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ABSTRACT
Various novel concepts of focusing and diagnosis of high energy charged

particle beams, based on the interaction between the relativistic particle beam
and the-plasma, are reviewed. This includes overdense and underdense thin
plasma lenses, an (underdense) adiabatic plasma lens, and two beam size monitor
concepts. In addition, we introduce another mechanism for measuring flat beams
based on the impulse received by heavy ions in an underdense plasma. Theoretical
investigations show promise of focusing and diagnosing beams down to sizes where
conventional methods are not possible to provide.

1. INTRODUCTION

As the energy of circular colliding beam accelerators becomes higher, one
must face the limitation imposed by the energy loss to synchrotron radiation.
For this reason, it is likely that future lepton colliders will be linear machines.
The disadvantage of the linear scheme is that the beams are used only once, and
then discarded. In order to achieve desirable luminosity, L = jrepN2Ho/4ra62,
where N is the number of particles per bunch, jrep the collider repetition rate,
HD the beam-beam disruption enhancement factor, and a; the rms beam radius
at collision, one must either increase the beam current jrepN or decrease the spot
size. The current is constrained by many factors, e.g., power limitations or wake-
field effects in an accelerator. On the other hand, the minimum spot sizes are
presently limited by the strength of conventional focusing quadrupoles. Even-
tually, however, one would reach the so-called Oide limit,’ where the stochastic
nature of the synchrotron radiation triggered at the final focusing lens imposes
a strong limitation on the minimal possible beam size.

The plasma lens, which uses the self-focusing wakefields of a bunched rela-
tivistic charged particle beam in a plasma, and promises a very strong focusing,
was first proposed by Chen.2 Subsequent works3-5  pushed the idea further. In
the case of the overdense plasma lens, the beam peak density r&b is much less than
the ambient plasma density no it encounters as it traverses the lens. In this case,
assuming that the beam length gZ is large compared to the plasma wavelength
X, = d% (the response of the plasma electrons to the beam is adiabatic
and not oscillatory), the beam width u is small compared to the plasma wave-
length (plasma response is radial), and the ions are stationary, then the plasma

-electrons move to approximately neutralize the beam charge, leaving the beam
current self-pinching forces unbalanced. The focusing wakefields reduce, to a
good approximation, to the magnetic self-fields of the beam.
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These self-fields are quite strong, but as they are dependent on the configu-
ration of the beam density, the resulting focusing is nonlinear and prone to aber-
ration. This requires that the lens be placed very close to the interaction point to
minimize aberration effects, which in turn means that, for parameters typical of
the Stanford Linear Collider (SLC) design, the plasma lens must be very dense.
This dense plasma is a source of a very large background event rate, primarily due
to the inelastic e-p scatterings, and is undesirable for particle physics purposes.

The background and aberration problems motivate the investigation of the
underdense plasma lens.6!7 An underdense plasma reacts to an electron beam by
total rarefaction of the plasma electrons inside the beam volume, producing a uni-
formly charged ion column of charge density eno. This uniform column produces
linear, nearly aberration-free focusing. For positron beams, however, plasma elec-
trons donat behave simply, and the focusing is not linear. The luminosity en-
hancement is thus achieved by the disruption of the larger positron beam by the
smaller electron beam. This process has been termed “bootstrap disruption,“6  as
it involves a cascade of beam-dependent focusing effects; the pre-focusing of the
electron beam by its own self-fields and the subsequent strengthened disruption
of the positron beam by the electron beam. Simulations’ indicate that luminosity
enhancement by a factor 3-5 may be possible above conventional focusing schemes
for the SLC design parameters, with large reductions in background event rates
from similar overdense plasma lens schemes.

As mentioned earlier, ultimately the attainable beam spot size reaches a
limit due’to synchrotron radiation at the lens set by Oide. This limit is generic
and applies also to plasma lenses. It therefore appears that the primary moti-
vation for plasma lenses, i.e., the very strong focusing field attainable, becomes
obsolete. Ironically it occurs that plasmas provide a solution to overcome this e
limit. The idea of adiabatic focusing, proposed by Chen, Oide, Sessler, and Yu,”
using for example a plasma column, promises to evade the synchrotron radiation
limit set by Oide. This is achieved by implementing a beam optics system where
the focusing gradient is continuously and slowly increased along the direction of
beam propagation, such that the p-function decreases linearly along the lens. In
such a focusing system, beam particles with different energies would always oscil-
late within a definite envelope and eventually be focused down to within the des-
ignated size. The problem of chromatic aberration associated with conventional
discrete focusing lenses, including the plasma lenses, can thus be alleviated.

In addition to its potential as focusing devices, plasmas could also provide
useful diagnosis on the beam spot size through beam-plasma interaction. The in-
formation of the beam size at its final focus is indispensable for the tuning of linear
colliders. The conventional method of wire scanning detects the bremsstrahlung
signals from the beam intercepted by metal wires. Experience at SLC shows that
such wire (with diameter - 2-3 pm) would not sustain bunches of size smaller
than u ,$ l-2 pm with N ;S 1 x lOlo particles. Since it is expected that the beam
size in the next generation linear colliders will be as small as nanometers in the
vertical dimension, the conventional method would become obsolete and novel
approaches are required.

It has been suggested earlier‘rr” that ions, by interacting with the collective
fields of the high energy beam, can provide useful information on the size of round
(a, = ay) beams. The idea is revived more recently with the attention to flat
(a, >> ay) beams conceived for the next generation colliders!1l12
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In this paper, we review various novel concepts on plasma focusing and
diagnosis of high energy beams, and introduce another mechanism of flat beam
measurement, which is an extension from Refs. 9 and 10, based on the responses of
heavy ions in an underdense plasma intercepted by the focused beam. Materials
in Sets. 2-4 are largely extracted from the published works in Refs. 2, 4, 6, and 8.
This is merely due to convenience in presentation, and should not imply that these
are the only contributions to the subject. Other than the review of Refs. 11 and
12, the investigation on the beam size monitor in Sec. 5 has not been published
elsewhere.

2. THE OVERDENSE PLASMA LENS

Assuming that the unperturbed plasma velocity ‘~0 is zero and the perturbed
plasma density n1 is much smaller than its unperturbed density 720, the equation
of motion and the equation of continuity can be linearized as:

1

- a,771 = -a?l )
mc (24- cdpl + noV *Vi = 0 ,

where d, = 8~ and dt = -cd< have been used.
Combining the fluid equation with the Maxwell’s equations in the Coulomb

gauge, an-d assuming that the transverse motions of the bunch particles are neg-
ligibly small during the beam-plasma interaction, we obtain

where the plasma wave number kp = wp/c = (4re2no/mc2)‘/2,  and Tea(Z)  is
the density for electron (-) and positron (+) bunches, respectively. It can be
further shown that the combination of the perturbed plasma potentials, Al, - $1,
satisfies the following equation of motion:

(0: - ki)(Al, - 41) = -47renl , (2.3)

where Vt = V2 - d2C’
High energy e+e-beam  particles are normally in Gaussian distributions in

the three dimensional space. For the ease of calculation without sacrificing the
essential physics, we invoke a parabolic bunch distribution:

@) = pb 1 -( (2.4)
where 0 5 r 2 a and -2b 5 C 5 0. The parabolic profiles in both r and 5
directions are introduced to approximate the Gaussian profiles. The constant, p,
can be related to the total number of particles N in the bunch:

3N
Pb = zTa2b  . (2.5)

With this density distribution, it is straightforward to find that within the
bunch,
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8rePbAl, - 41 = T-
‘;p”

I~(kpr)K2(kpa)  + -1( ::)-&]
1 - -

x  [(l--([t2il)?)+&  sinkp[+&(I-coskp<)]  . (“‘)

The transverse force exerting on the beam is simply the transverse derivative of
Al, - &. Thus

(2*7).

-Notice that the transverse force is exerting on the like particles in the same
bunch, thus .j’=l has the same sign for both electron and positron bunches and
can be verified to be always focusing. In the case where kpr < kpa << 1,

r
Il(kpr)l(z(kpa)  - - N

kpa2 -

and we have a focusing force that is linear in r. The requirement that the focusing
force be linear in r, i.e., that k,a << 1, can be rewritten as no << 1/4nr,a2, where
re is the classical electron radius. On the other hand, self-consistency in the
linearized fluid theory that we employed requires th~at no >> nl. Combining these ”
two conditions we arrive at a chain inequality which the system must satisfy:

$[(1-(‘z2b)2)+$  sinkpb+&(l-coskpb)] .

An interesting situation is when kpb >> 1. Therefore b >> Xp/27r >> a,
and we have a long bunch where the longitudinal extent is much larger than the
transverse extent. When this is satisfied, the focusing force is

(2.10)

We see that in this limit the focusing force varies as the longitudinal profile of
the beam and the maximum is at the midpoint along the bunch. This focusing
force is very strong. For comparison, consider N = 5 x log, and a = 100 pm,
b = 1 mm. We find the corresponding G N 720 KG/cm. In contrast, typical iron
magnets (G N 5 KG/cm)  and superconducting magnets (G N 10 KG/cm) are
about 1 N 2 orders of magnitude weaker.

Physically, this self-focusing effect arises because the electrons in the plasma
are either expelled (for the case of interacting with an electron bunch) or pulled

(for the case of interacting with a positron bunch) by the leading particles in the
bunch, while on this time scale the ions in the plasma are essentially stationary.
As a result, the trailing particles in the same bunch experience an attractive force
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due to the access charges in plasma within the volume of the bunch. Large self-
pinching of the beam is thus induced. This effect has been observed in computer
simulations,133 and in experiments.14T15

3. THE UNDERDENSE PLASMA LENS

In the underdense regime, the electron beam experiences a linear, nearly
aberration-free focusing. Simulations have shown that one needs to have ??,b 2 2no
to produce linear focusing over most of the bunch? When this condition is satis-
fied, the beam p-function as a function of the distance down the beam-line s can
be described by the third order linear differential equation:

11,
._ _ p +4&Y@’ +  2Ii-‘p  =  0  , (3-l)

where ,f? = g2/co, co is the unnormalized transverse emittance and Ii’ = 2w,no/y
is the focusing strength of the lens. To solve Eq. (3.1) we must first integrate
through the S-function in Ii” at the start of the lens to obtain a,/?; = -2K,&. The
other two initial conditions are just continuity requirements /?’ = ,&, and ,B = PO.
Assuming the electron bunch to have a cylindrically symmetric bi-Gaussian dis-
tribution of rms length gZ, then we can define the phase space density parameter
5 = NT,/&- y7rca gZ, and the focusing strength of an underdense plasma lens is,
with /3 - ,L& and nO/nb  = l/2 at the start of the lens, I( = </PO. Using the
initial conditions, we integrate Eq. (3.1) once to obtain

P” + 4ILP = 2/P,* + 2( _ , . (3.2) ,*
where ,Bl is the minimum p-function achieved in the absence of the plasma lens.
The solution for the p-function inside the lens is easily found from Eq. (3.2) to be

P=$+&+ ($--&)cosv(s-so)+zsiny(s-so)  ,  ( 3 . 3 )

where y2 = 411’.
It is straightforward to show from the above considerations that the maxi-

mum reduction in ,B* that one can achieve with this lens occurs when one places
the entrance of the plasma at a position -so >> ,0:. This reduction is given by

P* 1 1
z=

1 + qq(Po  - Pl)  = 1+ <PO*
(34

where ,& is the p-function at the exit of the plasma lens at s = ~1. For SLC
design parameters (en = 3 x 10A5m-rad,  gZ = lmm, ,Q = 7mm, y = 105, and
N = 5 x lOlo) we have 5 = 9.4 x 102me1, and a possible reduction in /3 of
l/7.5. It is also interesting to note that according to this formula, one should
never back off of the focus, i.e., make ,Bl larger, as the ultimate ,B* attainable

-is inversely proportional to [ + (l/,8:). This implies one should minimize ,Bz.
It also says that if <,8: < 1 then plasma lens is irrelevant, as it is not strong
enough to overcome the inherent divergence in the beam. If one only reduces the
spot size CT: of the electron beam in the collisions and leaves the positron beam
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spot size a: unchanged, then the possible luminosity enhancement due to the
lens HL (excluding depth of focus and disruption effects) is easily shown to be

HL = 2(d)” 26
(a?)2  + (a;)2 = pr_ + PO* ’ (3.5)

which is strictly less than two. For example, an electron spot size reduction of
&/a: = 0.4 gives a luminosity enhancement of 1.73. This is a very modest
number; it is boosted, however, by the bootstrap disruption enhancement.

Previous calculations of the luminosity enhancement due to beam-beam
disruption have treated symmetric beams. It has been foundI  that the disruption
luminosity enhancement is influenced by two factors: the strength of the pinch,
represented by the disruption parameter D,._ _

Nr,cr, Nr,Cr,D=-=-
rq?2 YPlpO ’ W)

and the effects of the inherent divergence of the beam, represented by the di-
vergence parameter A = a,/&. The disruption enhancement HD is a strongly
decreasing function of A when A > 1, due to the effects of depth of focus and
inherent beam divergence, and a monotonically increasing function of D. Since
both D and A are inversely dependent on ,0;, there exists a maximum luminosity
for some value of &. This is also true for bootstrap disruption enhancement, HB.

Since simulations have shown that the underdense plasma lens can focus
positrons: albeit with strong aberrations, it is interesting to see what sort of
luminosity enhancements are ultimately possible using two underdense lenses. A
theory of aberration-prone focusing has been developed in Ref. 4. In terms of
the quantity called the aberration power P, the transformations of the initial
transverse phase space parameters (~0, ,&, ~0) by an aberration-prone thin lens
are

CY =  (a0 +  PO/f)/&  P =  PO/P, e =  COP ) (3.7)
where j is the lens focal length, (u = -2$, and P = Jl + (,&q/  j)2. The
parameter q corresponds to the rms variation of the focusing strength K in the
lens. Simulations have shown that for a mildly underdense lens, 7 21 0.28 for
positron focusing. Note that in this model the aberration results in an emittance
blowup which is dependent on the strength of the lens. The total reduction in
spot size is thus

u.* p*e 112 = P-= -
4 [ 1Poe0 JP2 + (a0 + Po/f>2 -

(34

Using this model and the computational results from Ref. 8, Chen et al.,6 sim-
ulate the collision of an electron beam focused by an underdense plasma lens
to 0.4 of its original spot size with a positron beam focused, with aberrations,
by a mildly underdense plasma lens, to 0.6 of the conventionally achieved spot

‘size. All other parameters are taken from the SLC design. The luminosity is
found to be 1 5 x1031 cme2 -’ and the total enhancement is approximately
five. The p.hysical parameters?volved in this configuration are shown in Table I.
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Table I A set of plasma lens parameters for SLC

Plasma Lens Parameters Electrons Positrons
no [cmm3] 1.5x1015 4.8x1016

lb1 5.0 0.33
Beam Parameters

N
& [GeV]

EO [ m - r a d ]
dh[mm]

5x1010 5x1010
50 50

3x10-r” 3x10-lo
1.0 1.0

Beam Optics Parameters
SO [cm]
PO* b-4
c[m-rad]
P* [mm1
11
P
f bl

20.0 1.3
7.0 7.0

3 x10-10 4 . 2 x 1 0 - l ’
1.12 1.84

0 0.28
1.0 1.39
7.5- 1.1 .

Luminosity Enhancement
LOO [1030cm-2]
HD

Lo(= HD&o) [1030cm-2]
4/d
HB

.C(= HBLo) [1030cm-2]

1.76 1.76
1.73 1.73
3.0 3.0
0.4 0.6
5.0 5.0
15.0 15.0

This treatment of the positron focusing is approximate, but gives qualitative
insight into the role aberrations play in this scheme.

4. ADIABATIC FOCUSING

In general, in a focusing (or defocusing) environment, a particle with coor-
dinate y satisfies the equation of motion

d2y (4.1)
and the well-known solution is I7



y(s) = Jrn coshqs> + $1 ?
where c is the emittance  and

(4.2)

In an adiabatic focusing, we demand that the change in ,B, occurring in a
length given by ,B, is small compared to ,B. For the sake of simplicity, we shall
assume that

Hence Ge take

dP
ds =  c o n s t a n t  .

P(s) = PO - 2Qo.9 ,

(4.3)

(4.4
where (~0 is the initial condition and a constant of the system that characterizes
the amount of adiabaticity.

Since o(s) = cus = constant, we have dcu/ds = 0, and the focusing strength
along the channel varies as

;K(s) = y = 1+ cr;
(PO - 2a05g2  ’ (4.5)

Notice that the focusing strength scales inverse quadratically with p(s).  The
phase advance, on the other hand, varies as -

For a particle with less energy than the design energy Eo , i.e., E =
(l--S)&,  where S << 1, thefocusingforce I< is larger by an amount l/(1+6). Ac-
cording to Eq. (4.1), the matched p-function for the lower-energy particle becomes
P(s) -= d-P(s), and the a-function is also reduced to G(S) = dmcu(s).
The mismatched p-function can be shown to be

F(s) =  P(s)[l  - kin2 4(s)] 5 P(s) ,
where 4(s) = $(s)/dm.

(4.7)

Thus, the amplitude of the lower-energy particle never exceeds that of the
reference particle. If one chooses the design energy of the focuser at the maxi-
mum energy of the incoming beam, the entire beam is expected to be focused.
This achromatic nature of the focuser will hold true for a particle, which emits
radiation while traversing the focuser, and is the very basis of the adiabatic fo-
cuser concept .

Insensitive to the energy variation as it is, an adiabatic focuser would render
useless if a large fraction of the beam energy is lost during the process. The rate of
energy loss of a relativistic electron due to synchrotron  radiation is well-known!8
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In order to perform simple analytic calculations, it is convenient to approximate
the exact formula by the following expressions in the classical, the transition, and
the quantum regimes: I9

I- 2 0.2 )
d-Y
ds= 0.2 5 Y 5 22 ) (4.8)

2225 )
where y is the Lorentz factor of the electron, cx the fine structure constant, and
27rX, the Compton wavelength. We see that the energy loss is uniquely deter-
mined by the parameter Y, which is Lorentz invariant and defined as

(4.9)
Here B is the local field strength, B, = m2c3/eh  N 4.4 x 1Ol3 Gauss is the
Schwinger critical field, and p is the instantaneous radius of curvature of the
particle.

S i n c e  l / p  =  K(s)y, with the help of the relation 0 = (y2) = PE, where
c is the emittance of the beam, one could calculate the energy loss in terms of
(us, PO, and the resulting p, in the three regimes. It is found9 that there exists an
optimal value of os for attaining a desired ,&function with minimum energy loss:

1 & (classical) ,
a0 = 1 7 ( t rans i t ion)  , (4.10) * _

b-3 > ( q u a n t u m )  .

We see that the optimal situation does not rely on the condition a0 << 1, in the
strict sense of the word adiabatic.

It should, in principle, be possible to set up an adiabatic focuser where
the increase of its focusing strength varies in accordance with the three different
optimum values given above. But the focuser may be experimentally more con-
venient if CLO is fixed throughout the system. If a focuser covers all three regimes
of radiation, an obvious compromise would be CYO = 1. With this choice there will
be about 15% additional radiation in the classical regime and about 30% more
in the quantum regime. Alternatively, since the radiation loss occurs primarily
near the end of an adiabatic focuser, a choice of CQ according to the final regime
is most advisable.

With the choice of LYO = a, we find that there exists a critical emittance
above which a beam can never be focused so tight as to enter the quantum regime
of radiation:

33/2 * 153  A,E, E 23.42.222 = 6.17 x low6 m , (4.11)

which depends only on fundamental physical parameters.
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If the actual normalized emittance E, in the system can indeed be lower
than the above critical value, then the requirement that the fractional energy
loss be much less than unity translates into a limit on the final beam size,

U,d > >  1.39 x lo-’(z,“‘” exp{ -1.12(~)-1’3}  m . (4.12)

This is to be compared with the Oide limit on beam size at the focus which can
be expressed as

u > 3  4  x  10-4c5’7N . n 7 (4.13)
in the vertical dimension for flat beams. For an emittance cn = c,/lO,  we find
that g,d>>_2.68 x lo-’ m, whereas the Oide limit for the same emittance gives
u 2 1.25 x low8 m.

Numerical examples have been studied by Chen et al.8 The first is a proof-of-
principle case using the beam in the SLAC End Station. The second involves the
use of a focuser on the SLC, and the third is a focuser on a TeV Linear Collider
(TLC). Parameters of the beam, the focuser, and the expected performance are
displayed in Table II. In the first two cases, round beams, i.e., fly = cZ, are
assumed, whereas in the third case for the TLC, the beam is assumed to be flat
(gY < a,). In the End Station Focuser, the device is rather long and one may
employ differential pumping to form the variation in plasma density, ramping
from the initial value, no, to the final value, n*, over a length L. The other two
focusers require higher densities (ranging up to solid density), with variation over
shorter distances.

Table II Three examples of the adiabatic focuser ’

SLAC End Station SLC TLC
Initial Beam Properties

& [GeV]
-En [ml
00 bml
PO bl

15 50 500
1 x10-4 3x10-5 1 x10-8

20 3 5x1o-3
12 3 0.25

Focuser Properties

a0

L km1
no [cme3]
n* [cme3]

5 x10-2 l/d 8
119 2.6 0.07

1.2x1014 8.4~10~~ 1.8~10~’
1.2x1018 8.4~10~’ 1.8~10~~

Final Beam Properties
s

8 b-4
Negligible

2
3% 1%
0.3 o.5x1o-3
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5. BEAM SIZE MONITOR
For the purpose of monitoring the beam size, one again envisions an un-

derdense plasma intercepting the focused beam. In principle, both the beam and
the ions in the plasma carry useful signals on the beam size due to their mutual
interaction. The plasma electrons, however, are too severely perturbed to pro-
vide any information. Regarding the plasma formation, either preformed plasma
by external means, or self-ionization by the incoming beam can be conceived,
depending on practical considerations on the device.

In the concept suggested by Chen et al.:’ a heavy element gas jet with
density ng is ionized by a high energy beam of N particles. The number of ions
created in the beam channel is

(5.1)
where a; is the ionization cross section and Ns is the total number of gas atoms
in the channel:

Ng =  4ru,gylng . (5.2)
Here I is the thickness of the gas target. The ionization is considered to be non-
saturated if N; < N,, or Na;/47ra,ay  < 1, from Eq. (5.1). In this regime one can
easily see that N; is independent of the beam size. However, if the ionization cross
section is-so large that Nai/47rcr,ay > 1, then the ionization will be saturated, as
there cannot be more ions than the available number of atoms in the channel. In
this regime N; = N,, and N; is now a function of the beam size as in Eq. (5.2).

As we have seen in Sec. 3, the focusing strength due to an ion c.olumn
is proportional to the number of ions encompassed in the beam volume. The
synchrotron radiation triggered by the ion focusing can again be described by
the parameter T, in this case

y = $ r,LyN;
2 Za,(l+R)  ’ (5.3)

Inserting the expression in Eq. (5.2) for Ni, we find, to the accuracy of the order
l/R,- that

Y =  2&i7rr,X,yngay  . (5.4
Since the critical energy of synchrotron radiation is wc = (3/2)Yl,  where I is the
beam particle energy, one should in principle be able to measure gY by analyzing
the spectrum of such a radiation.

Note that other than the gas density, the signal is a function of cry only,
and is independent of gZ, gZ, and N of the beam, and the thickness 1 of the
target. This is important because in the case of focusing flat beams the challenge
is generally in the vertical dimension, where oY in the range of nanometers is
conceived for the next generation linear colliders. Therefore, one expects that in
the final focusing process the variation in uZ is relatively mild, and the major

-uncertainty comes from the minor dimension, which is what we measure. We
should also emphasize that in case saturation of self-ionization turns out to be
unattainable, a preformed, fully ionized underdense plasma by external means
would suffice the same purpose for radiation signals.
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Buon12  considers the case of light ions. For electron beams, the ions would
experience an attractive potential well. So when the ions are light enough, they
will oscillate during the beam passage. The nature of the beam collective field
is such that the maximum field strength along the vertical direction is very close
to that in the horizontal direction. (The actual maximum values in the two
dimensions are slightly different, which will be discussed below.) In addition,
the locations of these maximum fields are roughly at g3: and cry, respectively.
Therefore, the focusing strengths in x and y directions differ by a factor R :
Ii’, = RKZ. From conservation of total energy, we have

(5.5)

respectively. It is easy to see that the maximum horizontal and vertical velocities
differ by a factor a:

%m = dzv,m . (5.6)
By measuring the angular distribution of the out-coming ions, one can then infer
the beam aspect ratio.

Let .us now introduce yet one more mechanism, using heavy ions, for moni-
toring flat beam size. Ionization saturation is not necessary in this approach. To
a large extent, this is an extension from the ideas of Reesg and Presc0tt.l’ Con-
sider a plasma density which is orders of magnitude-lower than that of theAbeam.
Under this situation the ion focusing on the beam, and therefore the change of
the field strength in the beam, can be ignored. For heavy ions which are initially
quiescent and immobile within the time scale of the transit of the beam, the im-
pulse received by the ions are predominantly from the local electric component
of the collective beam field. Since the beam field reaches a maximum on the
“boundary” of the beam and decreases outside the beam, the ion momenta will
be, in general, double-valued. This makes reconstruction of the entire transverse
beam field ambiguous. The maximum fields, however, are single-valued. More
importantly, the maximum fields in z and y directions do not scale the same in
R. As we shall see below, by comparing the maximum momenta in the it: and y
directions one can in principle determine both (T, and gY.

The strength of the electric field in a flat beam can be described by the
Basseti-Erskine formula?’ To the accuracy of the order l/R, we find

-where

F(z, y) = )fV(Z.jb$!) - e-(~212u~+~212u~) W ( x'gu:"y) , R > 1 .

12



Here W is the complex error function. The maxima of E, along z-axis and of
E, along y-axis can be found by solving the equations dZm F(z, 0)/&r = 0 and
d Re F(0, y)/ay = 0, respectively. We find that the maximum E, and E, locates
at

xm 0.393
- = 1.307 + --x--- 'OX

(5.8)
and

(5-9)

The corresponding field strengths at these locations are._ _

(5-10)

Inserting the explicit forms of x, and ym in Eq. (5.8) and Eq. (5.9), we obtain

E,, = L& e-z2/2a2  /Z& [l -!!?-$I ,

eN
E,,,, = - e-z2/2a;

ox 02
We see that Ex, and E,, are asymptotically independent of R, but the asymp-
totic values differ by a factor 0.610.

With the assumption that the ions are immobile during the beam transit
time, the impulse received by the ions is a trivial function of the local field
strength. This is obtained by integrating the fields in Eq. (5.11) over time (t =
z/c); For singly charged ions we find

2 e2N
Ap,,,, = - -

0.726
1.307 cux

l - - 1R ’

AP!h =
e2N
CUX [m +

As long as the total bunch population N, or the beam current, is known,
measurements of Apx, and ApYm should in principle determine uniquely the
values of gx and R, or in turn g’2. and gy. In practice, however, this scheme may
suffer from low statistics. From Eq. (5.12) we see that the relative accuracy of R

diminishes roughly as l/R:

SAP,m 0.726 SR
Apx, = -??-- -%- *

(5.13)
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To have a 10% error in R, one needs to have an accuracy of 1% in Apx, when
R is around 10, and of 0.1% when R N 100. Evidently, a large collection of data
is necessary to achieve this goal. This could be realized by increasing the gas
jet density and the repetition of measurements. One other concern is that ions
can never be infinitely heavy. This would result in a certain degree of smearing
of the signal due to ion motions across the peak fields in the beam. The best
way to assess this degradation is through computer simulations, which are still
in progress.

It is also of interest to note that the angular distribution of the out-coming
heavy ions should also provide useful information on the beam size. This can
be appreciated by realizing first that the maximum field lies on the “boundary”
of the beam. Secondly, the transverse field tends to “flip” from the horizontal
direction&wards the vertical direction as soon as one departs from xm along the
boundary. This asymmetry of the field pattern should also help to diagnose the
aspect ratio?l

6. DISCUSSION
Confirmation of the existence of strong self-focusing in plasma wakefields

has been experimentally verified in tests performed at Argonne Advanced Ac-
celerator Test l4Facility. More recently, a dedicated plasma lens experiment has
been performed in Japanr5 which covers both the overdense and the underdense
regimes. .These  experiments use electron beams of energies of the order 20 MeV.
Although the physics of self-focusing should not be different as long as the beams
are relativistic, it is of interest to test the plasma lens with beam characteristics
pertinent to that in a true linear collider. To this end, such a test at the Final
Focus Test Beam (FFTB) now under construction at SLAC, with the possibility
of testing both round and flat 50 GeV electron and positron beams, should be
meaningful.

Examples of adiabatic focuser have been shown in Table II in Section 4.
When applied to the beam parameters similar to those of the SLAC End Station,
where the beam energy is 15 GeV, and those of SLC, the necessary parameters
for the plasma adiabatic focuser are shown to be very reasonable; and, in prin-
ciple, to yield a significant increase in the luminosity for the SLC. To apply the
scheme to TeV-range linear colliders, it is found necessary to invoke liquid or
even solid-state materials. Although the necessary technology for the focuser is
yet to be developed, such a focuser should in principle be more compact than the
conventional focusing system. In particular, for a focuser relevant to the SLAC
End Station-type parameters, the requirements for the system seems to be im-
mediately realizable.

The several ideas of beam size monitoring using plasmas were reviewed and
introduced. These concepts have been intensely pursued recently. Experimental
effort on such a monitor is now under way through an Orsay-SLAC  collaboration.
The device is expected to be tested at the FFTB at SLAC.

To conclude, we have reviewed various novel plasma focusing and diagno-
sis concepts, and have introduced a new scheme of beam size measurement. The

- potential applications of plasma physics to high energy particle beam instrumen-
tation is seen to be very rich. Most importantly, many of these concepts have
been followed by experimental efforts, and are in a very healthy state of progress.
We expect that in a few years, more experimental verifications will be available.
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