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Abstract

The duality property of the three-dimensional Abelian  Higgs model with a Chern-

Simons term is discussed. It is argued that in a certain limit the charged vortices in

the original theory can be described by a dual gauge theory with also a Chern-Simons

term. The duality relations between the couplings of the two theories are thus ob-

tained. The relevance of this duality to the fractional quantized Hall effect, in particular,

the Laughlin-Haldane-Halperin hierarchy, is discussed.
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1. Introduction

Recent interest in the three-dimensional Abelian  Higgs model with a Chern-Simons

term mainly lies in its possible connection with condensed matter physics, in particular,

the fractional quantum Hall effect (FQHE) and the high temperature superconductiv-

ity. It has been clear that the charged vortices in the model serve as a field theoretical

realization for the anyons of Wilczek [l-4]. The charged vortices obey fractional statis-
-_ _

tics, have fractional charges, and hence should describe the quasiparticles and the quasi-

holes of the FQHE [5]. These properties have had a firm foundation due to the work of

Frohlich and Marchetti [4]. On the other hand, the nonrelativistic version of the model

has been analyzed and proposed to be the effective theory of the Landau-Ginzburg type

for the FQHE [6], after the original suggestion made by Girvin [7].

Based on the work of Cardy [8], Girvin has suggested that the hierarchical states

observed in the FQHE could arise as a consequence of the duality property of the theory.

The duality and its possible relations to the FQHE have recently been studied by Shapere

and Wilczek [9], who have pointed out a similarity for the hierarchical structure of the

FQHE with that of the two-dimensional 2~ model.

It is well-known that the four-dimensional QED has the electric and magnetic du-

ality property, when the Dirac monopoles are allowed. Cardy has shown that the dual-

ity exists in four-dimensional Abelian  gauge theories and two-dimensional spin theories

with a theta term on the lattice [S]. It is also well-known that in three dimensions

the electromagnetic self-duality of the kind mentioned above does not exists, because

the monopoles in three dimensions are actually instantons (see, e.g., Ref. [lo]). A recent

attempt to study the duality in three dimensions has been made [ll]. However, it failed

to produce the relevant hierarchical structure.
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The problem of duality in three-dimensional field theories is restudied in this paper.

It is shown in the present work that the idea of duality can be actually realized in the

three-dimensional Abelian  Higgs model with a Chern-Simons term included, although

it is only valid in a certain limit. Its possible relations to the FQHE is also discussed.

It should be pointed out that the duality property and the phase structure in three-

dimensional Abelian  gauge theory has been studied by Peskin [8].

Our study is also motivated by the following analysis made by Laughlin [la]. Ac-

cording to Laughlin, in the “fractional statistics” representation the quasiparticles of the

FQHE have exactly the same equations of motion as those of the electrons in the origi-

nal theory. This observation suggests a possible self-duality for any field theory which is

supposed to describe the FQHE. A useful analogy, in this respect, can be made with the

self-duality of the (1+1)-d’rmensional Ising model [13], in which the kink variables are

governed by the same dynamics as the original-Ising-spin variables. It has been clear,

that the charged vortices in the three-dimensional Abelian  Higgs Chern-Simons (AHCS)

theory describe anyons, or quasiparticles in condensed matter physics. It is then nat-

ural to expect that a dual theory to the AHCS theory should exist with the necessary

structure to produce the same dynamics for the anyons as that of the original theory. It

turns out that this self-dual theory does exist in a certain limit.

This paper is organized as follows. In the next section, an approximate local field

theory is constructed to describe the interactions of the charged vortices of the model.

In the third section, we show that in certain limit, a duality exists for the local field

theory of the vortices and the original theory. It is argued that in three dimensions the

dual object of the electric charge is the vortex, rather than the magnetic monopole.

The dual relations between the couplings of the dual and the original theories are
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thus obtained. In the fourth section, we discuss the possible relevance of the duality

property to the Laughlin-Haldane-Halperin hierarchy of the FQHE. In the last section

we discuss our results and draw our conclusions.

2. Local Field Theory of Charged Vortices

In this section a local field theory, which describes the interactions of the charged

vortices-in the Abelian Higgs Chern-Simons theory, is constructed. Since the vortices

are extended objects [2-4,161, our construction is approximate, and should be valid in

the local field limit.

Our construction closely follows that of Refs. [14,15]. The starting theory has its

Lagrangian given by

L=& Fpv P” + -$ &puPACL  &A, + ID&I” - V( IdI) , (1)
,I

where Dp$ = (ap + iA,) $, and V(j$l) = (X2/4)  (]$I2  - v”)” We use the metric

qPV = (1, -1, -1). The generating functional is written

Z[J] = /DA Dd exp (i / d3s [L(x) + J&x> F”W]) 6(F,(A, 4) - c) , (2)

where F’( A, 4) is a gauge function. We will only consider the case in the Higgs phase

in the following, the symmetric phase corresponds to v = 0. The vortex solution to

the field equations is characterized by the asymptotic behavior of the complex scalar 4:

4 + vein’, where n is the winding number. To proceed further we separate out the

vortex configurations from the fields, which can be accomplished by writing

q$ + 4’ = ebine$, A, ---f A; = A, + AA, ,

AA; = -nEij $ (1 - eAPT2) , AA0 =
de2
2 pr2e-pr2  ,

(3)



where the smearing factor e-pr2 is used to simulate the asymptotic behavior of the vortex

field at the spatial infinity and at the origin. The local limit is obtained in the end of the

calculations by setting ,B + 00. Hence AFr2  = 2rn 6$(z), with S;(X)  = (p/r)  e-pT2 +

S2(x) a s  p + 00. We will suppress the smearing factors in the following, whenever

no confusion is caused, to simplify our notations. For arbitrary trajectories we have a

covariant form

AF,, = 2mEp,,p
J

deiP(~m) S3(a: - T&-~)) . (4)

In the following we will consider the case n = 1 only, the case n = -1 corresponds to

backtracing of the trajectory; and will assume that the higher winding number n can be

formed by coalescence of the fundamental ones. The generalization of Eq. (4) to several

vortices is

AF,, = e- 27r~~,,~  JdTg&J s3(x -Fm(Tm)) ) (5)
m=O .- ,*

where Zm(rm)‘s  are the locations of the vortices. In the form of Eq. (3) the generating

functional becomes

where

m=l

J~“Fpy + L(x;q,. . . Y%]) 6(F,(A 4) - c) ,

,FN) =‘%?(x)

+ -!- E’“~A~(x) E,X~~T 5 J dTnaYrn(Tm)  s3 (X - Em(Tm))
879 m=l

(6)

-G”Y(2~pBv-2~ FcpyA JdTmgrn(Tm)  b3(x-~m(,))) 7
m=l

(7)
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and

(8)

where G,, = -Gyp, and the 4 integration is performed for fields with no solitons; the

GPV is a Lagrangian multiplier, and the B, is the gauge potential of the classical vortex.

Note that the functional integration over the gauge fields has been explicitly split into

twoorthogonal  parts for A, and BP respectively. The second line in Eq. (7) describes

the coupling of the gauge field A, of the original theory with the effective current of

the classical vortex described in terms of the vortex trajectory which carries a coefficient

determined from the Gauss law constraint [9]. It is physically plausible that the mass M2

does not vanish even in the local limit. Using Feynman’s equivalence theorem (see, e.g.,

[14])  we introduce a scalar field x to describe the vortices in the point-limit. Integrating

over the T& ‘s, we arrive at

z[J] =
J

DA i&S DG DB Dx exp Jp”Fp” + Lo(x)]) b(F,(A, 4) - c) ,

where

L(X) = - -& &3‘” + -$” cpYXAp d”Ax - 2G’.‘“(d,B”)

+ I+$ + i (A, + BP) #I2 - ;(]$I2 - w”)” (9)

+ a&y + 2?rie,“x
8

G”’ + -
8n2 E”~~A~ 2 +  M21x12 ,

where x is a complex scalar field. All the terms which vanish in the local limit have been

dropped from the Eq. (9). Note that in obtaining Eq. (9) we had only considered the

coupling of the vortices with the dual “gauge field.” The self-interactions of the vortices

have been ignored due to the lack of knowledge. The mass term of the x-field is put

in by hand.
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Now we define VP = A, + B, and take the physical gauge Im q5 = 0, and write

Reb= (l/d)d++v,  the above Lagrangian can be written as

L(X) = - & Fp”Fp” + -$ 8’“’ A, &Ax + f (a,9q2 -

+g (1+&#q2 VpVp - GCL” (8,Vu - &VP - Fp,)

+ L$x + 2rie,,x
6

G”’ + -
87r2

cuXTAr
-_ _

(10)

where M$ = e2v2. T he functional integration over VP is Gaussian, and can be performed

to obtain

Z[J] =
s

DA DC& Dx DW exp JpuFp” + &I+)]) , (11)

where

and

+ f (a,$Q2 - + 1%~ + iWpx12 + M2 lx12 ,

w, = 2mILux G"' i- & E”~‘&
>

. (13)

The functional integration over the Fpy can now be performed in the gauge
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We finally have the Lagrangian which describes the gauge interactions of the vortices.

J!T dual = - -

+ IL&x + iW,x12  + M2 lx12 + .  .  . ,

(14)

where

A =  (l+&&)2 (2”;j+)2+ (;)” ,

and the dots represent the source terms, and the gauge condition is 3,Wp = 0.

In the above we have taken a set of specific smearing factors and have assumed that

the mass of the vortex does not vanish even in the local limit. This problem is studied

in Ref. [15]  for the case 8 = 0. In the present context, due to the lack of knowledge of

explicit solutions, we could only rely on physical plausibilities. As discussed in [6], the
.“s

intrinsic problem with the Landau-Ginzburg approach involves the physics at distance

scale which is comparable with the inverse mass of the vector bosons. Hence it is natural

to expect that, by taking the local limit, one would not lose too much relevant physical

information. There also seems no compelling reason which is strong enough to force a

vanishing soliton mass in that limit.

It is clear that, at distances far away from the vortex core, the 4, field can be

effectively frozen. Thus the Lagrangian of Eq. (14) can be approximated by

Ldual

I2
Mv

Ep”Awp  3”W~  + -yj- wpwp

+ &JJ + iW,,x12 + M2 lx12 + . . . ,

where we have redefined Mv’~ = Mc/e’2. This Lagrangian describes the gauge interac-

tions of the charged vortices in the original theory, which is described by the Lagrangian
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in Eq. (1). Note that Eq. (15) is already written in a gauge-fixed form (with the gauge

condition tl,Wp = 0), and it is gauge invariant under Wp + Wp + C?,A with dPPA = 0.

We now turn to the discussions for the relations between the two theories.

3. Duality in Three-Dimensional Abelian Gauge Theories

In this section we discuss a dual relation between the two theories. In order to
-_ _

compare the two Lagrangians given by Eqs. (1) and (15), we rewrite Eq. (1) in the

following parametrization of the Heisenberg fields

(16)

The Lagrangian is then described, in terms of the new fields, by

with MC = v2. The Lagrangian has the similar appearance as that of Eq. (15).

We make the following remarks concerning the above discussion. Firstly, the scalar

field part of the vortex configuration is given asymptotically in Eq. (3) plus some ex-

ponentially damping term. At distances far away from the vortex core the latter term

should be negligibly small. Thus, as a first approximation, one can take +r x 0 in

Eq. (17) in the large distance, or equivalently, the local limit. Note that the U(1) cur-

rent is given, in the parametrization of Eq. (17), by Jp = (Mv + c&)~A,. Thus in

approaching the local limit, one approximates the current by JCL e M$Ap, which is the

approximation we will use repeatedly in the following discussion. Secondly, the dual
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Lagrangian, as given by Eq. (15), has been obtained under the point approximation for

the charged vortices, while the latter are clearly extended objects. We should stress that

we do not have any knowledge about the self-interaction of the vortices. A physically

plausible conjecture is that the dual theory has a similar structure as the the original

one, and a Lagrangian similar to Eq. (17) could be obtained for the dual theory.

The self-duality property of the theory concerns the relationship of the coupling

parameters in the two theories. The relevant parameters are contained in the gauge

fields parts in their Lagrangian, given by

a n d

where

Fp,,Fp” + -$ E~“~A~ &Ax + f M$A,A” ,

and

M$T~M;  [(2r;Mv)2+  (g)‘]’ .

It follows that the dual form of the dimensionless ratio of e/Mv is given by

$=-&- [(yy2+ (;)‘I .

(18)

(19)“3

(21)

(22)

(23)
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It should also be noted that the following products are equal in the two theories.

era@ = e20 , er2hfr2 = e2M2V v *

Thus the mass parameters in the two theories are also the same.

It is clear that the Eqs. (18) and (19) lead to the same equations of motion and

canonical commutation relations. It is then expected that the same dynamics would
-_ _

produce the same physical spectrum. Hence this formulation of the three-dimensional

Abelian  Higgs Chern-Simons theory is self-dual. The dual relations between the cou-

plings of the theory are given by Eqs. (20-23). T his self-duality is only an approximate

property of the theory, which should be exact only in the local limit.

In the absence of the Chern-Simons term, the dual relation of Eq. (23) reads

e’ 27rMv-=-*
27rM; e

That is, the weak coupling regime of the original theory is mapped into the strong

coupling regime, and vice versa. This fact is characteristic of the self-duality for the

systems mentioned in the Introduction. In the presence of the theta terms, the self-

duality takes the form given by Cardy and Rabinowicz in Ref. [8]. The dual relationship

of Eqs. (20-23) can be reexpressed by defining a complex parameter [

27rMv .8
6=7+2% 7

and by defining the generalized duality transformation

(24)

DT : [ -+ (C-l)* . (25)
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where D is the duality transformation defined by D: < + [-‘,and T is the time re-

versal transformation, which is not a symmetry of (18), neither of (19). Note that

D2 = (DT)2 = 1.

However the shift in the 8 is generally not a symmetry of the theory under consid-

eration, since it changes the physical spectrum. In fact, we do not need a symmetry

in relating the model to FQHE, although in the next section we will point out an ap-

proximate periodicity in the 8, thereby to partially recover the SL(2,Z) symmetry of

Refs. [8,9].

From the construction given above it is clear that it is possible to build an entire tower

of theories, in which each theory describes the interactions of the vortex excitations of

the closest previous theory in the tower, except for the lowest one. However, the tower

only possesses two sets of couplings related by the Eqs. (20-23). The experimentally

observed hierarchical states of the FQHE are interpreted by Haldane as a sequepce

of condensations of the quasiparticles [17].  The possible relevance of the self-duality

discussed above to the Laughlin-Haldane-Halperin hierarchy will be discussed in the

next section.

It is useful to have the explicit correspondence between the two fields A, and W, in

the Eqs. (18,19). We write the field W, in terms of the A, field by requiring that they

satisfy the same equations of motion and the same equal-time commutation relations

(or classical Poisson bracket). In the following we will treat the problem classically,

and hence the Poisson bracket will be always used. Let us assume the dual gauge field

W, can be formed by linear combinations of the gauge field and the topological current

in the original theory. It is obvious that the Wp defined by

wp = $ E~,,A d” AX + aA, , (26)
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satisfies the same equations of motion as that of the A, for any choice of a. By imposing

the requirement on the Poisson bracket, we find that

e
a=-G ’

where we have used the equations of motion derived from Eq. (18)’ in rewriting the

canonical momentum IIiual,

II;ua, = --$ woi + -$ &A.3 ’ (2%

for the choice of a given in Eq. (27). It is clear that the dual gauge field Wi is proportional

to the canonical momentum of the original theory, and the dual canonical momentum

is proportional to the original gauge field Ai. We mention that this is not a derivation,._ .w

but only a convenient representation for the dual fields. Inversely, we have

A, = $
I

ECL”X  d” WA - g wp ,

and

Hi = --$ Foi + 5 &A. = -L3 2~ Eijw.3 .

As mentioned in the introduction the dual object of the U(1) current should be the

topological current both in the original theory, while the latter, in turn, is described by

the-U(l) current in the dual theory. Using equations of motion and the dual relation

Eq. (26), it can be shown that
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Jdual 1
P = - &&Jr wXT =

4n
.

where Jp and j, are the topological and the U(1) currents respectively; the jeff is the

effective U( 1) current, which is equal to one half of the corresponding U(1) current [9],

in the strong coupling limit ( e2 + oo).

In this section we have discussed the dual relations between the two theories of-_ _
Eqs. (18,19), which is valid in the local limit. In order to study the possible relevance

of this gauge system to the FQHE, along the lines suggested by Girvin [7], we have to

consider some extreme cases which are discussed in the next section.

4. Relations to the FQHE

It is clear from the above discussions that there is a major difference between the
.- .m

theory under consideration and the theories studied by Cardy and Rabinowicz: we do

not, in general, have the periodicity of 19 in three dimensional theories. This is simply due

to the following fact. The &terms in four- and two-dimensions are surface terms, hence

the shift in 0 does not change the equations of motion, and physical quantities are peri-

odic in 8. In three dimensions, however, the B-term is not a surface term and it appears

in the equations of motion (more precisely, it appears in the Gauss law constraint). In

particular, we do not know the O-dependence of the physical spectrum. This could be a

difficulty to accomplish the (2+1)-d imensional analog of the oblique confinement for the

FQHE hierarchy suggested by Girvin. We will only study two extreme cases in the fol-

lowing, and will point out a possible way to improve our understanding of this problem.

It is interesting to notice that the situation can be partially improved by considering

the case when Mv is large and e is small. In this case one has a weak dependence on 8,
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for small 8. The duality transformation reads

e’ 27rMv-=-
27rMG 1e

Thus one could formally proceed according to Cardy. The approximate periodicity is

defined by 8 -+ 0’ = 8 + 27r, and which is described by

._ _ A :  (+(+i. P-9

Since the symmetry operations DT and A do not commute, the general symmetry

operation is of the following form

Ape DT ApI DT AP2 . . . DT APN , (30)

where p:s are integers, and pi f Cl for i # 0, provided that 8 is smaller than MV and

l/e. Under the transformation (30) the C’ takes the following form

5’ = ip0 +
1

1 (31)
im +

ip2 +
1

*. 1
‘iPN +[ .

This symmetry can be expressed in terms of a group SL(2,Z) on the complex 5 plane,

by redefining

D :  (‘-+-l/c ,

A :  &+C+l .
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and the group action

a( + bb-c(+d ’
ad - bc= 1 ; a,b,c,d eZ . (32)

However, we do not have an infinite continued fraction, or the full group SL(2,Z). The

symmetry operation (30) [or (32)] terminates when the 6 is comparable with Mv or l/e.

.At this point the approximation breaks down. Hence we do not have the complete phase

diagram given in Refs. [8,9]  in our case.

In another extreme case when Mv/e + 0, one has the duality in 6

The periodicity in the 2n-shift of 6 is not valid in this case. Note, however, the mass

gap in this limit is infinite.

It should be mentioned at this point that, even if the periodicity in 6 is an exact

symmetry, the full group SL(2,Z) or the infinite continued fraction as given in Eq. (31)

is still not quite what one actually wants. As pointed out in Ref. [9],  what one really

needs to obtain the Laughlin-Haldane-Halperin hierarchy is the subgroup r1,2 of the

SL(2, Z), defined by

5 a( + b
-+cC ’

ad-bc=l ; a,b,c,d e.Z .

with even ab and cd, rather than Eq. (32).

On the other hand, one does not really need the shift in 6 to be a symmetry opera-

tion, since the Laughlin-Haldane-Halperin hierarchical states are really different states.
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Then for the case of Eq. (33), and proceed according

6
( >

-1

2n =ll
-1 - 1 ,

where v is the filling fraction, one could obtain all the observed fractions in the lowest

Landau level by starting with, say, 6 = 7r, along with few fractions with even denomi-

nators. The above relationship between the 6 and the filling fraction v is discussed in
-_ _

Refs. [9,18].  The of 11owing results might be interesting.

6 -I- - -2Vr 2 __f v=- );
DT
-

6
5=2 __t v = -  ; ,

A
-

6
2n=2 3 - u=- z )

A- 6 3tz=Z 3 e’=2
2r 3

_$

A2 -- 6E-2 -5 m+ an-5 61-2 - L=& . . .D

(34)

However, the even denominator fractions are not consistent with the experiments.

The program initiated by Girvin in Ref. [7] is thus partially justified. The unpleasant

aspect of this study is that the mass gap is infinite in the local limit.

It should be mentioned that a related difficulty has also been observed by Zhang,

Hansson and Kivelson in Ref. [6], i.e., the difference between the profile and the creation

energies of the quasiparticles and the quasiholes is not understood at this stage. This

issue is apparently related to the physical spectrum of the theory, in particular, its 6-

dependence.

At this point, we speculate on the possibility of enlarging the theory by embedding

it into a larger one. It is known that the 2n-shift of the &angle  is an exact symmetry in

four dimensions. The e-term in three dimensions is related to that in four dimensions.
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If one could understand the process of this dimensional reduction physically, one might
.be able to draw some conclusions concerning the e-dependence of the physical quantities

in three dimensions. One of the possibility is the following: there might be a one-

to-one correspondence for the spectra in the different &sector, although one does not

expect that they are exactly the same in three-dimension. If that would be the case,

it is then possible to build a larger theory which includes all the shifted and unshifted

&se@rs.  This idea would not be considered too unrealistic, if one notes that, before

the dimensional reduction, this large set of theories originates from one single theory in

four dimensions. One could then expect a phase diagram of the overall shape as that

given by Cardy, but with some deformations. In general, the phase diagram in our case

is expected to be more complicated.

It is believed that the difficulties and the possible way-outs, discussed above, provide

a useful clue to the understanding of the Landau-Ginzburg approach to the FQHE.,-.-

5. Discussions

In this work we have constructed a local field theory which describes the interactions

of charged vortices in the ordered phase of the three- dimensional Abelian  Higgs Chern-

Simons theory. The dual theory has the same appearance as that of the original theory,

with their couplings related by the dual relations given in Eqs. (20-23). This self-duality

is the type discussed by Cardy in Ref. [8] for gauge theories with e-terms.

However, the periodicity of 6 is not a symmetry in three dimensions, and thus

the hierarchy obtained in Ref. [8] for four- and two-dimensions does not exist in three

dimensions. The difficulties to implement Girvin’s program in (2+1)-dimension  have

been focussed on the need for understanding of the physical spectrum, in particular,
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the d-dependence of the physical quantities. We have proposed a possibility to resolve

this problem.

On the other hand, it has become apparent that the three-dimensional Abelian

Higgs Chern-Simons theory has attracted tremendous attention in recent years. The

relevance of its study to the FQHE and the high temperature superconductivity has

recently been pursued by March-Russell and Wilczek [19], and by Wen, Wilczek and Zee

[20]:It-’is b 1’e leved  that we have found the correct dual symmetry of the theory in this

work. Better understanding of its physical spectrum and the 8 dependence of physical

quantities would certainly shed new lights on this exciting field. Further study in this

direction is currently underway and will be reported elsewhere.
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NOTES ADDED

-This work was submitted first in May 19S9.  Since then we have noticed that there

appeared several preprints on the same problem of duality in three-dimensional gauge
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theory with a 0 term. Notably, a preprint by S. Rey and A. Zee discussed the case of a

compact U(1) group on the lattice, and a duality relation is obtained, which is the same

as ours. However, it is not clear in their work what the dual theory describes. We have

shown in this work that the dual theory precisely describes the vortices in the original

theory, which is on line with Girvin’s proposal.
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