OBSERVATION OF $f_1(1285) \rightarrow \pi^+\pi^-\pi^+\pi^-$ **IN RADIATIVE** J/ψ **DECAYS***

T. Bolton,^{e,1} J. S. Brown,^f K. 0. Bunnell; M. Burchell,^{b,2} T. H. Burnett,^f
R. E. Cassell,^e D. Coffman,^{a,3} D. H. Coward: F. DeJongh,^{a,4} J. Drinkard,^{b,5}
-G. P. Dubois,^a G. Eigen,^a B. I. Eisenstein,^c T. Freese,^{c,6} C. Gatto,^{b,7}
G. Gladding,^c C. A. Heusch,^b D. G. Hitlin,^a J. M. Izen,^{c,8} P. C. Kim,^{e,3}
J. Labs,^e A. Lif W. S. Lockman,^b U. Mallik,^d C. G. Matthews: R. Mir,^{f,9}
P. M. Mockett,^f A. Odian,^e L. Parrish,^f D. Pitman,^{e,10} J. D. Richman,^{a,11}
H. F. W. Sadrozinski,^b M. Scarlatella,^b T. L. Schalk,^b R. H. Schindler,^e
A. Seiden,^b I. E. Stockdale,^{c,12} W. Toki,^e B. Tripsas,^{c,13} M. Z. Wang,^d

A. J. Weinstein: H. J. Willutzki,^{f,14} W. J. Wisniewski,^a R. Xu,^{b,15} and Y. Zhu^{a,16}

The Mark III Collaboration

- ^a Department of Physics, California Institute of Technology, Pasadena, CA 91125
- ^b Santa Cruz Institute for Particle Physics, University Of California, Santa Cruz, CA 95064
- ^c Department Of Physics, University Of Illinois at Urbana-Champaign, Urbana, IL 61801
- d Department of Physics, University of Iowa, Iowa City, IA 52242
- ^e Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

f Department of Physics, University of Washington, Seattle, WA 98195

Submitted to Physics Letters B.

^{*} Work supported by Department of Energy contracts DE-AC03-76SF00515, DE-AC02-76ER01195, DE-AC02-87ER40318, DE-AC03-81ER40050, and DE-AM03-76SF00010; and by National Science Foundation contract PHY8822028.

- ¹ Present address: Columbia University, PO Box 137, Irvington, NY 10533
- ² Present address: PPE Division, CERN, 1211 Geneva 23, Switzerland
- ³ Present address: Wilson Laboratory, Cornell University, Ithaca, NY 14853
- ⁴ Present address: Fermilab, PO Box 500, Batavia, IL 60510
- ⁵ Present address: Centre de Physique des Particules de Marseille, F-13288 Marseille, CEDEX 9, France
- 6 Present address: Systems Control Technology, 2300 Geng Road, Palo Alto, CA 94303
 - ⁷ Present address: INFN, 80125 Napoli, Italy
 - ⁸ Present address: University of Texas, 2601 North Floyd Road, Richardson, TX 75083
 - ⁹ Present address: Indiana University, Bloomington, IN 47405
- ¹⁰ Present address: University of Victoria, Victoria, BC V8W 3P6 Canada
- ¹¹ Present address: University of California at Santa Barbara, Santa Barbara, CA 93106
- ¹² Present address: NASA Ames Research Center, MS 258-6, Moffett Field, CA 94035
- ¹³ Present address: Center for Naval Analyses, 4401 Ford Avenue, Alexandria, VA 22302
- ¹⁴ Present address: Brookhaven National Laboratory, Upton, NY 11973
- ¹⁵ Present address: Institute of High Energy Physics, Academica Sinica, PO Box 918, Beijing, People's Republic of China
- ¹⁶ Present address: International Telephone and Teledata, Inc., PO Box 80160, Goleta, CA 93118

Abstract

We present an analysis of $J/\psi \to \gamma f_1(1285)$, $f_1(1285) \to \pi^+\pi^-\pi^+\pi^-$, using the Mark III detector at SPEAR, based on 5.8 x 10⁶ produced J/ψ events. We measure $B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi^+\pi^-\pi^+\pi^-) = (4.8 \pm 1.3 \pm 0.9) \times 10^{-5}$. We obtain a new measurement of the absolute branching ratio of $J/\psi \to \gamma f_1(1285)$. The mixing angle of the $f_1(1285)$ and the $f_1(1420)$ in the 1⁺⁺ nonet is determined.

The observation of the $f_1(1285)$ in radiative J/ψ decays contributes to our understanding of the C = + axial-vector nonet. The rates of $J/\psi \rightarrow \gamma f_1(1285)$ and $J/\psi \rightarrow \gamma f_1(1420)$ are related to the degree of mixing in the axial-vector nonet [1,2]. The Mark III experiment has measured $J/\psi \rightarrow \gamma f_1(1285)$ in the $\eta \pi \pi$ [3], $K\overline{K}\pi$ [4], and $\gamma \rho$ [5] final states. We report herein the observation of $J/\psi \rightarrow \gamma f_1(1285)$ in the $\gamma \pi^+ \pi^- \pi^+ \pi^-$ final state. This completes the set of measurements of $J/\psi \rightarrow \gamma f_1(1285)$ in all known $f_1(1285)$ major decay modes [6].

The data sample consists of 5.8 x $10^6 J/\psi$'s, collected with the Mark III detector [7] at the SLAC e^+e^- storage ring SPEAR. Events are selected with four charged tracks of zero total charge and one to four neutral showers. Each charged track is required to satisfy $|\cos \theta| < 0.85$, where θ is the polar angle of the track with respect to the beam axis. The neutral showers are required to have a detected energy of at least 50 MeV, to be inside well modelled regions of the electromagnetic calorimeter [8] and to be outside a cone with half-angle 18° around any charged track. Four-constraint kinematic fits to the $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ hypothesis are applied to the four charged tracks and each one of the neutral showers. The fit with the best probability, required to be greater than 5%, is retained. To suppress the $J/\psi \rightarrow \gamma K_s K_s$ background, events are rejected if both $\pi^+\pi^-$ pairs have $0.48 < M_{\pi^+\pi^-} < 0.52$ GeV.

The principal background to the $J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$ decay is the copious $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \pi^+ \pi^-$ reaction. To suppress this background, events with $P_T^2(\gamma) > 0.0015 \text{ GeV}^2$ are removed, where $P_T^2(\gamma) = [2P_{miss} \sin(\delta/2)]^2$, P_{miss} is the momentum vector opposite to the $\pi^+ \pi^- \pi^+ \pi^-$ system and δ is the angle between P_{miss} and the observed radiative photon direction.

The $\pi^+\pi^-\pi^+\pi^-$ invariant mass distribution is shown in fig. 1. A clear enhancement is seen between 1.25 and 1.31 GeV, over a rapidly rising background. The

background under this enhancement is mainly due to residual $J/\psi \rightarrow \pi^0 \pi^+ \pi^- \pi^+ \pi^$ events. To determine the resonance parameters, the $\pi^+ \pi^- \pi^+ \pi^-$ invariant mass distribution is fitted with a nonrelativistic Breit-Wigner line shape, convoluted with a Gaussian resolution function, and a background parametrized by an exponential function. The result of the fit is 56 ± 15 resonance events, and a resonance mass of (1.279 ± 0.005) GeV.

To-determine the spin and parity of the resonance, we study the angular distributions of its decays. There are two angles that are particularly sensitive to different spin-parity assignments [9]: χ , the angle between the planes defined by $\pi^+\pi^-$ pairs in the $\pi^+\pi^-\pi^+\pi^-$ center of mass; and θ_{π^+} , the angle between the π^+ in the $\pi^+\pi^-$ center of mass and the $\pi^+\pi^-$ direction. The χ and the $\cos \theta_{\pi^+}$ distributions are shown in figs. 2(a) and 2(b) respectively, for events in the $f_1(1285)$ region (1.25 < $M_{\pi^+\pi^-\pi^+\pi^-}$ < 1.31 GeV), after a background subtraction. The magnitude of the background is estimated from the fit to fig. 1, and its shape is estimated from the χ and $\cos \theta_{\pi^+}$ distributions in nearby side bands (1.175 < $M_{\pi^+\pi^-\pi^+\pi^-}$ < 1.225 and 1.335 < $M_{\pi^+\pi^-\pi^+\pi^-}$ < 1.385 GeV). The overlaid curves show the χ and $\cos \theta_{\pi^+}$ Monte Carlo distributions [10] for a $J^P = 1^+$ or $J^P = 0^- f_1(1285)$, including combinatorial effects and detector biases. The data agree with a $J^P = 1^+$ assignment for the resonance, identifying the resonance as the $f_1(1285)$.

The branching ratio of $J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi^+\pi^-\pi^+\pi^-$ is measured to be:

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi^+ \pi^- \pi^+ \pi^-) = (4.8 \pm 1.3 \pm 0.9) \times 10^{-5} \quad (1)$$

The first error is the statistical error obtained from the fit. The second error is the systematic uncertainty obtained by adding in quadrature the error on the number

Reaction	Reference	Branching ratio (10^{-4})
$\overline{J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi \pi \pi \pi}$	This paper	$1.44 \pm 0.39 \pm 0.27$
$J/\psi \rightarrow \gamma f_1(1285), f_1(1285) \rightarrow \delta \pi, \delta \rightarrow \eta \pi$	3	$3.90 \pm 0.42 \pm 0.87$
$J/\psi \rightarrow \gamma f_1(1285), f_1(1285) \rightarrow \delta \pi, \delta \rightarrow K \overline{K}$	12	$0.66 \pm 0.26 \pm 0.29$
$J/\psi \rightarrow \gamma f_1(1285), f_1(1285) \rightarrow \gamma \rho^0$	5	$0.25\pm 0.07\pm 0.03$
$J/\psi \rightarrow \gamma f_1$ (1285)	This paper	$6.25 \pm 0.63 \pm 1.03$
$J/\psi \to \gamma f_1(1420)$	13	$8.7 \pm 1.4 \stackrel{+1.4}{_{-1.1}}$

TABLE I. $J/\psi \rightarrow \gamma f_1$ branching ratios.

of J/ψ events (8.5%), the Monte Carlo simulation (5%), the choice of fit background (12%) and variation of selection criteria (11%).

The Mark III measurements of the isospin corrected product branching ratios of $J/\psi \rightarrow \gamma f_1(1285), f_1(1285) \rightarrow X$ are summarized in Table I. The Particle Data Group list no other major $f_1(1285)$ decays [6]. Assuming the final states in rows 1 to 4 account for all $f_1(1285)$ decays [11], we obtain the branching ratio of $J/\psi \rightarrow \gamma f_1(1285)$ (Table I, row 5), where common systematic errors have been removed. Our result for $B(J/\psi \rightarrow \gamma f_1(1285))$ is compatible with predictions from hard QCD calculations that include longitudinal gluons in the hadronization process [1]. Our result for $(B(f_1(1285) \rightarrow \pi \pi \pi \pi))/(B(f_1(1285) \rightarrow \eta \pi \pi))$ is $0.37 \pm 0.11 \pm 0.11$, while the PDG summary quotes 0.76 ± 0.16 for this ratio [6].

There are currently two candidates for the heavier partner of the $f_1(1285)$ in the 1^{++} nonet, the $f_1(1420)$ and the $f_1(1530)$. The $f_1(1530)$ has not been observed in J/ψ decays. We have recently studied the decay $J/\psi \rightarrow \gamma K \overline{K} \pi$ [13], and measured a K^*K peak in the 1^{++} channel consistent with the $f_1(1420)$ resonance. By identifying

this peak with the $f_1(1420)$ and assuming $B(f_1(1420) \rightarrow K^*K) = 1$, we obtain the branching ratio of $J/\psi \rightarrow \gamma f_1(1420)$ (Table I, row 6).

If the $f_1(1420)$ is the heavier partner of the $f_1(1285)$, we can define a mixing angle in the 1⁺⁺ nonet, α , by [14]: $\tan^2 \alpha = f(B(J/\psi \rightarrow \gamma f_1(1420)))/(B(J/\psi \rightarrow \gamma f_1(1285)))$. The function f has the form [2] $(p_{f_1(1285)}^n)/(p_{f_1(1420)}^n)$, where $p_{f_1(1285)}$ $(p_{f_1(1420)})$ is the momentum of the $f_1(1285)$ $(f_1(1420))$ in the J/ψ rest frame. The parameter n has been varied from 1 to 5, and the effect is included in the systematic error on α . Using the results from Table I rows 5 and 6 we obtain $\alpha = (52.0 \pm 2.7 \pm 3.6)'$.

Ideal mixing in the 1⁺⁺ nonet corresponds to $\alpha = 35.3$ '. Our result shows that the $f_1(1285)$ and the $f_1(1420)$ are not ideally mixed, in agreement with results from two.photon interactions [15]. The axial vector mixing angle can be compared to the Gell-Mann-Okubo quadratic mass formula prediction [16], α_{quad} . Using the Particle Data Group's mass values for the $f_1(1285)$, $f_1(1420)$, $a_1(1260)$, $K_1(1270)$ and $K_1(1400)$ states [17], we obtain $\alpha_{quad} = (46 \pm 9)^\circ$, in agreement with the mixing angle determined from the radiative decay rates of the J/ψ to the 1⁺⁺ isoscalar mesons.

To summarize, we have observed $f_1(1285)$ decays into $\pi^+\pi^-\pi^+\pi^-$ and measure: $B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi^+\pi^-\pi^+\pi^-) = (4.8 \pm 1.3 \pm 0.9) \times 10^{-5}$. Using all other $f_1(1285)$ decaymodes measured by this experiment, we determine $B(J/\psi \to \gamma f_1(1285)) = (6.25 \pm 0.63 \pm 1.03) \times 10^{-4}$. The mixing angle of the $f_1(1285)$ and the $f_1(1420)$ in the 1⁺⁺ nonet is calculated to be $(52.0 \pm 2.7 \pm 3.6)$.

We gratefully acknowledge the dedicated efforts of the SPEAR and Stanford Linear Accelerator operating staff. One of us (G.E.) wishes to thank the Heisenberg Foundation for support.

References

- [1] J. G. Körner, J. H. Kühn, M. Krammer and H. Schneider, Nucl. Phys. B229, 115 (1983).
- [2] A. Seiden, H. Sadrozinski, and H. Haber, Phys. Rev. D38, 824 (1988).
- [3] T. Bolton et al., "Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$," SLAC-PUB-5632 (1991); submitted to Phys. Rev. Lett.
- [4] J. Drinkard, Univ. of California Santa Cruz preprint SCIPP 90/04 (thesis), (1990) unpublished.
- [5] D. Coffman et al., Phys. Rev. **D41**, **2695** (1990).
- [6] For a review see: Particle Data Group, J. J. Hernandez et al., Phys. Lett. B239, 1 (1990).
- [7] D. Bernstein et al., Nucl. Instr. Meth. 226, 302 (1984).
- [8] The polar angle of the photon with respect to the beam axis, θ , is required to satisfy: -0.93 < cos(θ) < -0.83 or -0.78 < cos(θ) < -0.03 or 0.03 < cos(θ) < -0.77 or 0.84 < cos(θ) < 0.95.
- [9] N. P. Chang and C. T. Nelson, Phys. Rev. Lett. 40, 1617 (1978); T. L. Trueman, Phys. Rev. D18, 3423 (1978).
- [10] The angular distributions of the $f_1(1285)$ decay to $\pi^+\pi^-\pi^+\pi^-$ are proportional to: $(1 + \cos^2 \theta_{\pi_1^+})(1 + \cos^2 \theta_{\pi_2^+})$ for $f_1(1285)$ with $J^P = 1^+$, assuming the $\pi^+\pi^$ pairs are in a spin 1 state; $(1 - \cos^2 \theta_{\pi_1^+})(1 - \cos^2 \theta_{\pi_2^+})(1 - \cos 2\chi)$ for $f_1(1285)$ with $J^P = 0^-$.
- [11] The only other known decay mode of the $f_1(1285)$ is into $\gamma \phi$ with a negligible branching ratio of 0.1%. The $f_1(1285)$ decay into $\gamma \omega$ is yet another possibility. Even if $B(f_1(1285) \rightarrow \gamma \omega)$ is as large as $B(f_1(1285) \rightarrow \gamma \rho)$, it will have little effect on our results.

- [12] The $B(J/\psi \rightarrow \gamma f_1(1285), f_1(1285) \rightarrow \delta \pi, \delta \rightarrow K\overline{K})$ is obtained from a fit of two incoherent nonrelativistic Breit-Wigner functions, representing the f_1 (1285) and the $f_1(1420)$, to the spin 1 intensity distribution of fig. 9.1(b) in ref. 4.
- [13] Z. Bai et al., Phys. Rev. Lett. 65, 2507 (1990).
- [14] Since the radiative decays of the J/ψ proceed mainly through two gluons, we expect the $f_1(1285)$ and the $f_1(1420)$ to couple to an SU(3) singlet.
- [15] The-result from two photon collisions for α is $48^{\circ} \pm 2"$ or $56^{+6^{\circ}}_{-4^{\circ}}$, depending on the form factor used. For further details see: D. Caldwell, in Proceedings of the *BNL Workshop: Glueballs* 1988, Upton, NY, 1988, edited by S-U. Chung (AIP Conf. Proc. No. 185) (AIP, New York, 1989).
- [16] See, for example, D. Perkins, *Introduction* to *High Energy Physics*, Addison Wesley (1987).
- [17] The measured K_A - K_B mixing angle of $(41 \pm 4)^\circ$ is taken from R. K. Carnegie et al., Phys. Lett. **68B**, 287 (1977).

Figure Captions

- 1. The $\pi^+\pi^-\pi^+\pi^-$ invariant mass distribution for events of the type $J/\psi \rightarrow \gamma \pi^+\pi^-\pi^+\pi^-$. The curves show the fit results for the background $+f_1(1285)$ (solid), and the exponential background (dashed).
- Decay angular distributions for the f₁(1285) in the mass region (1.25 < M_{π+π-π+π-} < 1.31 GeV) following a background subtraction described in the text. The curves show the Monte Carlo expectation for a J^P = 1+f₁(1285) (solid), and the Monte Carlo expectation for a J^P = 0-f₁(1285) (dashed).
 (a) χ (two entries per event) and (b) cos θ_{π+} (four entries per event).

Fig. 1

Fig. 2