. 2(a) and 2(b) respectively, for events in the $f_{1}(1285)$ region (1.25 < $\left.M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}<1.31 \mathrm{GeV}\right)$, after a background subtraction. The magnitude of the background is estimated from the fit to fig. 1, and its shape is estimated from the χ and $\cos \theta_{\pi^{+}}$distributions in nearby side bands $\left(1.175<M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}<1.225\right.$ and $1.335<M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}<1.385 \mathrm{GeV}$). The overlaid curves show the χ and $\cos \theta_{\pi^{+}}$ Monte Carlo distributions [10] for a $J^{P}=1^{+}$or $J^{P}=0^{-} f_{1}(1285)$, including combinatorial effects and detector biases. The data agree with a $J^{P}=1^{+}$assignment for the resonance, identifying the resonance as the $f_{1}(1285)$.

The branching ratio of $J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$is measured to be:

$$
\begin{equation*}
B\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(4.8 \pm 1.3 \pm 0.9) \times 10^{-5} \tag{1}
\end{equation*}
$$

The first error is the statistical error obtained from the fit. The second error is the systematic uncertainty obtained by adding in quadrature the error on the number

TABLE I. $J / \psi \rightarrow \gamma f_{1}$ branching ratios.

Reaction	Reference	Branching ratio $\left(10^{-4}\right)$
$J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi \pi \pi \pi$	This paper	$1.44 \pm 0.39 \pm 0.27$
$J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \delta \pi, \delta \rightarrow \eta \pi$	3	$3.90 \pm 0.42 \pm 0.87$
$J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \delta \pi, \delta \rightarrow K \bar{K}$	12	$0.66 \pm 0.26 \pm 0.29$
$J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \gamma \rho^{0}$	5	$0.25 \pm 0.07 \pm 0.03$
$J / \psi \rightarrow \gamma f_{1}(1285)$	This paper	$6.25 \pm 0.63 \pm 1.03$
$J / \psi \rightarrow \gamma f_{1}(1420)$	13	$8.7 \pm 1.4 \mathbf{- 1 . 1}_{+1.4}$

of J / ψ events (8.5%), the Monte Carlo simulation (5\%), the choice of fit background (12%) and variation of selection criteria (11%).

The Mark III measurements of the isospin corrected product branching ratios of $J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \mathrm{X}$ are summarized in Table I. The Particle Data Group list no other major $f_{1}(1285)$ decays [6]. Assuming the final states in rows 1 to 4 account for all f_{1} (1285) decays [11], we obtain the branching ratio of $J / \psi \rightarrow \gamma f_{1}$ (1285) (Table I, row 5), where common systematic errors have been removed. Our result for $B\left(J / \psi \rightarrow \gamma f_{1}(1285)\right)$ is compatible with predictions from hard QCD calculations that include longitudinal gluons in the hadronization process [1]. Our result for $\left(B\left(f_{1}(1285) \rightarrow \pi \pi \pi \pi\right)\right) /\left(B\left(f_{1}(1285) \rightarrow \eta \pi \pi\right)\right)$ is $0.37 \pm 0.11 \pm 0.11$, while the PDG summary quotes 0.76 ± 0.16 for this ratio [6].

There are currently two candidates for the heavier partner of the $f_{1}(1285)$ in the 1^{++}nonet, the $f_{1}(1420)$ and the $f_{1}(1530)$. The $f_{1}(1530)$ has not been observed in J / ψ decays. We have recently studied the decay $J / \psi \rightarrow \gamma K \bar{K} \pi[13]$, and measured a $K^{*} K$ peak in the 1^{++}channel consistent with the $f_{1}(1420)$ resonance. By identifying
this peak with the $f_{1}(1420)$ and assuming $B\left(f_{1}(1420) \rightarrow K^{*} K\right)=1$, we obtain the branching ratio of $J / \psi \rightarrow \gamma f_{1}(1420)$ (Table I, row 6).

If the $f_{1}(1420)$ is the heavier partner of the $f_{1}(1285)$, we can define a mixing angle in the 1^{++}nonet, α, by [14]: $\tan ^{2} \alpha=f\left(B\left(J / \psi \rightarrow \gamma f_{1}(1420)\right)\right) /(B(J / \psi \rightarrow$ $\left.\gamma f_{1}(1285)\right)$). The function f has the form [2] $\left(p_{f_{1}(1285)}^{n}\right) /\left(p_{f_{1}(1420)}^{n}\right)$, where $p_{f_{1}(1285)}$ $\left(p_{f_{1}(1420)}\right)$ is the momentum of the $f_{1}(1285)\left(f_{1}(1420)\right)$ in the J / ψ rest frame. The parameter n has been varied from 1 to 5 , and the effect is included in the systematic error on α. Using the results from Table I rows 5 and 6 we obtain $\alpha=\mathbf{(5 2 . 0} \pm \mathbf{2 . 7} \pm$ 3.6)'.

Ideal mixing in the 1^{++}nonet corresponds to $\alpha=35.3$. Our result shows that the $f_{1}(1285)$ and the $f_{1}(1420)$ are not ideally mixed, in agreement with results from two.photon interactions [15]. The axial vector mixing angle can be compared to the Gell-Mann-Okubo quadratic mass formula prediction [16], $\alpha_{\text {quad }}$. Using the Particle Data Group's mass values for the $f_{1}(1285), f_{1}(1420), a_{1}(1260), K_{1}(1270)$ and $K_{1}(1400)$ states [17], we obtain $\alpha_{q u a d}=(46 \pm 9)^{\circ}$, in agreement with the mixing angle determined from the radiative decay rates of the J / ψ to the 1^{++}isoscalar mesons.

To summarize, we have observed $f_{1}(1285)$ decays into $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$and measure: $B\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(4.8 \pm 1.3 \pm 0.9) \times 10^{-5}$. Using all other $f_{1}(1285)$ decaymodes measured by this experiment, we determine $B(J / \psi \rightarrow$ $\left.\gamma f_{1}(1285)\right)=(6.25 \pm 0.63 \pm 1.03) \times 10^{-4}$. The mixing angle of the $f_{1}(1285)$ and the $f_{1}(1420)$ in the 1^{++}nonet is calculated to be $(52.0 \pm 2.7 \pm 3.6)$.

We gratefully acknowledge the dedicated efforts of the SPEAR and Stanford Linear Accelerator operating staff. One of us (G.E.) wishes to thank the Heisenberg Foundation for support.

References

[1] J. G. Körner, J. H. Kühn, M. Krammer and H. Schneider, Nucl. Phys. B229, 115 (1983).
[2] A. Seiden, H. Sadrozinski, and H. Haber, Phys. Rev. D38, 824 (1988).
[3] T. Bolton et al., "Partial Wave Analysis of $J / \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$," SLAC-PUB-5632 (1991); submitted to Phys. Rev. Lett.
[4] J, Drinkard, Univ. of California Santa Cruz preprint SCIPP 90/04 (thesis), (1990) unpublished.
[5] D. Coffman et al., Phys. Rev. D41, 2695 (1990).
[6] For a review see: Particle Data Group, J. J. Hernandez et al., Phys. Lett. B239, 1 (1990).
[7] D. Bernstein et al., Nucl. Instr. Meth. 226, 302 (1984).
[8] The polar angle of the photon with respect to the beam axis, θ, is required to satisfy: $-0.93<\cos (\theta)<\mathbf{- 0 . 8 3}$ or $-0.78<\cos (\theta)<-0.03$ or $0.03<\cos (\theta)<$ 0.77 or $0.84<\cos (\theta)<0.95$.
[9] N. P. Chang and C. T. Nelson, Phys. Rev. Lett. 40, 1617 (1978); T. L. Trueman, Phys. Rev. D18, 3423 (1978).
[10] The angular distributions of the $f_{1}(1285)$ decay to $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$are proportional to: $\left(1+\cos ^{2} \theta_{\pi_{1}^{+}}\right)\left(1+\cos ^{2} \theta_{\pi_{2}^{+}}\right)$for $f_{1}(1285)$ with $J^{P}=1^{+}$, assuming the $\pi^{+} \pi^{-}$ pairs are in a spin 1 state; $\left(1-\cos ^{2} \theta_{\pi_{1}^{+}}\right)\left(1-\cos ^{2} \theta_{\pi_{2}^{+}}\right)(1-\cos 2 \chi)$ for $f_{1}(1285)$ with $J^{P}=0^{-}$.
[11] The only other known decay mode of the $f_{1}(1285)$ is'into $\gamma \phi$ with a negligible branching ratio of 0.1%. The $f_{1}(1285)$ decay into $\gamma \omega$ is yet another possibility. Even if $B\left(f_{1}(1285) \rightarrow \gamma \omega\right)$ is as large as $B\left(f_{1}(1285) \rightarrow \gamma \rho\right)$, it will have little effect on our results.
[12] The $B\left(J / \psi \rightarrow \gamma f_{1}(1285), f_{1}(1285) \rightarrow \delta \pi, \delta \rightarrow K \bar{K}\right)$ is obtained from a fit of two incoherent nonrelativistic Breit-Wigner functions, representing the f_{1} (1285) and the $f_{1}(1420)$, to the spin 1 intensity distribution of fig. 9.1 (b) in ref. 4.
[13] Z. Bai et al., Phys. Rev. Lett. 65, 2507 (1990).
[14] Since the radiative decays of the J / ψ p roceed mainly through two gluons, we expect the $f_{1}(1285)$ and the $f_{1}(1420)$ to couple to an $\mathrm{SU}(3)$ singlet.
[15] The-result from two photon collisions for α is $48^{\circ} \pm 2$ " or $56_{-4^{\circ}}^{+6^{\circ}}$, depending on the form factor used. For further details see: D. Caldwell, in Proceedings of the BNL Workshop: Glueballs 1988, Upton, NY, 1988, edited by S-U. Chung (AIP Conf. Proc. No. 185) (AIP, New York, 1989).
[16] See, for example, D. Perkins, Introduction to High Energy Physics, Addison Wesley (1987).
[17] The measured $K_{A}-K_{B}$ mixing angle of $(41 \pm 4)^{\circ}$ is taken from R. K. Carnegie et al., Phys. Lett. 68B, 287 (1977).

Figure Captions

1. The $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$invariant mass distribution for events of the type $J / \psi \rightarrow$ $\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$. The curves show the fit results for the background $+f_{1}(1285)$ (solid), and the exponential background (dashed).
2. Decay angular distributions for the $f_{1}(1285)$ in the mass region ($1.25<$ $M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}<1.31 \mathrm{GeV}$) following a background subtraction described in the text. The curves show the Monte Carlo expectation for a $J^{P}=1^{+} f_{1}(1285)$ (solid), and the Monte Carlo expectation for a $J^{P}=0^{-} f_{1}(1285)$ (dashed). (a) χ (two entries per event) and (b) $\cos \theta_{\pi^{+}}$(four entries per event).

Fig. 1

Fig. 2

[^0]: * Work supported by Department of Energy contracts DE-AC03-76SF00515, DE-AC0276ER01195, DE-AC02-87ER40318, DE-AC03-81ER40050, and DE-AM03-76SF00010; and by National Science Foundation contract PHY8822028.

