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ABSTRACT 

The external-field formalism of chiral perturbation theory, as developed by 

Gosser and Leutwyler, is extended to arbitrary orders in the chiral expansion. In 

view of the occurrence of the tensor =Y’P” in the Wess-Zumino term and in in- 

variant higher-order Lagrangeans, analytic operator regularization is adapted to 

chiral perturbation theory and shown to be consistent. Beyond one loop, a new 

class of invariant counterterms occurs, containing the fluctuation field besides the 

background and external fields. The relation between counterterm Lagrangeans 

with different powers of the fluctuation field depends in general on the renormal- 

ization conditions imposed on the fluctuation. The divergent part of the one-loop 

diagrams with one external fluctuation-field line is explicitly calculated and found 

to be derivable by expanding & (17). 
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1. Introduction 

f 
Chiral perturbation theory (ChPT) succinctly summarizes the powerful con- 

straints imposed on the low-energy behaviour of QCD by spontaneously broken 

chiral symmetry (ChS) and allows perturbative calculation of the light-quark mass 

effects. The most convenient representation of the algebra of chiral currents is by 

means of effective chiral Lagrangeans for the octet of the lowest-lying pseudoscalar 

bosons X, K and q!ll A reasonably good description of the experimental data is 

thereby obtained. 

On a more quantitative level, unitarity corrections and symmetry-breaking 

effects of higher order in the quark masses have to be taken into account. Even 

though the model is not renormalizable, quantum corrections can be calculated 
PI in the framework of a systematic momentum expansion of the effective action. 

Divergences in loop diagrams can be absorbed by renormalizing higher-order chiral 

Lagrangeans. The newly introduced couplings have to be determined from some 

experimental data, but chiral symmetry still allows to predict the rates for a host 

of other processes. 

At next-to-leading order (p4), a particularly systematic and convenient frame- 

work has been set up by Gasser and LeutwylerL3] and used to determine the ten 

additional coupling constants arising at that level. This formalism has since been 

very successfully applied to a large variety of strong and electro-weak processes 

involving mesons and even baryons. It has recently been extended to incorpo- 

rate quantum corrections to anomalous meson processes “I and is ideally suited for 

proving the nonrenormalization of the chiral anomaly to all orders of ChPTI”‘“’ 

With one exceptio$’ no attempts have so far been made to carry ChPT be- 

yond one-loop order, essentially because the calculational effort and the number of 

required counterterms increase sharply. It is, however, of some theoretical interest 

to see whether the formalism can be consistently extended to all orders in the chiral 

expansion: Ref. 6 is an example of a general statement that can be made about 
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chiral symmetry in ChPT; moreover, one can study in this model which properties 

i of a theory are affected by its (perturbative) nonrenormalizability. 

-I 

.- 

In this spirit, Charap[” and Honerkamp[gl investigated some general properties 

of loop corrections in the four-dimensional nonlinear IJ model. However, they did 

not consider any specific regularization scheme and its effects on chiral symmetry. 

One of the purposes of this work is to supply a discussion of this issue within the 

formalism of Ref. 3, extended to any finite order in the chiral expansion. Dimen- 

- sional regularization (DR) h as b een used to great advantage at the one-loop level 

because it preserves chiral symmetry. However, both the anomalous Wess-Zumino 

term and many terms in the chirally invariant Lagrangeans of sixth order@’ and 

beyond contain the e pvpa tensor, so that DR cannot readily be applied. Neither a 

simple cutoff nor the Pauli-Villars method are useful in ChPT because the former 

violates chiral symmetry and the latter leads to difficulties with the external scalar 

and pseudoscalar fields. As a replacement, operator regularization (OR) appears 

ideally suited for the background-field formulation of ChPT: It preserves the sym- 

metries, operates always in four dimensions and is based on analytic continuation. 

The original prescriptions by McKeon and Sherry’l” will be adapted somewhat 

(instead of the implicit subtractions performed by their procedure, the separation 

into divergent and finite parts will be made explicit). 

Other topics arising in higher orders are the functional measure and its regular- 

ization, the use of the classical equations of motion and the subtraction procedure 

for subgraph divergences. The latter requires a new class of counterterms depend- 

ing not only on the background and external fields, but on the fluctuations as well. 

Their coupling constants in general depend on the renormalization prescriptions 

imposed on the fluctuation field. In Sect. 4, explicit calculation of the O(p4) di- 

vergent terms linear in the fluctuation suggests a close relation between the new 

counterterms and those without fluctuation fields. 



- 

2. Operator Regularization 
-. 

f 
2.1. REGULARIZATION OF THE PROPAGATOR 

-. 

Operator regularization’lO1 is based on the observation bll that loop diagrams 

- 

converge if the propagator falls off as a sufficiently high power of p2 at large mo- 

menta. Evaluating the diagrams with propagators (p2+m2)-l-‘, one may separate 

the finite pieces from the divergent terms in the limit e + 0 after analytic con- 

tinuation. In a problem with background fields, local symmetries are explicitly 

preserved if the free propagator is replaced by a suitable covariant differential op- 

erator D*, representing the propagator of the fluctuation field in the background. 
- Such an operator D arises naturally in ChPT, see Ref. 3 or (3.16) and (3.17). 

._ _ . 
A convenient exponential representation of D-l+ is 

- 00 

J 
dt teeFtD . 

0 
(24 

- 
In order to evaluate regularized amplitudes, one needs to expand exp(-tD) in 

powers of the background fields. Let D = Do + 01(Q) where Do is the free 

inverse propagator without background fields and DI is the interaction piece. After 

applying formulae given by Schwinger [=I in a similar context, 

,-t(Do+Dr) = 2(-t)” j dul . . . j du,u,n-‘e-21t”‘untDo~~ 
n=O 
X ,-(l-$w~.ntDo;I.. . e-(l-u,-+ntDo~Ie-(l-u,z)tDo 

(2.2) 

* The implicit assumption here is that D is a self-adjoint operator. This is not the case 
for a chiral fermion interacting with gauge fields, and explicit calculation with OR indeed 
recovers the usual chiral anomaly: See the second paper in Ref. 10. 
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_- and 

f 
Tr ,-t(Do+D,)) = Tr (e-tDo _ tDIe-tDO 

._. 

+~(~~~j.,...jd~n~nn-lD~~-ul”‘~ntDoD~ 

0 0 

x e-(h6&62d6,tDoDI.. . e-(l-u,-+ntDo~le-(l-u,)tDo , 

(2.3 j 

all integrations over vertex locations can be turned into standard Gaussian mo- 

mentum integrals. 

In applications of OR, momentum integrations, parameter integrals and the 

- expansion of exp( - t D) are freely interchanged. In order to justify this procedure, 
.- . one needs to note first that D in Euclidian space is strictly positive for weak 

external fields and nonvanishing quark masses. Thus the t-integration converges 

uniformly for all values of p. Conversely, the integration over the loop momentum 

associated with strings of propagators does not converge uniformly with respect 

to t as t + 0, but for E sufficiently large the pole at t = 0 is removed by the 

factor t” in (2.1). It follows that the t and momentum integrations may indeed be 

interchanged. 

A sufficient criterion for uniform convergence of the expansions (2.2) and 

(2.3) is easily established if DI is z-dependent but does not contain derivatives: 

By evaluating exp( -P(u)tDo) in the momentum basis (P(U) are polynomials of 

Ul,..., ~~-1) and DI in the x basis, one arrives at the condition ~d%[D~(x)[” 5 

Kn for all sufficiently large n and some arbitrary but fixed number I<. In the case 

of interest in ChPT, where DI also contains derivatives, the analogous condition 

involves higher and higher derivatives of the external fields and its form is not very 

illuminating. It appears, however, that there is a large class of sufficiently smooth 

and rapidly decaying external field configurations that satisfy the criterion. It will 

thus be assumed in the following that the external fields are such that (2.2) and 

(2.3) indeed represent valid expansions. 
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For any value of the loop momentum, the integration over the u-parameters - 
c converges uniformly, at a rate that depends only on the values of the momenta 

carried by external and background fields. Similarly, the convergence of the mo- 
-. 

mentum integration is uniform for all values of the u;. Thus, the momentum 

integration may be carried out first. For non-zero meson masses, the exponent of 

the exponential remaining after the momentum integration is strictly positive for 

sufficiently small external momenta (its zeroes correspond to physical thresholds) 

so that the u-integrations converge uniformly for all values of t; conversely, the 

t-integration also converges uniformly for all values of the u; if it is carried out 

before the latter. Hence, the customary steps of interchanging integrations in the 

regularized theory are justified in OR. 

- Finally, note that OR does not distinguish between divergences of different - . 
orders with respect to a momentum cutoff; divergent loops uniformly lead to a 

factor l/e. The method adds, for each loop, alk terms of 0(&-l) and O(E’) to 

obtain chirally invariant results. (See also Sect. 3.5 in this connection.) 

2.2. REGULARIZATION OF CT(~)(O) 

As discussed in Sect. 3, the invariant functional measure leads to extra ver- 

tices derived from the determinant of the target space metric. The factor S(4)(O) 

occurring therein requires chirally invariant regularization. Its origin is the strict 

locality of chiral transformations; regularization essentially amounts to appropriate 

smearing of this S function. The regularized expression must be an invariant func- 

tion of the background and external fields since no other scale-setting entities are 

available. Thus the slightly paradoxical situation arises where In det (g,b(E))6(4)(0) 

indeed depends on other fields besides the fluctuation [. 

The most natural way to regularize St4)(0) in the context of OR makes use of 

the equation 

In the next step, the integration and the limit e + 0 are interchanged - even 
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though the limit is not uniform with respect to p - to obtain the regularized form 
_- 

f of the S function: 

(s(4w) s &$I Tr(D+) 
reg. = Fz (27r)4 Tr (1) ’ (2.4) 

Evaluating the integral one finds the somewhat counterintuitive result that this 

regulated form of Sc4)( 0) * fi ‘t 1s m e in the limit E + 0. After a calculation equivalent 

to determining the divergent part of Tr (In D) in DR”‘*, one obtains 

St4)(0) = - lim 6 E--+0 J 
&cL4( UO) , (2.5) 

.- i.e. the divergent piece of L4, multiplied by e so that it becomes finite. Note 
.- . that the regularizing operator need not be D; it can be chosen at will if it is 

chirally covariant and causes the integrals to converge. D stands out, however, 

as the simplest choice; in the momentum expansion, the order of Sp In D exactly 

corresponds to the engineering dimension of the S function. 

2.3. REGULARIZATION OF In D 
- 

One-loop graphs to O(p4) are calculated by evaluating (;/2)Tr (In 0). A regu- 

larized form of In D is 

co 

(In D)reg. = - !+j $ (p26D-E) = - bin 2 C12E 
w J 

P-6) 
0 

Note that this definition is well known from C-function regularization and reduces to 

the ordinary logarithm if D is a positive c-number. Only finite terms are obtained 

when it is applied to Sp (In 0). 

* In the following, the symbol Tr will denote the trace over flavour indices whereas Sp also 
includes the trace over the continuous label 2. 
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At this point, one may check the consistency with the regularization proposed 

f for c~(~)(O) in Sect. 2.2. F ormally, In D may also be written as 

-. InD = -!@. i(D-' - l> - P-7) 

The trace over the second term leads to S(4l(O), w ic is subsequently regularized h’ h 

with the help of eqn. (2.4): 

1 

(J 
& =- lim - mTr(D-‘) - lim 

J 
* 

(2.8) 

(2+ Tr(D-a) * E-b0 & a+o 

This is exactly the same result as one obtains from (2.6). - 
- . In order to make close contact with the results obtained from the heat-kernel 

method combined with dimensional regularization, one may consider yet another 

definition of (In D)reg. : By simply dropping the second term in (2.7), one gets 
- 

(In D)reg. = - :I f D-" . WV 

- For a c-number a, this evaluates to lna - l/e. This may appear artificial, but one 

may check that the results obtained for the trace of the logarithm of a second- 

order differential operator of the type of eqn. (3.17) are indeed equivalent to those 

obtained in DR, including the divergent pieces. 

2.4. SUBTRACTION OF SUBGRAPH DIVERGENCES 

The subtraction of subgraph divergences in OR deserves separate discussion. 

In Ref. 13, two-loop graphs regulated according to Ref. 10 were found to be finite 

in the limit E + 0 even without introducing counterterms; implicit subtraction of 

overall divergences in the Laurent expansion of the regulated amplitude is built into 

the original method. However, agreement with other regularization methods could 

be achieved only if the analog of Bogoliubov-Parasiuk-Hepp-Zimmermann[141 sub- 

tractions was performed. 
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In the framework of a nonrenormalizable theory, it appears conceptually clearer 
.- 

f to explicitly remove infinities by means of counterterms since these are part of a 

higher-order Lagrangean whose effects have to be included, even if there were no 
-. 

divergences. The prescriptions for a renormalizable theory can then immediately 

be transcribed to the present case by allowing for an increasing number of coun- 

terterms (see the second paper of Ref. 14, p. 322). 

- 

- 

In general, one-loop subgraphs need to be treated with extra care in OR be- 

- cause they contain the fluctuation field in the external lines and thus are calculated 

from strings of propagators De1 rather than from Sp (In 0). OR regulates the two 

operators in somewhat different ways; additional finite subtractions may be needed 

to ensure consistent renormalization of all Green functions. Ref. 13 gives a prescrip- 

tion for accomplishing this without explicit counterterms by means of introducing - . 
an auxiliary scale. In ChPT with counterterms, the same effect can be obtained 

by adjusting the finite piece of the couplings in the higher-order Lagrangeans. 

- 

3. The Generating Functional beyond One-Loop Order 

This section focuses on the structure of the generating functional of connected 

Green functions in chiral perturbation theory. For a detailed exposition of the 

external-field formalism in ChPT, the reader is referred to Ref. 3. The main point 

is that the perturbative expansion of the regulated generating functional can be 

obtained in terms of chirally covariant vertices and propagators. The invariant 

functional measure, however, induces a set of extra vertices whose role in the 

present formalism differs from that in earlier approaches!15’161 

3.1. CHIRAL LAGRANGEANS WITH EXTERNAL FIELDS 

At low energies, the effective action for QCD coupled to external sources for 

the flavour currents contains only degrees of freedom related to the light quarks u, 

d and s. Assuming dynamical breaking of chiral symmetry at a scale O(1 GeV), 
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_- 
the first term in its momentum expansion may be written asL31 

f 
f2 La= 4Tr (V,UtVpU+UtX+XtU)+hV,OVLLO. (34 -. 

The field U takes values in SU(3) and is parametrized as 

where the ‘pa (2) represent the octet of pseudoscalar mesons R, K and 7. The 

convention for the Gell-Mann matrices is Tr (A,&) = 26&, for a, b - 1,. . . ,8. To 

lowest order, the constant f is the pion decay constant, f M 93 MeV. 

Under chiral SU(3), x SU(3), rotations, U transforms as 

- 
Chirally covariant derivatives are defined by 

vu = a’lu + vp - uv; , 
- vu+ = ar”u+ + vp+ - u+v- . (34 

The (anti-Hermitean) source fields for the left- and right-handed vector flavour 

currents are required to transform as connections: 

The (Hermitean) scalar and pseudoscalar flavour densities transform homogeneously: 

x = qs + iP) = “~Xu(S” + iPU) + g;xgR ; 
f2 .f2 2 (3.6) 

the constant 21 is related to the quark condensates, and the constant term in 

s- ‘P z 75 contains the quark mass matrix. 
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The Lagrangean (3.1) is counted as O(p2): U is a dimensionless field, VP and 
.- 

* Ap are order p, while X, containing the square of the meson masses, is O(p2). _. 
Chirally invariant Lagrangeans & of higher order in p may be constructed from 

. 
covariant expressions like U, V,U, V,O, X, V,X, &‘&, etc. At the level p4, the 

WZ action should also be included in order to reproduce the triangle anomaly of 

&CD. 

3.2. SADDLEPOINT EXPANSION OFTHECHIRAL LAGRANGEAN 

In order to calculate quantum corrections in a chiral-symmetry preserving way, 

one may expand ,& about the solution Uo(z) of the classical equations of motion 
[31 and integrate over the quantum fluctuations according to the number of loops. 

As shown by Weinberg:] the divergences will be of successively higher orders in p2 
. 

and have to be absorbed by the Lagrangeans L4, &, etc. whose vertices in turn 

contribute at tree level as well as in loops. The full unitary theory will thus contain 

infinitely many independent couplings. - 

It is important to parametrize the quantum fluctuations in such a way that 

parity and chiral symmetry are manifest. A very convenient choice isL3’ 

U(x) = u(z)e-~(z)qs) ) u(5) := qy2(2) . (3.7) 

The fluctuation fields < transform non-linearly under the chiral group and linearly 

under the vectorial subgroup: 

5%) = ~+(sLw, m(z), u(z)) ((x) i(gL(x), g&r), u(z)) ) (3.8) 

where 

bL(4 d4, (PO(X)) = u(z)g~(2$ U’+(x) = ,t(,)g+) u’(x) . W-9 

It is easy to see that t( z is a pseudo-scalar field. For the purpose of generating ) 

graphs in a perturbative expansion, one may introduce a source J(z) for t(z) with 
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the transformation law J’ = i+Jx so that Tr [Jo] is invariant under chiral 
-. 

c transformations. 

In order to make chiral invariance manifest for each term in the action, one 

defines the covariant derivative of [ through the formula117’31 

V,U = u(dr,-C + (A,, e-(})u, 

V,U+ = u+(d& - (A,, e(})u+ , 
(3.10) 

where 

d, := t& + [r,, ] . (3.11) 

The anti-Hermitean fields IYP and A, are vector and axial-vector fields, respectively: 

l? = $ [,t, a%] + f uv-u+ + z” l +v;u, (3.12) 

AP = ; {u+, 8%) - f uV;u+ + 4 u+V/u 
(3.13) 

= z” l +vqrou+ = -1 uvqJ~, . 2 

While AP transforms homogeneously under the chiral group, IP is a connection, 

as anticipated by (3.11): 

r; = il+(r, + a,)& and A; = ?I+A&. (3.14) 

In addition, one defines 

a* = ;(UtXu+ f uX+u) . (3.15) 

It is now easily seen that each term in the expansion of a chiral Lagrangean &k is 

a chiral invariant by itself. 
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3.3. THESTRUCTURE OF THE GENERATINGFUNCTIONAL 

t 

_. 

The chiral perturbation series is generated from the path integral in the usual 

way. Let @ collectively denote all the external fields except J introduced after 

(3.9), and designate the chirally invariant Lagrangean of O(P~~) with n powers 

of the fluctuation field [ by L2k,n(U~,[). Th e g enerating functional of connected 

Green functions can then be represented as 

x 443e J 
i j- d*z ($F”D,t,[Uo,iP]~*-[“J”) 

J=O 

=e 
icrzl sZk[uO,@] . $Tr(lnDob) . eickm_I cLz3 %va[Uo,@,i6/6J] 

x ,fd')(O) s d*zln det[g,b(i6/6J(z))] . ,-$ ~d*mi*y J”(z)D,-,‘(z,yjUo,@)J*(y) 

J=O ' 
(3.16) 

where C’ means that the terms with n = 1,2 should be dropped for k = 1. The - 
inverse propagator of 5 in the presence of the external fields @ and the background 

Uo is given by 

&b(+o, @) = s2 ss”(+sb(4 
S2,2[Uo, a, <] = (d,dP)ab + bb - (3.17) 

It is covariant under the full chiral group, notwithstanding the non-linear realiza- 

tion of the symmetry (note that the transformation matrices h depend on gL, gR 

and the background field u, but not on [ itself). In the representation used above, 

the covariant derivative is 

(@)ub = S,bd’ + f‘;b , f‘:b = -5 Tr ([A,, &]I’) (3.18) 

and the matrix 6 is defined as in Ref. 3: 

cub = f Tr ([A,, A,][&, A’]) i- a Tr ({xa~ Xb)a+) * (3.19) 

The functional measure dp(t) will b e seen below to respect chiral symmetry, so 

the whole expression (3.16) is f ormally a chiral invariant. (The Wess-Zumino term 
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has been omitted for simplicity; its effect is studied in detail in Ref. 6.) Since Sect. 2 
_- 

f has established OR as a valid symmetry-preserving regularization procedure, the 

regularized and renormalized generating functional W is indeed chirally invariant 
-. 

to any given order of ChPT. 

As in the more familiar renormalizable field theories, renormalization proceeds 

in steps: In a divergent graph with more than one loop, one must first subtract 

all its subgraph divergences, starting with the innnermost divergent subgraphs. 

- Whereas all external lines in physical Green functions correspond to external fields 

@ or meson background fields Us, subgraphs do contain the fluctuation field t in 

the external lines. 

- Two different questions arise in this context: (i) Are the divergent pieces in 

,&t,n simply derivable from those in &t (e.g. by expanding &k(U) to n-th order 

in S)? (ii) How are the finite (renormalized) higher-order couplings related? With 

respect to (i), note that all &Q are chiral invariants; chiral symmetry alone 
- 

cannot relate them to one another. While this paper cannot definitively answer the 

question, Sect. 4 will begin to explore it by means of calculating all divergent pieces 

in ,CJJ. Contrary to the situation in (i), fine points of the regularization scheme, 

such as the difference in the treatment of 1nD and D-’ in OR (see Sect. 2.4) 

matter for the finite pieces. Also, renormalization conditions for the “unphysical” 

Green functions (with fluctuation fields in the external legs) have to be chosen. 

The most natural choice is to impose the same conditions as on the “physical” 

Green functions, but other procedures might also be consistent and would lead to 

different relations. 

3.4. THE EQUATIONS OF MOTION 

To order p*, the Lagrangean 124 has to be evaluated only for the configuration 

UO(X) that solves the classical equations of motion of ,Carl this circumstance sim- 

plifies fZ4 somewhat. If one wishes to go beyond O(p4), one needs to expand fZ4 in 
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powers of the fluctuation field t and hence has to use a more general expression: 

(3.20) 
j=l k=l 

where the terms with j = 1,. . . , 10 and Ic = 1,2 are those given by Gasser and 

Leutwyler. In SU(3), there are two additional terms: 

Fll(U) =Tr [(U'X-XtU)(UtV2U-V2UtU)], 

F12(U) =Tr [(UtV2U -V2UtU)2] . 
(3.21) 

Generally speaking, the equations of motion derived from ,C2 may be used in 
- 

- &k once all the necessary expansions in powers of s have been performed. E.g., if 

one wishes to compute W up to and including O(p6), &,I and L4,2 are required 

and have to be derived from the complete expression for L4; where possible, the 

resulting expressions in terms of Uo may be simplified by means of the equations 

of motion. In contrast, LCg may be immediately evaluated at U(z) = Uo("c) in this 

context. 

One might also consider solving the equations of motion of &I + J$ + . . . + &k 

if one wishes to calculate up to order p 2k (let this solution be denoted by uk-1). 

In this way, no one-particle reducible loop graphs need to be calculated since 

& L21,l (uk-1) = 0. Th’ is is indeed a valid procedure, provided one truncates 

the p2 expansion of that sum at O(p2”): F rom an iterative solution of the equations 

of motion and the power counting rules, one readily sees that u&r(z) contains 

components of arbitrarily high order in p if k 2 2, whereas Uo is strictly of O(p’). 
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3.5. THE FUNCTIONAL MEASURE 
- 

f 
In eqn. (3.16), the functional measure c&(t) was taken to be the invariant Haar 

measure 

&(t) = - det l/2 (sadO> ; (3.22) 

gab([) is the metric on the target manifold in the parametrization of the [. It is 

chirally invariant because the chiral transformations by construction are precisely 

the isometries of the metric!“’ Since the coordinates cp and t, defined by U = 

exP(-cp> = UexP(-O U, are related by the field-dependent chiral transformation 

gL = g& = u, it follows that 

db(5) = g&(t)) g $ = gab(t)* (3.23) 

This also shows that gab(<) is independent of the background field u. 

Standard evaluationngl of the determinant gives a highly singular extra contri- 

bution to the action: 

l-It 
d a de+, l/2 [gab([(x))] = 

x,a 
(3.24) 

Either by restituting appropriate powers of ti or by counting powers of momentum 

[where Sc4)(0) = O(p4)] one finds that this term is O(p4). All its vertices are at 

least O(t2), so it contributes to “physical” Green functions only above order p4. 

In his original investigation of higher orders in “naive” massless pion perturba- 

tion theory:’ Ch arap found chiral symmetry to be violated by quartically or worse 

divergent loop diagrams unless a specific parametrization was chosen for the pion 

field. It was subsequently realized’201211 that the extra graphs with vertices from the 

determinant eqn. (3.24) h ave the same type of divergence (in some implicit cutoff 

regularization) as the offending loop graphs and in fact precisely cancel them. 
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The role of the determinant strongly depends on the regularization scheme: 

z E.g., in dimensional regularization one may consistently set to zero both Sc4)(0) = 

(2n)-4 s&p and the tadpole graphs of massless particles[“‘. This is not possible 
-. 

in operator regularization, but both the regularized determinant and the tadpole 

graphs are chirally invariant; while the former is finite, the latter in general contain 

divergences. The determinant thus has lost its chiral-symmetry restoring function. 

- 

- 

The extra vertices due to the target space metric lead to finite renormalizations 

- of the chiral Lagrangeans L~4,2~, n > 1 [lndet g(S) contains even powers of [, 

starting at the second order]. Their contributions have a direct impact on the 

finite part of the “unphysical” counterterm Lagrangeans (i.e., those depending on 

fluctuation fields). It remains to be seen how these terms affect the relation between 

the “physical” and “unphysical” Lagrangeans. 

4. Renormalization of C~,J 
- 

This section presents the calculation of the divergent terms of all one-loop 

graphs with one external t-line. It serves as an illustration of OR, an exploration 

of the structure of counterterms with external fluctuation fields, and also as a first 

step towards the calculation of wfj (the generating functional to order p6). 

By expanding & to third order in t, one easily obtains the vertex: 

Replacing two of the [ fields with -iA, . i6/6J” and letting it act on 

[compare with (3.16)], one obtains the following form: 

(4.1) 



.- 
- 

f 

The three different vertex structures are given by 

VP(X) =$ Tr ({A,, A*}{<, a-} i- &t&a- -I- &a-Abt) 

- ‘I’r ([Ab, Xal[ap,Fl) 7 
(4.3) 

- 
In view of future calculations, it is most economical to first obtain the diver- 

. gent pieces of the quantities (Ds’)reJr, z) , lim,,,(d~ - d~)(D~‘),e,.(~, y) and 

limy+x [d~(D~‘)reg.(~, y)+d~(D~‘)reg.(~, Y)] th a are required by the vertex struc- t 

tures exhibited above. After straightforward application of the steps discussed in 

Sect. 2 and many cancellations of chirally variant expressions among the first three 

terms in the expansion (2.2), one arrives at the simple and chirally covariant result 

for the divergent part of the propagator at coincident points: 

- 
- cab(S) + o(l) . (44 

The covariant derivatives of D-l are obtained by separately calculating the ordi- 
,. 

nary derivatives of D-l and the terms involving I; combining the results, covariant 

expressions must result: 

and 

(4.6) 
=-.-. 
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The field strength related to lYP has been defined as13’ .- 
2- 

The chiral invariance of (4.5) and (4.6) is thus manifest. 

In the next step, the appropriate propagator terms are multiplied into the 

vertices; the flavour traces are evaluated with the help of the formula 

N2-1 

c (Aa)ij(Aa)kZ = 26ilbjk - (2/N)&jbkl 3 (4.8) 
a=1 

- which is valid for SU(N). From (4.3) t i is clear that all the terms so obtained are 
. 

chiral invariants. 

The result may be simplified by use of the equations of motion, which are 

most conveniently obtained by demanding that the linear term in the t-expansion 

of ,$(U) vanish: Tr ([(-d . A + .i a-)) = 0. Note that [ is a pure octet field 

whence follows that the singlet part of d. A is not determined by the (generally 

nonvanishing) singlet piece in u-. In fact, the definitions of P and Ap imply that 

they as well as d-A are pure octet fields if a parameter related to the QCD vacuum 

angle [31 is set to zero. With this circumstance taken into account, the equations of 

motion are 

-d*A+$u--iTr(a-)=O. (4.9) 

Other simplifications are obtained by partial integration and by use of the 

identities 

(4.10) 

and 

&A, - d,A, = -3~;~) (4.11) 
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where the notation 
- 

% F$ = uF$+ f u+F$u ; (4.12) 

has been used. In the case of phenomenological interest where the symmetry group 

is SU(3), an additional identity for traceless 3 x 3 (anti-)Hermitean matrices may 

be used to combine certain termsL3’: 

Tr (ABAB) = -2Tr (A2B2) + $ Tr (A2) Tr (B2) + [Tr (AB)12 . (4.13) 

- 

Written in terms of t, Afi, a& and FPy, * the divergent part of the counterterm 

Lagrangean ,&J for N = 3 finally emerges as 

._ sdiv. = 2 1 1 . 
471 - * - * - c 167r2 12f J 

d$ 

- 

x 1 3 Tr (A2) Tr (Ac”d,<) + 6 Tr (APAy) Tr (A,d,t) 

t Tr (A2) Tr ([a-) - Tr (a+) Tr (APdPt) 

t $ Tr ({A2,-u-)0 - ;Tr ({a+, A”}d,J) 

- - g Tr (a+) Tr ((a-) - & Tr ({a+, a-}t) 

t f Tr ([APAy, FJ 0 - i Tr ([A’, F$,] d?f) 

t i Tr ([FL,, F’-p”][) 1. 

(4.14) 

On expanding the divergent part of the general chiral Lagrangean ,C4, given by 

Gasser and Leutwyler, to first order in t, one verifies that it is identical to (4.14). 

Neither any of the additional terms listed in Sect. 3.4 nor those proportional to L3 

and L7 are required for divergence cancellation. 

In view of the discussion of the counterterm structure given in Sect. 3, this 

result is a hint that at least the divergent parts of the “unphysical” counterterm 

Lagrangeans are simply related to the “physical” ones. It remains to be seen if 

this situation also prevails in L4,2 and beyond. 
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5. Conclusions and Outlook 
.- 

f 
The main result of this investigation is that the external-field formalism of 

ChPT is a consistent perturbative framework for imposing the constraints of chiral 

symmetry beyond the one-loop order. The ambiguities in applying dimensional 

regularization to Fpa are circumvented in operator regularization; this method 

explicitly preserves the chiral symmetry while working in four dimensions. The 

original prescriptions by McKeon and Sherry have been adapted in order to ex- 

plicitly exhibit the divergences and to facilitate the subtraction of subgraph diver- 

gences. 

One question remains open in this paper: How are the counterterms of a 
- given order in the momentum expansion, but with different numbers of fluctuation 

- 

fields, related to each other? On general grounds, one has to admit the possibility 

that they may be unrelated. It is as yet unclear exactly which renormalization 

conditions have to be imposed on the proper vertex functions of the fluctuation - 
fields; this problem did not occur in the one-loop calculations carried out thus far. 

It is conceivable that physically reasonable conditions provide enough constraints 

to link all ,&k,n unambiguously to &k. The calculation described in the previous 

section likewise hints at the existence of strong relations among the counterterms 

of a given order in p. 

Multi-loop calculations in ChPT will not become commonplace in view of the 

considerable computational effort required and of the multitude of additional cou- 

plings appearing at each successive order. Nevertheless, it is reassuring to know 

that ChPT is theoretically sound and that powerful all-order statements such as 

the nonrenormalization of the chiral anomaycan be deduced on this foundation. 
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