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ABSTRACT

We note that most experimental searches for rare phenomena  actually measure
the ratio of the number  of event candidates  to the number  of some normalizing
events.  These measurements  are most naturally interpreted within  the framework
of binomial or trinomial statistics.  We present a general expression,  based upon a
classical treatment,  that accounts  for statistical normalization  errors and incorpo-

rates expected background  rates. The solutions of this expression  converge to the
standard  Poisson values  when then number  of normalizing  events is larger than a
few hundred.
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1. Introduction

In the search for rare processes,  many experiments  observe small  numbers  of

event candidates. These observations  are often accompanied  by an expectation

of some number  of events from background  sources. The interpretation  of this
11 Ainformation is normally  based upon a Poisson statistical treatment. An upper

limit on the number  of observed events is calculated and compared  with the number

that  is expected from some theoretical  calculation. Normally, this comparison  is
used to constrain the parameter space of the theoretical  model.

We would like to point out that  most experiments actually measure  the ratio of
the number  of event candidates  to the number  of a different type of (normalizing)
event.  Similarly,  all theoretical  models predict  event rates which must be normal-
ized to the rate of the known process. This subtle  distinction becomes  important
when the number  of normalizing  events is not large. Indeed,  one can find examples
in the literature  of attempts  to account  for the statistical error on the theoretical

expectation (often by subtracting  one sigma- from the theoretical  value). In the
following sections, we first review the standard  Poisson treatment  of the problem.
We then show how to generalize the solution to include  normalization errors by
the use of binomial and trinomial statistics.

2. Poisson Statistics

In dealing with discrete statistical distributions, one is forced to adopt a point

of view!’ We choose to adopt the so-called  classical  approach.

Let us consider the case that  N events are observed in an experiment. For

the moment, we assume that  there  are no events expected from any source of

background.  Within  the context  of the classical  approach,  the upper limit on the

number  of signal events of confidence level ,B (pf) is defined  as the solution  of the
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following equation,

(1)
n=O

where: Q is the tail probability that corresponds to the confidence  level ,L3; pS
is mean of the Poisson distribution; and n is an index.  Equation (1) is derived
by equating the Poisson probability of observing N or fewer  events with the tail
probability.  The interpretation  is that  /J! is the value  of pS such that  N or fewer
events would be observed with frequency  cy in many repetitions of the experiment.

An alternative  interpretation  is that  p! is the value of pS such that more than N
events would be observed with frequency  /? in many repetitions  of the experiment.

Equation  (1) has recently been generalized by Zech[l’ to incorporate the case
that rub background  events are expected. In this case, the observed number  of
events is the sum, N = ns + nb, where  ns is some number  of signal events and nb
is some number  of background  events.  We now have a priori  information that  nb
must be less than or equal-to N. The right-hand  side of equation  (1) is therefore
redefined to be the joint Poisson probability-that  the sum ns + ?2b ‘is less than d”r
equal to N where  the number  of background events is constrained  to the interval
[0, N].* These requirements  are shown graphically  in Figure 1. The number  of
signal events is plotted along the horizontal  axis and the number  of background
events is plotted along the vertical axis. The probability content  of the region
?Zb 5 N is renormalized  to unity. The region enclosed by the constraint nS +nb < N
is indicated by the dashed line. The upper limit p! is found by requiring  that  the
probability  content  of the enclosed region  be CY. Mathematically,  the upper limit
is the solution  of the equation,

Equation (2) was first derived from a Bayesian approach!’ The agreement

* Alternatively, we could require that ,B be equal to the probability that n, + nb > N given
that nb is constrained to the interval [0, N].
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between the two approaches is accidental and does not apply to the generalization
that follows!

3. The Inclusion of Normalization Errors

As was stated in the Introduction,  essentially  all experiments measure  the ratio
of the number  of interesting events N to the number  of normalizing  events D. We
ass-me that the categorization  of events as N-type  and D-type  is exclusive.  An
event can fall into one category  or the other but not into both (these categories
might  refer to different decay modes of the same parent  particle or they can refer
to completely  different physical  processes such as 2’ production  and small-angle
Bhabha scattering).

3.-l. MEASUREMENTS WITHOUT BACKGROUND

It was shown by James  and RoosL5’ that t&e statistical distribution of the rati.
N/D can be derived from the binomially distributed quantity N/(N + 0). If rs

is the (D + co) asymptotic  value  of N/D, then the quantity N/(N + D) has a

binomial distribution that is characterized  by the probability pS = rS/(l + rs). To
define an upper limit on pS (and therefore  on rs), we lose  no generality  by fixing

the binomial denominator  to the sum N + D. The upper limit is then defined  by

requiring  that the sum of the binomial  probabilities for all ratios  n/(N + D) 5

N/(N + D) be the tail probability cx The upper limit, r!, is therefore  given by

the solution  of the following  equation,

N
CX= c

(N + D)!
n=O n!(N + D - n)!

(“-)“(1-  &)N+D-n. ( 3 )1 + rs

Although  equation (3) and equations  2-3 of Reference 5 appear to differ, they
are completely  equivalent  I”’ We note that  the product  rfD converges to the Poisson
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value pf in the limit D >> N. To show this explicitly, we make the replacement
r, + p$/D in equation  (3). Using the identity,

( >
D

lim 1 - 5
D---X

= e--clS, (4)

it is straightforward  to show that  equation  (3) converges to equation  (1) in the
limit of large D.

--- -

3 . 2 .  M E A S U R E M E N T S  W I T H  B A C K G R O U N D

In the case that  background  events are expected, the binomial treatment  must
be modified. The problem  now contains  three  types of events:  signal events,  back-
ground events, and normalizing  events.  It can therefore  be described  by a trinomial

statistical distribution. We assume that  the expected rate of background  events is
normalized  to the rate of D-type  events.  If rb is this ratio and rs is ratio of signal
events to D-type  events,  the trinomial distribution is described  by the probability
Of measuring  a signal event,  pS = rs/( 1 + 1‘9 $ rb), and the probability of measuring
a background  event,  pb = rb/(  I + rS + rb).

In analogy to the Poisson case, we define  the tail probability cu to be the sum of

all trinomial probabilities for the ratios n,/(N + D) and nb/(N + D) such that  the

sum (n, +nb)/(N+D)  * 11s ess than or equal to N/(N + D) where nb is constrained
to the interval  [0, Iv].* These requirements  are shown graphically  in Figure 2. The
number  of signal events is plotted  along the horizontal  axis and the number  of
background  events is plotted along the vertical axis.  The trinomial treatment
requires  that  the sum of the numerators,  n, + ?Zb, be less than or equal to the total
denominator  N + D .  This constraint is shown as the dotted line. The number
of background  events is constrained  to the region below  the solid  line (nb 5 N).

The probability  content  of the allowed  region is renormalized  to unity. The region

* Alternatively, we could require that p be equal to the probability that N/(N + 0) <
(% + nb)/(N + 0) 5 1 given that nb is constrained to the interval [0, N].
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enclosed by the constraint n, + nb 5 N is indicated by the dashed line. The upper
limit on rs is found by requiring  that  the probability content of the enclosed region
be CY. It is straightforward  to show that  rf is given by the solution  of the following
equation,

N-l-D-n,--nbn,!na!(~N~D~h~-nb~!P~sp~b[l  - (Ps + Pb)I
( )c,“,=,  nb!q&?;-‘nb,!$b[l  - pblN+D-nb

7 (5)

v&ere both ps and Pb depend upon rs.

Equation  (5) is the trinomial analog of equation  (2). If we make the replace-
ments, rb -+ pb/D and rS --+ ps/D, and then use equation  (4), we can show that
equation (5) converges to equation  (2) in the limit D >> N. Note that  both equa-
tions reduce to their simpler  forms (equations  (1) and (3), respectively) when the
number  of observed events is zero. This reflects  the fact that  we have a priori

knowledge that there are no background  events in the sample.

3.3.  NUMERICAL RESULTS
.s

Equations (2) and (5) are straightforward  to solve  by numerical  methods.  In
order to compare  the trinomial solutions with the Poisson solutions,  we examine
the quantity  rfD. It must be stressed that  it is more natural to use r! to compare
measurements  with expectations  and that  rfD is used solely for the purpose of
comparison.  The /3 = 0.90 values  of r!D are listed in Table I for several values  of
N, pb = rbD, and D .  The Poisson solution p$? is listed in the last column.  The
p = 0.95 values are listed in Table II. Note that the N = 0 values  of rfD and &?
are independent  of the background  expectation.

For the range of N that  is considered (N 2 5), we see that  the trinomial limits
are larger than the Poisson limits when D  is small.  At D  = 100, the difference
is reduced to a few percent  or less. It is clear that  attempts  to account  for the
normalization error within  the Poisson framework by changing either pf or the
theoretical  expectation  by the fraction l/l/o are incorrect.
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4. Conclusions

We have noted that most experimental searches for rare phenomena actually
measure the ratio of the number of event candidates to the number of some nor-
malizing events. These measurements are most naturally interpreted within the

framework of binomial or trinomial statistics. We have presented a general expres-
sion (equation (5))) b d pase u on a classical treatment, that accounts for statistical

normalization errors and incorporates expected background rates. The solutions-_ _
of this expression converge to the standard Poisson values when then number of
normalizing events is larger than a few hundred.

Although equation (5) is formally correct in all cases, it becomes sensitive to
computer roundoff error when D becomes larger than a few hundred. Happily,
the two approaches converge in this regime. It is important to note that the
Poisson solutions are correct as they stand in this regime (D X 100). Further
attempts to correct for statistical normalization error are not only unnecessary but
are incorrect. .- D
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Table I

The ,B = 0.90 trinomial confidence limit r!D for several values  of N,
/.Lb = rbD, and D. The Poisson limit pf is included for comparison.

N pb D = 10 D = 50 D = 100 Poisson

0 2.59 2.36 2.33 2.30

1 0.0 4.50 4.00 3.95 3.89
1 0.5 4.09 3.62 3.56 3.51

- -1 1.0 3.82 3.37 3.32 3.27

2 0.0 6.27 5.50 5.44 5.32
2 1.0 5.35 4.61 4.53 4.43
2 2.0 4.67 4.22 3.95 3.88

3 0.0 7.99 6.93 6.79 6.68
3 1.5 6.54 5.52 5.40 5.29
3 3.0 5.41 4.55 4.46 4.36

4 0.0 9-68 8.32 8.16 7.99
4 2.0 7.71 6.39 - 6.24 . 6.09 ‘-
4 4.0 6.09 5.01 4.89 4.78

5 0.0 11.35 9.67 9.47 9.27
5 2.5 8.87 7.23 7.04 6.85
5 5.0 6.73 5.43 5.29 5.15



Table II

The ,B = 0.95 trinomial confidence limit rfD for several values of N,
j.Lb = rbD, and D. The Poisson limit /J! is included  for comparison.

1 0.0
1 0.5

- 1 1.0

2 0.0
2 1.0
2 2.0

3 0.0
3 1.5
3 3.0

4 0.0
4 2.0
4 4.0

5 0.0
5 2.5
5 5.0

D = 10

3.49

5.73
5.32
5.02

7.80
6.86
6.13

9.79
8.32
7.11

11.74
9.76
8.04

13.67
11.18
8.92

D = 50 D = 100 Poisson

3.09 3.04 3.00

4.93 4.84 4.74
4.53 4.45 4.36
4.28 4.20 4.11

6.57 6.44 6.30
5.67 5.54 5.41
5.06 4.94 4.82

8.13 7.95 7.75
6.71 6.53 6.36
5.70 5.54 5.40

9.63 9.39 9.15
7.70 - 7.47 . 7.24
6.26 6.07 5.89

11.10 10.81 10.51
8.65 8.37 8.09
6.77 6.54 6.33
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FIGURE CAPTIONS

1) The region of signal and background  events that  is included  in the Poisson
probability for N observed events.  The number  of signal events (n,) is plotted
along the horizontal  axis and the number  of background  events (nb) is plotted
along the vertical axis. The number  of background  events is constrained  to
the region below  the horizontal  solid  line (nb 5 N, 0 5 nS < 00). The
total  probability is renormalized  to unity  in the allowed  region. The region..- _
incorporated in the sum ns + nb 5 N is indicated by the dashed line. The
upper limit p! is found by requiring that  the probability content  enclosed by
the dashed line to be cy = 1 - ,LI.

2) The region of signal and background  events that  is included  in the trinomial
probability for N observed events and D normalizing  events.  The number

of signal events (n,) is plotted along  the horizontal  axis and the number
of background  events.  (nb) is plotted along  the vertical axis. The trinomial
treatment  requires that  the sum of the numerators,  ns + ng, be less than
or equal to the total  denominator  N + D. This constraint is shown as the
dotted  line. The number  of background events is constrained  to the region
below  the solid line (nb 5 N). The total  probability is renormalized  to unity
in the allowed  region. The region incorporated  in the sum ns + nb 5 N is
indicated by the dashed line. The upper limit on rs is found by requiring
that  the probability content  enclosed by the dashed line to be cx = 1 - ,B.
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