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1. INTRODUCTION 
c 

Bell”] reduced the Bohm”’ version of the EPRr3’ GedanLen-experiment to the 
-. 

problem of making a physically acceptable model for the calculation of < a’. g >. 

Here a’ and g are the spin directions of two space-like separated (massive) spin-3 

particles in a singlet state. Under his (and Einstein’s) understanding of “physically 

acceptable”, Bell proved that it is impossible to find such a model compatible with 
- 

standard quantum mechanics. To my knowledge no model acceptable to Bell (and 

retrospectively to Einstein) exists which explains the laboratory realizations of 

many EPR experiments. Our aim in this paper is to model the global correlations 

predicted by quantum mechanics while preserving the space-like separation and 

quasi-local character of the two spin-state detections. That such a model exists 
.- _ . analogically has been claimed previouslyt4’. Here the general argument is replaced 

by a specific physical model which, although initially developed abstractly, eventu- 

ally is interpreted as attributing the necessarily global correlations to the vacuum 

fluctuations of our discrete version of relativistic quantum mechanics. 

The basic idea which we use comes from Feynman’s image of an electron moving 

“backward in time” as a positron. From this point of view, the production of an 

electron-positron pair in a singlet state followed by the subsequent detection of their 

spins in two space-like separated regions - obviously a Bell-Bohm-EPR situation 
- can be thought of as a electron which originates in one region, travels backward 

in time to the pair production event and then forward in time to the end of its 

space-like trajectory. That its spin is conserved in the process, and hence produces 

the standard singlet spin correlations when measured is then no surprise. 

We set this calculation in a new context by constructing the space-time and the 

wave function together starting from a finite and discrete collection of bit-strings [51 . 

The wave function represents a discrete Zitterbewegung with steps of length h/me 

executed in a time h/mc2 and hence always with velocity fc. What is novel in 

our construction is that these steps can be kept finite, and are Lorentz invariant 

under finite and discrete Lorentz transformations even though for a large number of 
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--. steps the wave functions we construct can be approximated by the solutions of the 
LI conventional one-particle Dirac equation. In a more general theory, which we can 

-: only sketch here, the Zitterbezuegung is a concommitent of the finite “background 

radiation” which is observed via the Casimir effect. 

2. CONSTRUCTION OF COMPLEX 
WAVE FUNCTIONS FROM BIT-STRINGS 

2.1. WHY COMPLEX AMPLITUDES? 

Examination of the foundational ideas [‘I needed to construct a finite and dis- 

crete relativistic quantum mechanics from bit-strings [‘I led McGoveran to the con- 
.- _ . elusion that the non-classical statistics in quantum mechanics (eg. complex prob- 

ability amplitudes rather than real probabilities) can be modeled in any system 

whose multiple paths between two “events” share indistinguishable elements. Con- 

sider first a situation with two alternatives, with Pr or P2 paths characterized by 

one or the other alternative. If the total number of paths is P, the elementary treat- 

ment takes Pr +P2 = P; this cannot always represent the situation when the paths 

are independently generated and hence define a joint probability space with PlP2 el- 

ements. In order to satisfy both constraints, we form Pf +.P$ = P2 - 2PlP2 E Rf,, 

which is identically satisfied if the two are not independent. If, due to indistin- 

guishable paths which we do not know how to assign to either Pr or P2, we have 

indeed made the two independent in the sense that the product PIP, is no longer 

constrained other than by the inequality 2PrP2 < P2, we can adopt Rf2 as the 

measure of the square of the number of paths in this new space. Taking the prod- 

uct 2PlP2 = f2P2 where f is some rational fraction less than unity, we thus arrive 

at the general result 

-- 

P; + P; = Rf2 = P2(1 - f)(l + f) (24 

which has been derived by McGoveran [‘I by considering case counts including in- 
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distinguishables. We can now define 
_- 

c 

&PI + iP2 (2.2) 

with the normalization condition 

t+b*+ = R2 (2.3) 

Clearly we can divide 1c, by R to get the normalization condition T,!J*$ = 1 when 

we are modeling the situation in which a single system engages in the two events 

at the two endpoints with certainty. Once we have this general result, it is simply 
.- _ . a matter of mathematical convenience whether we use real or complex amplitudes 

to model this constraint, and norm it to unity when the probability of the system 

traversing the “space” between the two events is unity. 

2.2. BIT-STRINGS 

We specify a bit-string 

X(S) = (..., bf, . . . . . )s 

by its S ordered elements 

bf E 0,l; i E 1,2, . . . . S; 0, 1, . . . . S E ordinal integers 

and its norm by 

(2.4) 

P-5) 

IX(S)1 = cf& = x P-6) 

Define the null string by O(S), by = 0 f or all i and the anti-null string by l(S), 
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bf = 1 for all i. Define discrimination (XOR) by -- 
t 

x $ Y = (..., by, . ..)s = Y $ x; bf” = (bf - b;)2 (2.7) -. 

from which it follows that 

A$A=O; A@O=A (2.8) 

- We will also find it useful to define 

ii=A$l; henceA$&$l=O P-9) 

- 
.- _ . 

- 

2.3. ONE DIMENSIONAL AMPLITUDES 

Consider two independently generated strings A(S), B(S) restricted by IA $ BI=n 

and A - B = c. We call these the boundary conditions. We now construct two 

substrings a(n), b(n) by the following recursive algorithm starting from i,j = 0 

and ending at i = S, j = n. 

i:=i+l 

if bt = 1 and b: = 0 then j := j + 1 and b; := 1 and b; := 0 

if b~=Oundb~=lthenj:=j+lundb~:=Oundb~:=1 

if (bt - bF)2 = 0 then j, by and b: do not change 

Once we have made this construction, 

a(n) $ b(n) @l(n) = O(n) (2.10) 

and we can interpret the string a as representing a “random walk” in which a “1” 

represents a step forward and a “0” represents a step backward, as in the Stein’g-121 
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paradigm. Define 
c 

uj = Ci=,bi; bj = Ci=,bb, (2.11) 

We call the “points” (cj - bj, j) connecting (0,O) to (c,n) a trajectory; the new 

ordering parameter j then represents “causal” time order along the trajectory. 

Note that a + b = n and a - b = A - B = c for any trajectory because of our 

boundary conditions. 

- 
.- _ . 

We can also define a path in the larger space s;, A;, Bi where 

Si = C’ t=lsk = II;=, bf bf (2.12) 

Ai = C’,=,bl;‘(bt - bf)” + St; Bi = C;=,bf(bf - bf)2 + sk 

Note that by construction Ai - Bi = aj - bj and hence Ai, Bi is tied to the same 

trajectory in the (oj - bj, j) pl ane; it acquires a third “orthogonal” coordinate due 

to those cases when both Ai and Bi are incremented by 1. Note also that there 

is no way from our boundary conditions or from the trajectory to tell those cases 

from those where i advances but neither Ai nor Bi nor si is incremented. All we 

know is that SAB = Ilf!,btb,B, lies in the range 0 5 SAB 5 S - n. It is these 

indistinguishable paths which create the interfering alternatives in our model. 

We now ask how many paths characterized by some ordering parameter s = 

0, 1,2, . . . . S - n satisfy our boundary conditions. By construction each path is tied 

to the n points which compose a trajectory, and can be chosen in ns ways. Note 

that we have broken the causal connection between path and trajectory. Of the 

total number of ways of choosing a path characterized by s from the S!/(S - s)! 

possibilities, only S!/s!(S- ) s ! are distinct. Consequently, the probability of having 

a path characterized by s is 

S!/s!(S - s)! 1 
S!/(S - s)! = s! 

(2.13) 
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_- Thus the total number of paths is 

r 

P(n; S) = Cf+l$ = C,S,tp,(n) E ezpg-,(n) (2.14) 

where ezps-, (n) is th e f; t ni e ez p onentiul. This is a general result for the transport 

operator referring to attribute distance as has been proved by McGoveran in FDP, 

Theorems 36-40, pp 55-58. 

Although Eq. 2.14 specifies the total number of paths, given S and n, it 

- conceals a four-fold ambiguity arising from the construction. However the sequence 

of paths is generated, the order adopted in the sum implies a recursive generation 

of the terms pg(n) = n’/s! given by 

- p,+l(n) = w(n)/(s + 1); PO(n) = 1 (2.15) 
.- . . 

The first ambiguity is the fact that we do not know whether S - n is even or 

odd outside of the uninteresting case S = n when paths and trajectories coincide; 

hence we do not know whether the sum terminates in an even or an odd term. 

The second ambiguity arises because, however s is ordered, we do not know how 

many cases arise because both Ai and Bi are incremented, or neither. To include 

this dichotomy we split the even and odd sequences themselves into two sequences 

corresponding to these alternatives which we call 11 .and 00, giving four recursion 

relations: 

p:$w = 
n4 

(s + 4)(s + 3)(s + 2)(s + ,)P:‘“Wi Pi’%) = 1 

P:;:(n) = 
n4 

(s + 4)(s + 3)(s + q(s + ,)P:‘“(n); pY(n) = n 

P:$?$) = 
n4 l 2 

(s + 4)(s + 3)(s + q(s + ,)P:‘oo(n); p;‘OO(n) = 272 

P:$(n) = 
n4 l 3 

(s + 4)(s + 3)(s + q(s + ,)P:yoo(n); p!‘OO(n) = g” (2.16) 

At some point which depends on whether (a) S - n is even or odd and/or 2s~~ 
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-- is greater or less than S - n, this four-fold ordering of the terms in the sum over 
C s has to stop, and may or may not leave some terms unaccounted for. Calling the 

-: contribution of these terms to the sum AP, we find that our construction allows 

us to decompose the sum over paths as follows: 

P(n; s) = cf..~~~S1l + pz’” + pi’oo + pi’oo] + Ap (2.17) 

We are now in the general situation discussed at the start of this chapter, 

except that our construction has provided us with four types of path rather than 

two. Now that we have recognized that the amplitudes - whose square gives a 

quantity which can be normed to form a probability - can be complex, we have 

.- no conceptual barrier to forming real combinations which can be negative as well . . 
as positive. The obvious choice is to form those which lead to the finite sines and 

cosines, i.e. by subtracting the two components of the odd or even series from each 

other: 

R cosgmn(n) = R C&, -y-l)k ,;;, = #;“‘[py’ _ p~‘oo] (2.18) 

R sing-,(n) = R C~~-n)(-l)k+l 
,2k-1 

(2k - l)! 
= c;S;n, [py _ pyJ] (2.19) 

The two constructions can now be combined by taking the normalized wave func- 

tion to be 

$s+(n) = ezps-,(in) = IZi$-“@$ (2.20) 

Thus, by taking proper account of the interference between independently gen- 

erated paths which share indistinguishable elements, we claim to have derived Feyn- 

man’s prescription ‘131. for calculating the quantum mechanical wave function as a 

“sum over paths” with imaginary finite and discrete steps. 
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_- 3. DISCRETE FREE-PARTICLE WAVE FUNCTIONS 
c 

3.1. CONSTRUCTION OF SPACE-TIME COORDINATES 
-: 

l+ 1 dimensions 

In any universe of bit strings of length S, all quadruples such that 

A@B@C@D=O _ - (34 

are called events. Note that this implies that 

A@B=C@D;A@C=B@D;A@D=B@C (3.2) 

A=B@C@D; B=C@D@A; C=D@A@B; D=A@B@C (3.3) 

Consider an event defined by four independently generated strings F, B, R, L 

whose norms are F, B, R, L; all must be less than or equal to 111 = S. For the 

moment we need only define a fifth integer n by 

IF$RI=n=IR$LI (3.4) 

- 
Our intent is to construct a discrete square coordinate mesh (zi, tj) with (2n + 

1)2 points within which we can model piecewise continuous ordered trajectories 

(Zk, tk) which connect the “endpoint” (0,O) to some “endpoint” (z, t) lying on the 

boundary of the square 

t = fn, -n<z<n; z=fn, -n<tsn (3.5) 

The order parameter 0 < k 2 n traverses any space-time point along the trajectory 

only once; in addition we require that 

zk+l - zk = fl; tk+l - tk = fl; (four choices) (3.6) 

The description is static in the sense that it can be read either from 0 to n or 

from n to 0 and still describe the same trajectory. Note that in contrast to previous 
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- discussions, (a) we consider space-like as well as time-like trajectories, and (b) that 
t the length of the strings S 2 n is not specified; it is some finite integer named in 

advance of the construction. Note further that since we specify both endpoints, -- 
we are describing a completed process. The Uwave functions” we will eventually 

construct on this mesh will be “born collapsed”. All our results will belong to 

the “fixed past”; whether we should or should not use our theory to predict the 

_ - future, either in a deterministic or a statistically deterministic sense, is a separate 

- issue we will not discuss in this paper. We have picked our boundary conditions 

(0,O) - - - (z, t) in the process of specifying the problem. 

Any space-time point (Zk, tk) not on the axes (zk, 0), (0, tk) lies in one of the 

four quadrants (+, +) *R>L,F>B,(-,+) *R<L, I-943,(+,-)++ 

.- __ R>L, J-KC-,-) H R < L, F < B. We define our bounding endpoints 

in terms of our basic parameters, and four new parameters r, 1, f, b by ItI > z t) 

z=R-L= r-Z;t = n = r+l, ItI < -z H z = R-L = r-Z;t = -n, 

Id-< t oz=n=f+b;t=F-B=f-b,lzl<-t-z=-n;t=F-B=f-b. 

The advantage of introducing the new parameters r, 1, f, b is that they make it 

easy to define what will become Lorentz invariants. Explicitly 
- 

t2 - z2 = 72 = 4rl= n2(1 - p2) with /I = % - 1 

2f z2 - t2 = -TV = 4fb = n2(1 - w2) with w = - - 1 
n (3.7) 

As we have shown many times[6,7] ‘t 1 is easy to give meaning to the concept 

of Lorentz invariance in our discrete context. Defining f’ = pr, 1’ = p-ll, r2 

is obviously invariant, and if we define r,, = i(p + p-l), /?z = 1 - $ we have 

immediately that 

z’ = Yp(Z + L&t); t’ = -yp(t + k&z) 
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3+ 1 dimensions 
.- 

rt To distinguish space from time in the model, we include additional spuciul 

dimensions which we require to be homogeneous and isotropic in the sense that none -. 

_ - 

of the symmetry properties depend on the choice of the labels 3, y, z, . . . . One of the 

great conceptual advantages of our constructive approach is that McGoveran has 

proved that in our theory the extension from l+l space-time to 2+1 and 3+1 has 

to stop there (FDP Section 3.4, pp 30-34). To see how this applies in our context, 

_ fix the F, B pair as defining the universal ordering parameter j for causal space- 

time events, and try to construct not only the z coordinate from the R,L pair as 

above but three additional independently generated pairs IV+, W- ; X+, X-, Y+, Y- 

to construct the coordinates w = IV< - IV-, 5 = X+ - X-, y = Y+ - Y-, and for 
- consistency in the notation replace L,R by Z-, Z+ with z = Z+ - Z-. 

Following the same procedure as above, we generate four substrings w+(n), 

x+(47 Y+(n), z+(n). s ince these four strings are independent by hypothesis, they 

cannot discriminate to the null string, so we need a definition of event appropriate 

to this situation. We take this to be those values of j for which all four strings 

have accumulated the same number of “1” ‘s, i.e. 

- Cj,=, b; = I&b;+ = Cj,=, bYk+ = C(=, b; P-9) 
The extension to D rather than 4 spatial dimensions is obvious. This reduces the 

probability of events occurring after j space-time steps in D dimensions to the 

probability of obtaining the same number of “1” ‘s in D independent Bernoulli 

sequences after j trialsurl , 

p(j) = $Ci=O($D < j-9 (3.10) 

Clearly this definition of events defines a ‘homogeneous and isotropic” d-space, 

but the probability of being able to continue to find events for large values of j 

vanishes for D > 3. Consequently we need only consider three spatial dimensions. 

Thus, provided we have some clear way to label independent bit strings, we can 

extend our construction of l+l space-time to 3+1 space-time, but no further. 
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3.2. SPACE-TIME WAVE FUNCTIONS .- 
c 

Time dependence of the Schroedinger wave function 

To relate our wave function construction the time Zitterbewegung of an isolated 

system we invoke our ‘counter paradigm n lI5,ld . If two counters a distance Izl apart 

fire sequentially with a time interval It I as measured with clocks synchronized by the 

_ - Einstein convention, we assume that they are connected by a space-time trajectory 

- with Lorentz-invariant step parameters h/me in space and h/mc2 in time. As noted 

in the Introduction, this implies a Zitterbewegung with velocity steps fc connecting 

upointsn between the two bounding events. We have shown above (Eq. 2.20) that 

to finite accuracy and for n large our exact combinatorial result for the wave 

function can be approximated by ein for n discrete steps. Putting this together .- . . 
with the counter paradigm (our rule of correspondence 16y71) this tells us that for an 

isolated system with E = mc2, the period is T = l/v = h/E = h/mc2 and the 

angular frequency is E/ti. Consequently any isolated system has a combinatorial 

wave function which can be approximated by a solution of the equation 

Hia$/at = E1C, (3.11) 

We emphasize that our solutions are derived only when restricted by the space- 

time boundary conditions which represent completed processes. For us it would be 

a serious error to try to interpret this or any other Schroedinger-type equation as 

describing the causal evolution of a complex amplitude. 

The Klein-Gordon Equation 

We have seen that this time “evolution” can be transformed from the rest 

system with 72 = nz(h/mc)2 t o an arbitrary system with 72 = c2t2 - z2 in which 

the velocity between the endpoints of the trajectory is /? = z/et. Consequently 

we have already constructed the discrete solutions which can be approximated by 

continuum solutions of the equation 
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c 

a2?+b/az2 - a2?+G/c2at2 = (mc/li)21c, 

Extension to 3+1 dimensions is immediate. 

(3.12) 

The Dirac Equation 

Our general treatment171 has already shown how spin enters the theory as a  

label for bit-strings representing event intervals. The Dirac case differs from the 

Klein-Gordon case because a step to the left or to the right can have either left or 

right helicity, and spin-conservation adds a  second conservation law to the particle- 

antiparticle conservation implied by our boundary condit ions and reflected in our 

use of complex amplitudes. Consequently,  in addition to the two independent time  

sequences tk (s) we must have two independent space sequences z*(s) ordered by 

the same global ordering parameter i and characterized by the same path parameter 

s. W e  can take over the same space-t ime boundary condit ion used above with 

24 = R the steps to the right and Z- = L the steps to the left, and use a  

imaginary step length for the fc Z itterbewegung, but the wave function now has 

two initial states (Y depending on whether the initial step (or helicity) is positive 

or negative, and two final states ,8. If @ ,pa(B) are the number of trajectories 

with B bends, the extension of our prescription derived above, which is equivalent 

to Feynman’s117’181 except that our step length is kept fixed at i h/me (ih/mc2), 

amounts to calculatingl’l 

q&J, b ; a , &a) = ~B~oQY(~)(qB (3.13) 

As we have shown elsewhere “‘I, the exact combinatorial result is 

IL+ = (i)c,(-)s$$ = (i)cs(-)s(;)2s& + iJO (3.14) 
. . 

where we have used the fact that 

4rl = [(r + 1)2 - (r - 1)2] = [c2(ta - t,)2 - (b - u)2](y)2 = T2(Y,” (3.15) 

is the square of the invariant interval. Applying the same reasoning to calculate 
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the other three components, our final result is 

K(z,t;O,O) = ; +qJl(T) iJo 

iJo - @+Jl(7) > 
(3.16) 

which for our boundary conditions is the solution of the Dirac equation 

-iuzalC, / dz - muTti = iW/at (3.17) 

where Ii = 1 = c, crZ and cZ are Pauli spin matrices and 1c, has two components. 

Again, extension to 3+1 dimensions appears to be immediate. 

.- . Momentum-space equations 

A major conceptual advantage arising from our finite and discrete approach 

to- relativistic quantum mechanics using end-point boundary conditions is that 

we obtain the momentum-space wave function without additional effort. We have 

already seen that for the interval specified z = (r-l)(h/mc) and mc2t/h = (r+l) = 

n; consequently the velocity in units of the limiting velocity c is p = z/et = $ - 1 

Since we have already established our discrete version of Lorentz invariance for the 

equations, we must use the implied definition of energy E = ymc2 and momentum 

PZ = y/?mc = @E/c. This gives us immediately the Klein-Gordon equation in 

“momentum space” 

(PZ + m2)d(p*) = W(pz) (3.18) 

where (and from now on) fi = 1 = c. Another way to see this is to recognize 

that our energy (or momentum) conservation law, allows us to treat the left-right 

Zitterbewegung in z as a one-dimensional problem analagous to our treatment of 

forward and backward movement in time. Thus we can immediately conclude 

that &*(z) = eipZ*. Since the space-motion and the time-motion are generated 

independently in our model, we can multiply the two independent amplitudes to 

14 



.- 
- 

obtain 

$( z, t) + p(PzzfJ+ (3.19) 

and hence provide an alternative derivation of the Klein-Gordon equation which 

is completely equivalent to our treatment above. Clearly, this route applied to 

two amplitudes which conserve helicity at the end points along the same lines will 

yield the l+l Dirac equation in momentum space, and make extension to 3+1 

dimensions even easier to accomplish. For instance, instead of pz ,p, we can use 

- pl,j and the wave function ei(plrl+jd) where the boundary condition on 4 is 

periodic with period 27r or 47r depending on whether j is integer or half-integer. 

4. THE EPR-BOHM EXPERIMENT 
IN THIS DISCRETE CONTEXT .- . 

Granted our discrete construction and our rules of correspondence 16~~1 which 

connect this model to laboratory experience, Feynman’s imaginative picture of 

anelectron-positron pair as a single particle trajectory connecting two space-like 

separated spin measurements reduces the EPR “paradox” to triviality. The space- 

like connection, granted the Minkowski symmetries and the CPT theorem which 

are part and parcel of the construction, is just as “causal” as a time-like connection. 

In fact, once one grants our contention that quantum mechanics refers to completed 

processes that lie in the fixed past, there can be no “collapse of the wave function”. 

But I am sure this formal discussion will leave many physicists unconvinced. 

A slightly subtler difficulty is that we have invoked a large number of paths 

which lie “outside” of space time. My contention here is that in any discrete theory, 

this is a necessary consequence of our discrete version of the Lorentz transforma- 

tion. By making a “boost” we can always interject any large number of points 

between any two points in the original mesh. That this - in general statistical - 

process is an alternative and completely consistent way of looking at the Lorentz 

transformation has been argued in detail by McGoveran (FDP, Theorem 41, pp.58- 

SO). Of course the same thing happens in a continuum theory, but gets swept under 
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.- the rug by the assumption that the space-time continuum is structureless. In our 
c opinion, this is one of the obvious sources of the objectionable infinities in second 

-. quantized relativistic field theory. We have the conceptual advantage that for us 

these additional degrees of freedom represent additional external processes that for 

the moment we can ignore, but which will become relevant when a larger num- ._ 
ber of particles enter the system. Just as Einstein’s coordinates are specified by 

“events” where a light ray could be reflected by a mirror, our coordinates represent 

-potential events where a photon could be emitted or absorbed. The fact that for 

us the “coordinate string” for a photon is simply the null or the anti-null string171, 

means that we have no way of defining its energy and momentum except by its 

source and sink (as in Wheeler-Feynman theories). 
- 

.- This brings us to a physical interpretation of our Zitterbewegung - it is simply . 
the inevitable interaction of any particle with what would be called in second 

quantized field theory the vacuum fluctuations of the zero-point energy of the 

massless quantum fields. Casimir had the courage to take this idea seriously, 

and predicted an attractive force between two conducting plates which has been 

observed. Others predicted a repdsive force on a conducting sphere which has 

also been observed. It is easy to see that our theory predicts the right sign and 

geometry dependence for these two cases. In fact for us these experiments confirm 

our prediction that space is S-dimensional, since they depend only on hc and are 

independent of the masses and coupling constants involved. A good check on our 

theory will be whether we can calculate the correct l/120 factor in the Casimir 

effect combinatorially. 

A second consequence of our finite vacuum fluctuations is that we should be 

able to make finite combinatorial calculations of all mass ratios and all “mass 

renormalizations”. Our original calculation of the pion mass and the ratio of 

the proton mass to the Planck mass’201 based on Dyson’s limit’Z’1 have both now 

been found by McGoveran to have well defined combinatorial corrections [81. The 

construction presented in this paper allows a firm foundation to be placed under the 

originally heuristic argument “” for the Parker-Rhodes calculation[231 of the proton- 
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electron mass ratio. Other mass, mass-ratio and coupling constant calculations are - 
t already made (see Summary table) or in the offing. 

Whether or not this finite approach holds up in the long run, we trust that we 

have made a case here for our contention that it allows a new way for us to look 

at the ERP experiments which avoids some of the old problems. 
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t Summary of WHERE WE ARE in January, 1990 
General structural results 

0 3+1 asymptotic space-time -. 
l combinatorial free particle Dirac wave functions 
l supraluminal synchronization and correlation without supraluminal signaling 
l discrete Lorentz transformations for event-based coordinates 
l relativistic Bohr-Sommerfeld quantization 
l non-commutativity between position and velocity 

- 
l conservation laws for Yukawa vertices and 4- events 

- l crossing symmetry, CPT, spin and statistics 
Gravitation and Cosmology 

l the equivalence principle 
l electromagnetic and gravitational unification 
l the three traditional tests of general relativity 
l event horizon .- . l zero-velocity frame for the cosmic background radiation 
l mass of the visible universe: (2127)2n, = 4.84 x 10s2 gm 
l fireball time: (2127)2h/m,c2 = 3.5 million years 
l critical density: of &is = p/pc = 0.01175 [0.005 < Rvi, 5 0.021 
l dark matter = 12.7 times visible matter [lo??] 
l baryons per photon = 1/2564 = 2.328... x 10-l’ [2 x lo-l’?] 

Unified theory of elementary particles 
l quantum numbers of the standard model for quarks and leptons -. 
with confined quarks and exactly 3 weakly coupled generations 
l gravitation: fic/Gmz = 2127 + 136 = 1.70147...[1 i &] x 1O38 

=1.6934... x 103* [1.6937(10) x 103*] 
l weak-electromagnetic unification: 

Gpn;/hc = (1 - &/2562fi = 1.02 758... x lo-’ [1.02 684(2) x 10-5]; 
sin2t?Weak = 0.25(1 - &)2 = 0.2267... [0.229(4)] 
M&= wo/&GFsin2eW = (37.3 Gev/c2sin Bw)2; MZCOS 8w = MW 

l the hydrogen atom: (E/,~c~)~[l+ (1/137N~)~] = 1 
l the Sommerfeld formula: (E/~c~)~[l + a2/(n + Jm)2] = 1 
l the fine structure constant: $ = 1 3ox12, = 137.0359 674...[137.0359 895(61)] 13: 

l m*lme = ~3&$FiJg = 1836.15 ~1497... 61836.15 2701(37)] 

l &/me = 275[1 - & =273.1292... [273.12 63(76)] 
l mxO/me = 274[1 - &= 264.2 1428.. [264.1 160(76)] 
3 (%rmd 2 = (2m,)2 - rnz, = (13.86811m,o)2 

[ ( )] = empirical value (error) or range 
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