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1. INTRODUCTION

A high level of current dependent bunch lengthening has been observed on

the North damping ring of the Stanford Linear Collider (SLC).(‘) At currents

of 3 x 10” this behavior does not appear to degrade the machine’s performance

significantly. However, at the higher currents that are envisioned for the future one

f&ars that its performance could be greatly degraded due to the phenomenon of-_ _
bunch lengthening. This was the motivation for the work described in this paper.

In Chapter 2 we calculate the longitudinal impedance of the damping ring vac-

uum chamber. More specifically, in this chapter we find the response function of

the ring to a short Gaussian bunch, which we call the Green function wake. In

addition, we try to estimate the relative importance of the different vacuum cham-

ber objects, in order to see how we might reduce the ring impedance. Chapter 3

describes bunch length measursments  performed on the North damping ring. In

Chapter 4, we use the Green function wake, discus-sed above, to compute.the bunch ~

lengthening. Then we compare these results with those obtained from the measure-

ments. In addition, in this chapter we calculate the current dependence of the tune

distribution. Note that each of these chapters is based on work already described

in a published report: Chapter 2 in “The Calculated Longitudinal Impedance of

the SLC Damping Rings” by K. Bane, Ref. (2), Chapter 3 in “Bunch Lengthening

in the SLC Damping Ring” by L. Rivken et al., Ref. (l), and Chapter 4 in “Bunch

Lengthening Calculations for the SLC Damping Rings” by K. Bane and R. Ruth,

Ref. (3). The only completely new work is the tune calculations.

2. THE CALCULATED LONGITUDINAL IMPEDANCE

2.1 Introduction

The SLC damping ring vacuum chamber contains many small discontinuities-

such as shallow steps, transitions, masks, and bellows-as well as larger objects

like the beam position monitors and the rf cavities. In this chapter we study the

relative importance of the various objects to the total ring impedance. In addition,
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we obtain a Green function that will be used in a later chapter for bunch length

calculations.

In this paper we are interested only in the single bunch effects of the vac-

uum chamber impedance. The true vacuum chamber impedance is normally very

complicated, containing many resonances and other structure, and covers a wide

frequency range. A single bunch, however, only probes the impedance after it has-_ _
been smoothed by the bunch spectrum, the so-called “broad-band impedance.”

The time domain correspondent to this impedance is the short range wakefield.

In this paper, we choose to work in the time domain, and all our results are

based on wakefield computations. Consider an infinitely long tube which at some

position is momentarily interrupted by a cavity, an obstruction, or other change

in cross-section. Now consider a bunch of electrons (or positrons) passing at the

speed of light c parallel to the-axis of the pipe, from minus to plus infinity. The

longitudinal wakefield W(t), then, is defined as the total voltage-divided by the ‘*

charge in the bunch-gained by a test particle that has followed the same path,

also at velocity c, but at relative position ct. We will use the convention that a

more negative value of time t is more toward the front of the bunch. In most of the

cases that we consider the structure geometry is cylindrically symmetric, and we

use T. Weiland’s computer program TBCIc4) to calculate the wakefield. Note that

by limiting our structures to those with equal beam pipes we force the system’s

potential energy at the beginning of the calculation to be the same as at the end.

2.2 Types of Impedances

2.21 Introduction

A vacuum chamber object in a storage ring can be described as inductive,

resistive, or capacitive, depending upon whether it tends to cause bunch lengthen-

ing, bunch shortening, or does not affect the bunch length. We can discern which

of these catagories  applies to an object from the shape of the voltage that it in-

duces. We can further speak of a vacuum chamber object as being a good-or
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ideal-inductor, resisitor, or capacitor if its induced voltage is related to the driv-

ing current in a manner analogous to that found in the corresponding simple circuit

element. It is important to note, however, that in either case the applicability of

the terms inductive, resistive, or capacitive depends not only on the shape of the

object itself, but also on the length of the exciting bunch. As the bunch length

changes different parts of the object’s impedance become emphasized. Normally,

vacuum chamber objects appear more inductive to longer bunches, more capacitive

to-shorter bunches.

2.2.2 Inductive Objects

If the effective slope of the induced voltage opposes the slope of the rf wave

then the object is inductive, and it will tend to lengthen the bunch. We denote

as good inductors objects for which the induced voltage can be approximated by

Knd = -LdI/dt  with the constant L the inductance and I the bunch current.

We note that this model, in detail, is unphysicafi it predicts that the beam loses ‘*

no energy passing by the object. If the induced voltage of a vacuum chamber

object is well approximated by the above relation, it means that the beam sees

primarily the low frequency part of the object’s impedance; and that in this region

the impedance is purely imaginary, and linear with a slope of -L. Note that if an

object is a good inductor at a certain bunch length, it will continue to be so at

longer bunch lengths.

It is often easy to see whether or not an object is a good inductor for a Gaussian

bunch with length 0. Normally, inductive objects tend to be small discontinuities.

Now suppose we have a small obstruction in a tube of radius a. If the bunch length

obeys the relation u 2 a/2 then little of its power spectrum (2 9%) is a.bove  the

tube cut-off frequency. When the beam passes by the obstruction it will therefore

leave little energy behind, since the tube will not support free waves below its cut-

off. The head of the beam will lose energy to the discontinuity, but the tail will

reabsorb most of it, resulting in an inductive wakefield. In the SLC damping rings

there are many small discontinuities on tubes of radius 11 mm (or less) which,
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according to the above criterion, are good inductors for bunch lengths down to

5.5 mm. Note that since only for the tails of the beam’s spectrum-at frequencies

above the tube cut-off-is the real part of the impedance nonzero,  the higher mode

loss that we do find in inductors decreases exponentially fast as the bunch length

is increased.

Objects that can be considered good inductors for bunch lengths normally
--- -

found in storage rings are shallow transitions, shallow cavities, bellows, masks, or

bumps in the vacuum chamber walls. We shall see that the SLC damping ring

contains many such objects, which therefore define the character of its impedance.

As an example of a good inductor Fig. l(b) displays the shape of a QD bellows of

the SLC damping rings. The wakefield of a 6 mm Gaussian beam passing by this

object, as calculated by TBCI, is shown in Fig. l(a). The beam shape is represented

by the- dotted curve, with the front to the left. Note that in our convention the

slope of the applied rf must be negative for machines operating above transition.

I I I I I

-2 0 2

ctkm
2-90

6562A3

Fig. 1. An inductive example: the wakefield of a 6 mm Gaussian bunch

passing by the QD bellows of the SLC damping ring.

2.2-3 Resistive Objects

If the effective slope of the induced voltage is almost zero then the object is

resistive, and it has little effect on bunch lengthening. We denote as good resistors

4



objects for which the induced voltage ca be approximated by V;nd = -IR, with the

constant R the resistance. We note that this model is also not strictly physical:

since these beams are assumed to be moving at the speed of light, the induced

voltage must lag, even if by a slight amount, behind the driving current. Note that

for good resistors the loss factor-the total higher mode loss divided by the bunch

charge-is approximated by Ic = R/( 260). Examples of good resistive elements
-_- -

found in storage rings are deep cavities, such as the rf cavities, for bunches that

are not short compared to the beam tubes. As resistive example Fig. 2(a) shows

the wakefield left by a 6 mm Gaussian bunch passing by one of the two 2-cell rf

cavities of the SLC damping rings [Fig. 2(b) displays the shape of one cell].

2

go

z
3

-2

-4

I I
.--.. .,’ . .

.’ .-.

I I
.--.. .,’ . ..’ .-.

-
L I

-2 0 2
ctkm

I
-2 0 2

ctkm

I
I

18.5 cm . I
4 c

f

- - - - - - - -

11.4 mm E

2-90
6562A4

Fig. 2. A resistive exa.mple: the wakefield of a 6 mm Gaussian bunch

passing by one of the rf cavities of the SLC damping ring.

2.2.4 Capacitive Objects

Finally, if the effective slope of the induced voltage enhances the rf slope then

the object is capacitive, and it will tend to shorten the bunch. We denote as good

capacitors objects for which the induced voltage is approximately proportional to

the integral of the current, with constant of proportionality -l/C, and C the



capacitance. This model is strictly unphysical in that it predicts that the energy

loss of a bunch depends only on the total charge of the beam, and not on the peak

current. This type, of the three types of objects, is probably the least commonly

encountered in storage rings. Reference (5) describes a capacitive device, the so-

called “SPEAR capacitor,” that was installed in a ring for the specific purpose of

shortening the bunch. The wakefield of very short bunches in deep cavities falls

some+Yhere  between that of a pure resistor and a pure capacitor. The rf cavity

of -Fig. 2 can be considered slightly capacitive in that the average slope of the

induced voltage is slightly negative. However, there are no very capacitive objects

in the SLC damping rings. But to give an example of a fairly good capacitor, we

show in Fig. 3(a) the wakefield of a 6 mm Gaussian bunch passing by the cavity

of Fig. 3(b).

0.2

.

-0.4

-!a24 mm

-2 0 2
2-90 ctlcm 6562A5

Fig. 3. A capacitive example: the wakefield of a 6 mm Gaussian bunch

passing by the structure shown at right.

2.3 The Effective Inductance

The loss factor k is often used to estimate the contribution of an object to the

ring impedance. This parameter gives the higher mode losses of the object but

says little about its contribution to bunch lengthening. Alternatively, we can say

that it is a measure of the real, not the imaginary, part of the impedance. As a
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figure of merit that is a complement to the loss factor, and that is a measure of

the imaginary part of the impedance, we will use the effective inductance e.

Recall that the loss factor is given by the average value of the wakefield along

the bunch

co 00

k=-
J

W’(t)A(t) dt =
--- - J

- C O -W

w

J
W,(t’)A(t - t’) dt’

0 1 Wdt , (1)
with X the longitudinal charge distribution and IV6 the Green function (or delta

function) wake. The Green function, in turn, is given by the inverse Fourier trans-

form of the impedance 2:

co

w(t) = &
J

z(w)ciwt du , (2)

-03

with w the frequency. Therefore, the loss factor c-an also be written in terms of the ‘*

impedance as

(3)

with i the Fourier transform of the charge distribution and X the real part of 2.

Thus k gives the real part of the impedance averaged over the square of the bunch

spectrum.

Let us define the effective inductance ! by the following operation: We compute

the wakefield for a Gaussian bunch and then perform a least squares fit to

W)Iv(t) =  -ed2 .

_ Therefore e can be written in terms of the impedance as

00 co
e=-

J
Y(w)I~(w)~~w dw

IJ
Ip(w)12w2  dw )

0 0

(4)

(5)
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with Y the imaginary part of 2. We see that e-up to a bunch length factor-is

the product of Yw averaged over the square of the bunch spectrum. For a pure

inductance, 2 = AWL, we see that e reduces to L. For a Gaussian beam Eq. (5)

becomes

Note that, as in Ref. (5), we might alternatively have chosen as figure of merit

the bunch length times the average slope of the wake:

co 00

O!=CS
J

W’(t)A(t)  dt = 2a
J

Y(w)li(w)l’w  dw . (7)
-W 0

We see-that o-up to a bunch length factor-is the same as e. As a fine point, we

also note that in the results to-be presented a Gaussian weighting factor has been

included in the least squares calculations that determine e. Therefore,‘instead  of ‘“’

by Eq. (6), e will be given by

(8)

2.4 Some Simple Inductors

Let us consider the simple discontinuities of Fig. 4. To a Gaussian bunch

sufficiently long ( i.e., one with length o greater than half the tube radius) they

will appear as good inductors. For each of the three models we have performed

parametric studies to find its inductance. To obtain a data point, we first computed

the wakefield of a reasonably long Gaussian bunch passing by the structure in

question, using TBCI. Then, we performed a least squares fit to Eq. (4), weighted

by the Gaussian bunch shape, in order to obtain the effective inductance e. And

finally we found the limiting value of e, as o becomes large, which we take as the

inductance L of the object.
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In order to reduce our work we computed the wakefield in the following manner:

We first performed a TBCI calculation for a short Gaussian bunch of length 01 ,

calculating the wakefield to a long distance behind the driving bunch. Given this

wakefield WI, we then obtained the wakefield for longer bunches, with length O,

by performing the following integrationt6):

cc

- Wl(t’)exp  [-(“~c~)2] dt’ ( a  > al) ,
J-W

(9)

with 012 = u2 - a;. In this way, for any given structure, one TBCI calculation

provides the wakefield for Gaussians over a wide range of bunch lengths.

We began our studies with the small cavity, shown in Fig. 4(a). It is interesting

to note that the numerical results we obtained for it can be well approximated by

a simple application of Faraday’s Law. According to Faraday’s Law the voltage ,

induced across the gap depends on the time rate of change of the magnetic flux

vrn in the cavity. If we approximate qrn by the product of the beam’s unperturbed

magnetic field at the cavity times the cavity cross-sectional area, we obtain the

inductancet7)

20 sA
L =  @n/I =  gQ- (A/u small) . (10)

with I the beam current and 20 = 377 R. The inductance of a bellows-which

is just a sequence of small cavities-can be approximated by the above result

multiplied by the number of convolutions. Next we studied the shallow iris [see

Fig. 4(c)]. The numerical results agree well with

(A/b small, g/b small) . (11)

It appears that for the shallow iris the effective distance from the corner over which

the magnetic flux changes with time is on the order of A.
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Fig. 4. Some simple vacuum chamber elements: (a) a small cavity, (b) a

symmetric pair of shallow transitions, and (c) a shallow iris.

Finally we considered a pair of symmetric, shallow transitions [Fig. 4 (b)]. Our

simulation results-if the transitions are separated by a distance at least on the

order of b-can be approximated by

(A/b small, g/b X 1, 6 5 7r/2) . (12)

Note that this equation approximates the numerical results well even for.A/b w 0.5. ‘*

We see from Eq. (12) that when 8 < 7r/2 the inductance of a transition can be

reduced, though only very slowly, by changing the transition angle. However, if

we break up a transition into n smaller steps, that are separated by a sufficient

distance, we can gain by the factor n. Note that Eq. (12) with 8 = 7r/2 must also

apply to the iris of Fig. 4(c) when g/b ;2 1.

For the example transition with parameters a = 10 mm and A/b = l/6 we

demonstrate, in Fig. 5, the validity of the angular dependence of Eq. (12). The

plotting symbols signify the computed results, the dotted curve the approxima-

tion Eq. (12). More specifically, the plotted values give the effective inductance !

computed for a 16 mm Gaussian bunch; when the bunch length was doubled the

results remained essentially unchanged. We see that within its limits of validity

Eq. (12) agrees very well with the computations. Note that, over the entire range

of data points, the results of Fig. 5 vary roughly as dm.

Finally we point out that the formulas of this section may also be used to

estimate the imaginary part of the transverse impedance Yl at the origin for these

10



0.6

-- -
0

6562A32

0 50 100 150
B/(degree) 2-90

Fig. 5. The 6’ dependence of L for a symmetric pair of shallow transitions

when a = 10 mm and A/b = l/6. The dotted curve gives the analytic

approximation, Eq. (12).

structures. Using a well-known formulat8) for estimating the transverse from the

longitudinal impedance of a cylindrically symmetric structure, with tube radius a, ‘*

we find near the origin
2cX -y. a2e * (13)

2-5 The Damping Ring Vacuum Chamber

The damping ring vacuum chamber is divided into 8 girders (see Fig. 6). Of

these girders 2, 3, 6 and 7 are almost identical. They each contain 4 l/2 FODO

cells, with the quadrupole vacuum chambers-which are cylindrically symmetric-

separated by the roughly square bend vacuum chambers (see Fig. 7). Girders 5 and

8, in addition to half a FODO cell on each end, contain kickers, septa, rf cavities

and other vacuum chamber elements not found in the rest of the ring.

The vacuum chamber of the FODO cells can be divided into two groups of

objects, each of which is repeated 20 times in the ring. One group, which we

will call-a “QD vacuum chamber segment” is centered on a defocusing quadrupole

vacuum chamber, with each end at the middle of the neighboring bend chamber.
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./&

6018Al

Fig. 6. The girders of the SLC north damping ring.

5-85 6018A3

Fig. 7. The cross-section of the bend chamber. The dashed circle shows

the size of a quad chamber.

The “QF vacuum chamber segment” is similar, though centered on a focusing

quadrupole. The vertical profile of these segments is sketched in Fig. 8, with the

ends truncated. Nonsymmetric portions are shown dashed. The figures are drawn

to scale. The total length of each segment is about 60 cm; the half-length of the

bend chamber is 15 cm.

A QD segment (see the top sketch) begins with the roughly square bend cham-

ber (l), which is connected by a tapered transition (2) to the cylindrically sym-

metric defocusing quadrupole (QD) h bc am er. The QD chamber contains a 1 inch

beam position monitor (1” BPM) .(3), a QD bellows (4), a serf gasket (5), and a

QD mask (6). Finally there is another transition (7) into the next bend (8). The

12



Fig. 8. The vertical profile of a QD segment (top) and a QF segment

(bottom). The noncylindrically symmetric portions are drawn with dashes.

ends of a QF segment are similar (see the bottom of Fig. 8). The cylindrically

symmetric QF chamber, however, contains a 1” BPM (3), a flex joint (4), and a

QF mask (5).

Ring Girders 5 and 8 include two kickers, two septa, a two cell rf cavity, two ,(_

1” to 2” transitions, four 2” BPhJ’s, four 1.4” BPM’s, an optical monitor and a

dielectric gap.

2.6 The Impedance of Individual Vacuum Chamber Elements

2.6.1 The Inductive Elements

In order to estimate the relative importance for bunch lengthening of the differ-

ent objects found in the SLC damping rings we divided the vacuum chamber into

a number of recognizable pieces. Then, for each piece we computed the wakefield

of a Gaussian bunch with length u = 6 mm using TBCI. This length was taken

as typical for the damping rings. Then finally we obtained e by performing a least

squares fit, as described earlier. Note that dividing a stretch of several vacuum

chamber objects into its parts does not affect the answer so long as Q 2 u/2,

with a the tube radius, and so long as neighboring pieces are separated by at least

2a. With typically a = 11 mm the former condition is normally met. The latter

condition, unfortunately, cannot always be met. Therefore, the results we present

13



only approximately give the relative importance of the various vacuum chamber

objects.

Unfortunately, many of the vacuum chamber objects are not cylindrically sym-

metric. Whenever possible, we took a suitable cylindrically symmetric (2-D) model

to represent the noncylindrically symmetric (3-D) object in the calculations. In

some-cases it was evident how one might go about this. For example, the geometry

of-the ion pump slots, a 3-D object, can partially be seen in Fig. 7. We see that

each slot can be approximated by a simple, shallow transition, whose outer radius

is defined by the pump housing, and which fills only 10% of the azimuth. For

the slots, we computed the wakefield for a cylindrically symmetric version of the

shallow transition using TBCI, and then multiplied the results by a filling factor of

0.1. The beam position monitors (BPM’s), with their noncylindrically symmetric

electrodes, were treated in a similar manner. In other cases, it was not so evident

what the right 2-D model should be. For example, the QD and QF transitions are

transitions from an approximately square to a round vacuum chamber tube. For

such objects, we obtained insight into how best to model them by applying the

computer program T3,(‘) the 3-D counterpart of TBCI, to a simple 3-D approxi-

mation to the real structure.

Table 1 gives the results for the elements that are inductive to a 6 mm Gaussian

bunch. Figure 9 shows the geometry used for (a) the QD bellows, (b) the QD mask,

(c) the QD transitions, and (d) the ion pump slots. The factor in Column 3 is an

azimuthal filling factor used to account for the contribution of noncylindrically

symmetric objects. Column 4 gives the total number of these objects in the ring.

We see that the total effective inductance of the ring is approximately 50 nH,

spread over many objects. Not included in the table are the septa, each of which

is a complicated obstruction in a 25 mm ID tube. Using the computer program

T3 on a simple 3D model we find that the septum has an inductive and resistive

component. We estimate that C E 2 nH for each septum.

14



Table 1. The inductive vacuum chamber elements.

Single Element Inductance Contribution in Ring

Type 1 L/(nH) Factor 1 Number 1 L/(nH)

1 QD bellows 1 0.62 1 1.0 1 20 1 12.5 1
QD & QF masks 0.47 1.0 20 9.5

QD & QF trans. 0.52 0.9 20 9.3

--- - Ion pump slots 1.32 0.1 40 5.3

Kicker bellows 2.03 1.0 2 4.1

1 Flex joint 1 0.18 I 1.0 I 20 I 3.6 I
1” BPM trans. 0.10 0.8 40 3.3

Other 2.4

r I Total 1 50.0 1

-n
f

_-_-_--- _--x=&p+ .”_
(a) (cl

_-.-_- _-.---_-.

2-90 (b) (d) 6562A33

Fig. 9. The geometries used to calculate t for: (a) the QD bellows, (b) the

QD mask, (c) the QD transition, and (d) the pump slots.

Since the inductance of the ring is spread over so many objects it would take

more than a small modification to reduce it significantly. Recently sleeves were

installed to shield the QD bellows from the beam. From the table we would

estimate that the ring inductance would therefore be reduced by 25%. However,

since the bellows are close to the QD mask (see Fig. 8) there is coupling between

these two objects. By performing the calculation for the entire QD segment taken

15



as one piece, once with and once without the bellows, we estimate the bellows

contribution to the ring inductance to be more like 15%.

2.6.2 The Resistive Elements

There are objects in the ring that are resistive, most important of which are the

two 2-cell rf cavities. At a bunch length of 6 mm the rf cavities contribute 5.8 V/PC

to the-ring loss factor k. We can speak of them having an effective resistance of

411 R. At this bunch length the forty 1” BPM cavities are also resisitive with a

total k of 3.2 V/PC. However, these small cavities become less resistive at longer

bunch lengths. 0ther objects that are resistive at this bunch length, but contribute

little to the ring loss are two 2” BPM’s, two 1.4” BPM’s, two kicker gaps, an optical

monitor, the ion pump holes and a dielectric gap.

How can we compare the contribution of the inductive and the resistive vacuum

chamber components to the longitudinal instability? In instability analysis the

impedance enters as the quantity IZ(n)/nl, with-n = w/w0 and wo the’revolution ‘”

frequency. For the damping rings wg = 5.4 x lo7 s-r. Therefore, for the inductive

elements the effective inductance of 50 nH corresponds to an effective [Z/n1 of

2.6 R. For resistive elements let us consider only the rf cavities. If for the cavities

we take as typical frequency w = l/o we find that an effective resistance of 411 R

corresponds to an effective IZ/nl of 0.44 0. According to this rough estimate the

inductors contribute 6 times as much to the [Z/n/ of the ring as the cavities. If we

want to bring the contribution of the inductors down to that of the rf cavities we

would clearly need to rebuild the entire vacuum chamber.

2.7 The Green Function Computation

We will need a Green function wake for the damping rings in order to perform

bunch length calculations. However, it suffices if we can find the wakefield of a

bunch that is very short compared to the natural bunch length in the ring, and

that has been calculated out to a sufficient distance behind the driving bunch.

Ideally we would like to compute the wake for one whole turn around the ring in
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one long computer run, with the beam moving from one element to the next just

as it does in the real machine. Then all interference effects between neighboring

elements, even at frequencies above cut-off, are properly accounted for. However,

due to the limitations in computer time and memory available to us we need to

make compromises.
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Fig. 10. The longitudinal wakefield of a 1 mm Gaussian bunch in the SLC

damping ring.

For our Green function we first calculated the wakefield of a 1 mm Gaussian

bunch, out to 15 cm behind the bunch, for the various damping ring vacuum cham-

ber objects. The only exception is for the rf cavities, where a 2.7 mm bunch was

used, due to limitations in the computer memory available to us. As best as pos-

sible we wanted to properly include the interference effects of neighboring objects.

To this end we calculated the wakefields of the entire QD and QF segments each

in one piece. To account for the noncylindrical symmetry of the BPM electrodes

we performed the calculation for each segment twice--once with and once without

cylindrically symmetric electrodes-and then added the two results in the ratio

8:2, according to the azimuthal filling factor of the real electrodes. However, the

calculations of the pump slots, as well as of the remaining objects found in girders

5 and 8, were all done in separate computations. Objects that were not included
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Fig. 11. The longitudinal wakefield of a 6 mm Gaussian bunch in the SLC

damping ring. The current distribution is also shown.

in the calculations are the septa, the ion pump holes, the optical monitor, and the ,”
dielectric gap.

The sum of all the computations, which we take to represent the wakefield of

a 1 mm Gaussian bunch in the SLC damping rings, is shown in Fig. 10. We note

that most of the response occurs within the first 2 cm behind the driving bunch.

By performing the integral of Eq. (9) we can find the wakefield of any Gaussian

bunch that is longer than 1 mm. Figure 11 shows the results that are obtained for

a 6 mm Gaussian bunch. At this length the ring is clearly very inductive.

In the same manner we have obtained the wakefields of Gaussian bunches with

different lengths. From these wakefields we have found the loss factor k and the

effective inductance !? of the ring as functions of bunch length. These results are

shown in Fig. 12. The dotted curve gives the contribution to the loss factor of

the rf cavities alone. We see that both k and e reach asymptotic values at long

bunch lengths. In addition, we see that the loss factor of the entire ring drops in

an exponential fashion with increasing g, while the loss of the rf cavities drops only

very slowly.
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Fig. 12. The loss factor k and the effective inductance ! of the damping ring

as function of bunch length. The dotted curve gives the loss contribution

of the rf cavities alone.
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Fig. 13. The impedance [Z/n1 of the damping ring. The dots give what

remains when the QD bellows (with their antechambers) are perfectly

shielded. The power spectrum of a 6 mm Gaussian bunch is also shown.

By taking the Fast Fourier Transform of the 1 mm wake we can obtain the

_ impedance. In Fig. 13 we plot the quantity [Z/n1 (remember wg = 5.4 x lo7 s-l).

We see a large broad peak at 16 GHz, with a peak value of 5.5 R and Q of 2; it is due

mostly to the bellows. A smaller resonance, at 6.5 GHz, with a peak value 4.4 R,

and a Q of about 1, is due to the BPM cavities. (We note, however, that the results
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for this resonance may be very inaccurate, due to the very approximate manner in

which we included the BPM electrodes.) In Fig. 13 we also see that IZ/nl obtains a

constant value at high frequencies, an effect that is due to numerical noise. When

we repeat the calculation of the 1 mm wake, but this time leaving out the QD

bellows, and then take the Fourier transform, we obtain the results shown by the

dots in Fig. 13. These results are meant to represent the damping ring with the

QD -b%llows shielded, as has recently been done. We note a substantial reduction

in. the impedance beyond 10 GHz. Although we do not expect this modification to

have a great effect on the bunch length it may still have a significant effect on the

instability threshold.

From the 1 mm wake we contructed the Green function wake IV, in the follow-

ing manner: we first changed its sign and then modified the front of the function

so that it is 0 for t < 0. This modification yields a Green function that is causal.

This Green function will later be used to calculate the wakes for bunch shapes that

are long compared to 1 mm and that are rather smooth. We therefore expect the

results not to be very sensitive to the details of the modification just mentioned,

provided that the changes are localized near t = 0 and that the area under the

curve remains unchanged. For our calculations we have chosen to reflect the lead-

ing tail to the back, and then to add it to the existing wake. The leading part of

the Green function wake is shown in Fig. 14. The dots give the negative of the

1 mm wake.

3. BUNCH LENGTHENING MEASUREMENTS

3.1 Introduction

Under normal SLC operations the beam, after leaving the damping ring, is

shortened by about a factor of 10 in the Ring-to-Linac (RTL) transfer line before

entering the linac proper. The bunch shortening is the result of a phase space

rotation. It is accomplished by an rf section, which induces an energy variation

that is correlated with longitudinal position, followed by a beam line with nonzero
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The Green function wake for the SLC damping rings.

momqntum compaction. Using this hardware and, in addition, a phosphor screen

and video camera, we are able to measure the longitudinal charge distribution of

individual damping ring pulses, of pulses having an rms length on the order of ,”
5 mm. Although the measurements to be discussed contain some fluctuations due

to screen imperfections, we expect that with a better, newly installed screen we can

now measure the longitudinal intensity accurately to a resolution of 0.1 mm(“) for

a bunch with a length of 5 to 10 mm.

Using the same hardware but with the compressor rf off, and with a modified

optics, we can measure the bunch’s energy distribution as function of current. In

particular, this measurement allows us to find the threshold current for turbulence.

We also discuss, in this chapter, measurements of the current dependence of the

beam’s synchronous phase and of the longitudinal quadrupole tune.

3.2 Measuring the Longitudinal Charge Distribution

3.2.1 Introduction

The hardware, as it is configured for bunch length measurements, is shown in

Fig. 15.. The setup is essentially the same as during normal operations. However, at

a downstream position of high horizontal dispersion a phosphor screen is inserted in
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the path of the beam. An off-axis camera can then capture the image, the intensity

of which can-in turn-be digitized over a grid and sent to a computer. If we can

assume that the response of the screen to charge intensity and the response of the

camera to light intensity are linear, then the horizontal distribution measured in

this way will be correlated to the longitudinal charge distribution in the ring.

camera

rf section

2-90 6562Al

Fig. 15. Layout of the apparatus used in the bunch length and energy

spread measurements.

Now let us assume for the following discussion that (i) the longitudinal distri-

bution does not reach past the crests of the rf wave, (ii) the induced energy spread

is large compared to the beam’s initial energy spread and compared to the wake-

field induced energy variation, and (iii) the dispersive part of the beam size (q2S2)

dominates the emittance part (Be). For the measurements about to be presented

all these conditions were met. Given these assumptions, the connection between

longitudinal position t within the bunch and transverse position CC on the screen is

z - 20 = K sin k,f(ct - 20) , (14)

with ~0 the screen position that corresponds to the zero of the rf the sine wave zo ,

and k,f the rf wave number. The parameter K = qeV,/E, with 77 the dispersion
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at the screen, V, the peak compressor voltage, and E the beam energy. The

longitudinal charge distribution is given by

Equations (14) and (15) 11a ow us to obtain the beam distribution X(t) given the

measured distribution X,(X).

Note that in the SLC the compressor wave length is 10.5 cm and the beam

energy E = 1.153 GeV. For the bunch length measurements we took V, x 33 hlV.

3.2.2 Results

We began the measurements by finding K and ~0. Taking a low current beam

we varied the rf phase and measured the excursion limits of the spot: the half

distance between these two points gave us K. Thus the dispersion and the com-

pressor voltage do not need to be known explicit-ly. For our data K: = 18.25 mm; ‘*

thus a 1 mm distance near ~0 on the screen corresponded to a 1.1 mm longitudinal

distance within the bunch. Then measuring the spot with the compressor rf off

gave us 20. We then turned the compressor back on and adjusted the phase so the

low current spot was again at 20. With this setup we measured and stored the

distributions over a range of currents, at a ring rf voltage V = 0.8 MV. For each

measurement a toroid reading, giving us the current, was also taken.

As an example, Fig. 16 gives the measured distribution X, for a bunch popula-

tion N = 2.9 x lOlo after it has been transformed to X (as described above). The

vertical axis is y = eNXZo/(~r~oo),  with 2’0 = 377 R and uo the natural bunch

length (cao = 5 mm at this ring voltage); the horizontal axis is t/so. We note

that the distribution is broad and it is not symmetric: the rising edge is steeper

than the falling edge. The corresponding centroid shift is a measure of the higher

mode losses. For the moment, however, we should take the position t = 0 on the

plot as arbitrary since the beam’s position on the screen drifted over the duration

of the measurements, apparently due to phase drift of the ring rf. (We will present
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Fig. 16. The measured bunch shape for N = 2.9 x lOlo when \frf = 0.8 MV.

more accurate measurements of the centroid shift below.) As in this example all

the measured distributions are-quite smooth, except in the vicinity of their peaks.

We believe the fluctuations that we do see in the-data are due to imperfections in ,”

the screen. Recently a new screen with a more uniform phosphor layer has been

installed in the RTL. We expect, therefore, that future measurements will result

in smoother distribution curves.

We present the rrns widths of the distributions, times 2.355, as function of

current in Fig. 17(c) (the uf 11 circles). On the same frame we plot the full-width-at-

half-maximum (the open circles). For a Gaussian distribution these two quantities

should be equal. That the open circles lie above the closed ones at higher currents

implies that these distributions are more bulbous than a Gaussian. Note that there

is very little scatter in the data.

We mentioned earlier that the current values of each measurement were based

on toroid readings. However, we could alternatively have taken the areas under the

distribution curves as the measure of current, since these areas are also proportional_

to the charge. In fact, with the areas one obtains a current reading for the same

pulse that is being measured, whereas with the toroids one never knows to which

pulse the reading corresponds. In any case, the pulse-to-pulse current variat.ion
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Fig. 17. Measurement results: (a) the relative energy spread cubed, (b) the

relative rms energy spread, (c) the bunch length, and (d) the synchronous

phase shift as function of current. The ring voltage V,f = 0.8 MV.

was small during the course of our measurements. We found that the correlation

of-the areas of the distributions with the toroid readings was extremely good. This

suggests that, despite the local fluctuations that we saw in the distribution curves,

the overall response of the hardware to intensity was essentially linear. When we

plot the bunch length as function of distribution area rather than as function of

toroid reading the data follows a smoother curve.

3.3 Other Measurements

3.3.1 Energy Spread Measurement

The beam’s energy spread was measured in a fashion similar to its bunch

length. For this measurement we turned off the compressor, used another screen,

and modified the RTL optics to give an increased dispersion function at the screen.
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In this configuration increases in the beam’s intrinsic energy spread translate into

an increased spot size on the screen. This measurement is difficult since at high

currents the small, intense spot will tend to damage the screen.

The energy spread measurements yielded distributions that all appeared to be

Gaussians. Figure 18 shows the measured distribution when N = 3 x lOlo, with a

Gaussian curve superimposed on the data. The rms energy spread as function of--- -
current is displayed in Fig. 17(b). We see that the data is rather flat up to about

N -= 1.5 x lOlo, at which point it begins to rise. We will take this value as the

threshold current Nth . By plotting the energy spread cubed as function of current

[see Fig. 17(a)] we see that above threshold the data agrees well with

with B,, the initial energy spread. As we shall see in the next chapter;we expect ‘”

the energy spread to behave in this way for a ring with an inductive impedance,

such as the damping ring.

5 - 8 8

c
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Fig. 18. The measured energy spectrum for N = 3 x lOlo when V,, =

0.8 MV.
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3.3.2 Measurement of the Synchronous Phase

The measurement of the synchronous phase complements the bunch length

measurement. The bunch length measurement probes the imaginary part of the

broad band impedance, while the synchronous phase measurement probes the real

part, giving also the higher mode losses. We began the measurement by first storing

a high current beam in the ring. Then, we gradually scraped away beam while
--- -

we continually monitored the beam’s phase using a vector voltmeter and a chart

recorder. At the same time the circulating current, which we could continually

read from a current monitor in the ring, was marked at frequent intervals on the

chart. For more details of the measurement technique see Ref. (11).

The measured phase shift as function of current is shown in Fig. 17(d). The

plot gives the average of several traces of the chart recorder, all of which agreed

quite well with one another. The data grows linearly at low current, and more

slowly as the current increases. This is the kind of behavior we would expect since, ,”

as we have seen above, as the damping ring current increases the bunch length also

increases, and we know that the higher mode losses depend inversely on bunch

length. Note that the total shift at N = 1.5 x 10” is only 2.3 degrees. This size of

shift corresponds to a higher mode loss of 32 keV and a loss factor k = 13 V/PC.

3.3.3 Synchrotron  Tune Shift Measurement

Measuring the current dependence of the coherent oscillation frequencies is

another way of probing the broad band impedance of the ring. Sometimes this

coherent shift is also taken as a measure of the incoherent tune shift with current.

In this measurement we excited quadrupole mode oscillations by amplitude mod-

ulating the rf gap voltage, and then measured the response from a beam position

monitor. In Fig. 19 both the measured dipole and half the quadrupole frequencies

are displayed over a range of currents. We see that the quadrupole frequency ini-

tially decreases but then appears to level off near N = 5 x 10’. The maximum

reduction is 3 to 4%. From the plot, we also see the dipole frequency, which should

remain flat, rise slightly with current.
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Fig. 19. The longitudinal dipole and half the quadrupole oscillation frequency

as function of current.

3.4 Measurements Since the Addition of Bellows Sleeves

The bellows mentioned previously, in Chapter 2, are inner bellows; which are ‘”

themselves surrounded by a set of outer bellows. Since the inner bellows are very

inductive we normally expect a bunch to leave almost no energy behind after its

passage. If, however, there is not a complete contact between the inner bellows and

the vacuum chamber walls, then the beam can deposit energy in the cavity between

the two bellows. We believe this to be the case for some of the QD bellows. During

very high current operation it was observed that some of these bellows became very

hot, in at least one instance resulting in a puncture of the outer bellows and a loss

of vacuum. Largely to guard against more of this type of damage, and partly to

reduce the bunch lengthening, sliding shields were placed within all the QD bellows

in the North damping ring. This modification will be repeated in the South ring

soon.

Since the introduction of the bellows shields in the North ring more bunch

lengthening measurements were performed. (12) We found that the current depen-

dence of the bunch length did not change significantly from the earlier measure-

ments, at least up to currents of 2.8 x 10 .lo We also repeated the energy spread
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measurements. As mentioned before this measurement can be difficult. For cur-

rents greater than 1.5 x 10lo the beam, if left on the screen more than a moment,

tended to damage it. Although we are not so confident in this new data, it appears

that the turbulent threshold of the ring, at V,f = 0.8 MV, has risen from 1.5 to

about 1.9 x lOlo since the introduction of the bellows sleeves. We hope to repeat

this measurement, and obtain better data, soon.
._- _

4. BUNCH LENGTHENING CALCULATIONS

4.1 Introduction

Once we know the Green function wake we can calcula.te  the bunch shape as

function of current. All our bunch length calculations are based on the theory

of potential well distortion, as formulated by J. Hai’ssinski.(‘3)  This method has

been applied to a pillbox impedance,(14~15) to an rf cavity impedance,(‘61’7)  and

to a broad band resonator impedance, (18) to find-the steady state shape.of a bea,m ,,

in a storage ring. Given the potential well, we can also calculate the amplitude

dependence of the tune within the well. E. Keil has performed this calculation for

a pillbox impedance.(15)

We begin this chapter by reviewing potential well theory and describing the

calculation of the incoherent tune. We follow by describing our method for extend-

ing the calculations into the turbulent regime. Then, in order to illustrate different

types of behavior, we give the bunch shapes and the tune distributions for a purely

inductive, resistive, and capacitive impedance. Finally, we repeat the calculations

using the Green function for the damping rings, and compare the results with t,he

measurements.

4.2 Potential Well Distortion(13)

The steady-state phase space distribution in a storage ring $(c, t) is given by

the Hamiltonian of the system H:

(17)
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For electron machines below the threshold current for turbulence the Hamiltonian

is-up to an arbitrary constant-given by

2 t2 1 t
Hk, t) = -g - g + 7 J v;r&‘> A ,c 0 vrft+j

0

with-s, the energy spread, ~0 the natural bunch length, prf the slope of the rf

voltage at the position of the bunch (we assume the applied rf wave is linear)

and Knd the transient induced voltage. In Eq. (18) a smaller value of t signifies

an earlier point in time, while t = 0 designates the synchronous point for a low

current beam.

The induced voltage V& is given by

00 cm
v&&(t) = - J w&y(t - t’) a’ = - J S(t’)i(t - t’) dt’ ) (19) ,”

0 0

with Wa(t)  the longitudinal Green function wakefield, I the current [note: I =

eNX],  and S(t)-known as the step function response--the indefinite integral of

W&(t). By taking the phase space distribution and integrating out the energy

dependence we find the longitudinal charge distribution. Then, by multiplying by

the total charge Q [Q = elv] we obtain the current:

I(t) = Kexp (20)

with I< a normalization constant. Note that I(t),  the unknown, is on both sides

of Eq. (20). However, note also that at time t the integral on the right depends

only on the current at more negative (earlier) times. Therefore, we can solve for

I(t) numerically by beginning far in front of the beam (say at t = -5ao),  where

we assume the induced voltage is zero, and then proceeding, in small time steps,

to the back of the bunch. And then finally, if the area under the newly computed
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curve does not equal Q we adjust I<, and iterate the whole procedure until it does.

Taking the derivative of both sides of Eq. (20) yields an alternative form of it:

(21)

This form of the problem is more convenient when Knd is given explicitly in terms

of I, as is the case for the simple inductive, resistive, and capacitive models that we

consider later. Of particular interest to us will be the rms length, the full-width-at-

half-maximum, and the centroid shift of the current distribution. The ratio of the

first two quantities is a measure of the similarity of the distribution to a Gaussian.

Due to energy conservation the third quantity, when multiplied by -err, gives the

higher mode losses.

In what follows all distances will be given in terms of go . Thus the independent

variable becomes x = t/as . We will also normalize voltages to Qrfao: the induced

VOltage  becomes Vind = Vind/( Grf go), and the total voltage v = Vind - 2.
.”

4.3 The Incoherent Synchrotron  Tune

Once we know the current shape, we also know the shape of the potential

well. For convenience let us choose the bottom of the well to be at zero energy.

Then the potential energy is simply given by u = - ln(1/i) with i the peak of the

distribution. Given the shape of the potential well we can numerically solve for

the incoherent synchrotron tune.

The equation of motion for a test particle moving in the well is

d2x
- - 47&(x)  = 0
dr2

, (22)

with T the time in units of the low current synchrotron period and v the t,otal

voltage. If the test particle has the initial conditions x = i and x’ = 0 then its

period of oscillation is given by

(23)
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The integration is performed over half a cycle: beginning at ?, we move down

the potential well and up the other side until we reach the position xc for which

+cc> = u(5). Note that when Vi,d = 0 [U(X) = x2/2] then 7 = 1. The relative

incoherent tune v is simply given by l/7. Note that from Eq. (23) we can find the

tune either as function of i or as function of energy h = u(i).

If we know the tune as function of h, then we can also calculate the tune

distribution:

A, = c Xh = c e-h
h(y) IWd~ I h(v) Id+4 ’

(24)

The sum in Eq. (24) is there to indicate that if more than one value of h corresponds

to a certain value of v we need to sum the contribution from each correspondence.

This w-ill happen when there is an interior extremum of v(h). It will also happen

when v(h) has more than one -branch, as will occur when there is a relative max-

imum in the potential well curve. Note also that Eq. (24) implies that wherever (_

dv/dh = 0 the distribution is infinite.

4.4 Some Simple Impedance Models

Over a frequency interval the impedance of vacuum chamber elements can often

be characterized by a simple electrical circuit element-an inductor, a resistor, or

a capacitor. We study in this section the potential well distortion when the whole

ring can be characterized by these simple models.

4.4.1 An Inductive Impedance

For a purely inductive impedance the induced voltage is given by Vi& =

-Ldl/dt, with the constant L the inductance. Bunch lengthening has been ob-

served in many storage rings, and we expect it to be due to an inductive impedance.

In the case of the SLC damping rings we have seen that the impedance is domi-

nated by the many inductive vacuum chamber elements. We, therefore, expect the

general features of the bunch shape to be’given by this model. Note that Hai’ssinski

has presented numerically calculated bunch shapes for this model in Ref. (13).
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For a purely inductive impedance Eq. (21) can be written as

XY
Y’=-l+y 7 (25)

with prime denoting the derivative with respect to x = t/uo. The normalized

current is given by y = LI/(i’o$); the normalized charge I’ (the complete integra.1  of

y) equ%ls  &Q/(?ui). The normalized induced voltage Vi,d  z Vi,d/(I&fO()) = -y’.
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Fig. 20. An inductive impedance: (a) the bunch shape for several values

of bunch population and (b) the bunch length variation as a function of

current.

The numerical solution of Eq. (25), for several values of r, is shown in Fig. 20(a).

Note that the charge distribution for a perfect inductor is symmetric about x = 0

(since there are no losses) and is more bulbous than a Gaussian distribution. From

Eq. (25) it is apparent that the solution is parabolic wherever y >> 1. In Fig. 20(b)

we display oZ and ~~~~~12.355  (the dashes) as functions of l?. Note that for

large currents gG varies roughly as I’‘I3 . If we apply the inductive model to the

SLC damping rings, taking L = 50 nH, then an intensity of r = 7.5 corresponds

to N = .1.5 x 10” at V,f = 0.8 MV. At this current we see from Fig. 20(b) that

uZ = 1.33 and XFWHM = 3.69. We shall see, in a future section, that these values
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approximate the results of the more detailed calculations, calculations that use the

Green function wake.

Consider a current of r = 7.5 in an inductive machine. Now suppose a test

particle is initially at rest at position x = i in the potential well. Figure 21(b)

then displays the tune v as function of x. Only half of the curve is shown; since the

well is symmetric about the origin v(x) = V( -x). We see that the tune decreases

monotonically as x approaches zero, and that it. is very much depressed at the

bottom of the well, to about 60% of its nominal value. On the same plot Y as

function of energy h = u(x) is also shown. We note that the slope of the tune is

nonzero for h = 0, i.e., at the bottom of the well. In Fig. 21(a) we give the tune

distribution A, . [It is plotted sideways so that its connection with v(x) and y(h)

is easier to see.] We note that the peak of the distribution is at the tune minimum,

that the tune at the peak is greatly depressed, and that the distribution is broad.
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Fig. 21. (a) The t une distribution and (b) the dependence of tune on i

and h when I’ = 7.5 for an inductive impedance.

Let us use the following notation: let V~ denote the tune above the fraction of

the beam given by x. Thus v.50 gives the median value of the tune. Then Fig. 22
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displays as functions of current the tune at the peak of the tune distribution vo , as

well as v.25, v.50, v.75, and v.95. We see that ~0 drops most quickly at the low end

of the current scale, and levels off at the high end. Note that for I? > 0.5 the curve

for vo in Fig. 22 can be approximated by l-0.15( 1 +ln I’). We can estimate the low

amplitude tune shift AvO at low currents by assuming the bunch remains Gaussian

and that -y”(O) is small compared to 1. Then AYO x y”(O)/2 z -r/(2&) x

-O.?lY+  -The quantity 1 - 0.2I’ is given by the dotted curve in Fig. 22. We note

that it only approximates ~0 for very low currents. At r = 0.5 it already deviates

from the exact calculation by 30%. For the damping ring this current corresponds

to a bunch population of only 10’.

I
8

0 I I I I I I
0 10 20 30 40

2-90 r 6562A8

Fig. 22. The current dependence of the characterizing parameters of the

tune distribution ~0, v.25, v.50, v.75 , and v.95 , for an inductive impedance.

4.4.2 A Resistive Impedance

For an ideal resistive impedance the induced voltage can be written as Vind =

-IR, with the constant R the resistance. This model is applicable to electron rings

that don’t have many inductive elements, and whose impedance is dominated by

the rf and other large cavities. In storage rings where the builders have been very

careful to avoid transitions and bellows we would expect the impedance to be

resistive.
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For an ideal resistive impedance Eq. (21) becomes

Y’ = -4x + Y)Y 7 (26)

with y = Rl/(i/as) and I = RQ/(Qo~). Note that V;,d = -y. The analytic

solution to Eq. (26) was found by A. Ruggiero09):
._ _

2
J

e-x2/2

’ = F coth(I’/2)  + erf(z/fi) ’ (27)

with erf(z) the error function.
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Y
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X

Fig. 23. A resistive impedance: (a)

of total charge and (b) the change of

(dots) with current.
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the bunch shape for several values

bunch length and centroid position

The solution, Eq. (27), for several values of current is displayed in Fig. 23(a).

As I is increased the bunch tilts forward (up the rf wave) by an ever increasing

amount, in order to compensate for the increased higher mode losses. Figure 23(b)

_ gives ox and x~w~~/2.355  (the dashes). We see that the bunch length increases

only very slowly in a resistive machine. The dots give the centroid shift (x) of the

bunch. It can be approximated by (xc> = -I/(2&),  which is the centroid shift

assuming that the bunch shape does not change with I’.
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Suppose we could remove all the impedance of the SLC damping rings except

that of the rf cavities. As we saw before, we could approximate what was left by a

resistive impedance with R = 411 0. A bunch population of 5 x lOlo in this ideal

machine, when V,,f = 0.8 MV, corresponds to I’ = 3.4. For this current Fig. 24(b)

displays the tune as function of the maximum extent of oscillation i, for ci more

negative than the position of the bottom of the potential well. We see that for both

low ani very high amplitude oscillations the tune is not changed. For amplitudes

in between these two extremes, however, the tune is depressed, but by a very small

amount. Also shown on the plot is the tune as function of energy v(h).

“ V“ V iiii

11 0.750.75 0.50.5 0.250.25 00 -2-2 -4-4
1.00 \1.00 \ II 11 1I 11 1I 11 1I

\\
- \- \

\\ .
0.98 - \\

\
V \

\
\0 . 9 6  - \\\
J4--- - - .-w V

0 .94 I I I I I I I1 I 1 1 1 II I I I I I II I I I I I

loo 75 50 25 0 2.5 5 7.5 10

2-90 b h 6562A30

Fig. 24. (a) The tune distribution and its integral (dashes) and (b) the

dependence of tune on 2 and 12 when I’ = 3.4 for a resistive impedance.

In Fig. 24(a we show the tune distribution X,. Note that there is an infinite)

spike at the lowest tune value. The dashed curve in the figure gives the integral

of the tune distribution n, . We note that 50% of the particles have tunes in

the lowest 20% of the tune range. In Fig. 25 we give as function of current the

parameter ~0, u-25, v.50, v.75, and u.95 that charactrize  the tune distribution.
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Fig. 25. The current dependence of ~0, v.25, v.50 , v.75 ,

resistive impedance.
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r 6562A29

and v.95 for a

4.4.3 A Capacitive Impedance

For an ideal capacitive impedance the induced voltage is proportional to the

integral of the current, with constant of proport;onality  -l/C, and C the capaci- “”

tance. Deep cavities, such as the rf cavities, are slightly capacitive at normal bunch

lengths, and become more capacitive for very short bunches. Of the three simple

models the capacitive is probably the least applicable to the types of impedances

one finds in storage rings. We note that bunch shortening has not been observed in

storage rings, except possibly at low currents in SPEAR, when the ring had many

rf cavities.12’)

For a purely capacitive impedance Eq. (21) becomes

X

y' = -y[x +
J

Y (x’) dx’l , (28)
-CC

_ with y = I/(vrfC) and F = Q/(i,rfosC). The solution to Eq. (28) closely approx-

imates a Gaussian that has been shortened and shifted. Since the energy stored in

a capacitor is &“/2C, the centroid shift is given by (xc> = -F/2. Figure 26 shows

the bunch length dependence on I’. By substituting a Gaussian into Eq. (28) we

38



1.5

y 1.0

. 0.5
- --
0

I I

=X
'.O --

0.5 - x p)jHM / 2z:

(b)

0 I I
-4 -2 0 2 4 0 1 2 3

3-89 X I- 6327A21

Fig. 26. (a) The bunch shape for various currents and (b) bunch shortening

as a function of current, for a capacitive impedance.

can arrive at an analytical approximation of the bunch shortening, which for small

current becomes ox d-r/&F.
In a capacitive machine the bunch becomes shorter and the tune of all the +

particles will rise. As was the case for the inductive machine the tune as function

of energy is monotonic. The low amplitude particles have the highest tune. Their

tune shift can be approximated by AV z l/a, x I’/& x 0.2r.

4.5 The Turbulent Regime

4.5.1 Calculations Beyond Threshold

Beyond some threshold current the energy spread begins to increase, and we

enter what is known as the turbulent regime. At the moment, there is, unfortu-

nately, still no reliable calculation of the behavior of short bunches in this regime.

However, for a formalism that at least in theory can be used to solve the problem

see, for example, J. M. Wang and C. Pellegrini.t21)

In the case of SLC damping rings, however, we will use a simpler method. We

believe that the instability that we find in the damping rings is a fast instability

of the microwave type, and we expect the potential well approach to calculating

the bunch shape still to be applicable. As threshold current we take the value
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given by the measurements. To find the bunch shape beyond this current we

(i) scale the energy spread according to the Boussard criterion (see below), and

then (ii) perform the normal potential well calculation but replacing as in Eq. (20)

by c(-, = ~oe/uc, , with (T,, the nominal energy spread. Implicit in our method is

the assumption that the energy distribution remains Gaussian.

i.5.Z.The Boussard Criterion

The Boussard criterion is often used to estimate the threshold for instabil-

ity. Boussard(22) conjectured that the longitudinal instability in a bunched beam

is due to a coasting-beam-like instability within the bunch. Then in estimating

the threshold for instability one might use the coasting beam threshold(‘3) but

replacing I by i the peak current. The issue of the applicability of a coasting

beam instability criterion to a bunched beam was studied in detail by J. M. Wang

and C. Pellegrini. c2r) They found that one obtains a coasting-beam-like instability

condition provided that: (i) the impedance is broad band relative to the bunch “*

spectrum, (ii) the growth rate is much greater than the synchrotron frequency,

and (iii) the instability occurs at wavelengths much shorter than the bunch length.

Their threshold condition looks like a coasting beam threshold condition(21):

(29)

with 2 the broad band (or smoothed) impedance and n = wl/wo, with wr a

representative frequency sampled by the bunch spectrum and wg the revolution

frequency; with CY the momentum compaction factor and E the beam energy.

Equation (29) is a stability condition, i.e., a condition for no fast blow-up. In

our calculations we will take as threshold the measured value, and use Eq. (29)

solely for scaling the energy spread in the turbulent regime.

In Eq. (29) both i and Z/n in general depend on bunch length which, in turn,

depends on the energy spread. Consider, for example, a very resistive impedance

where 2 = R the resistance. As typical frequency nwo we might take the inverse
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bunch length. Then since i is also proportional to the inverse bunch length we find

that Eq. (29) implies that, above turbulence, g6 N N’12, with N the bunch popu-

lation, for a resistive machine. On the other hand, for a very inductive machine,

such as the SLC damping rings, 12’1 n is approximately constant. If we substitute1

the peak current for a Gaussian beam in Eq. (29), and note that the bunch length

is proportional to the energy spread, we see that, above threshold,

113
(N > h) ,

with Nth the threshold current. This is the scaling we will use for calculating the

damping ring bunch shapes in the turbulent regime.

We make two observations: (1) This scaling is roughly supported by the mea-

surement results discussed in Chapter 3. (2) For an inductive machine the bunch

length increases with current due to potential well distortion, and thus the growth .,(_.

of the peak current with current is somewhat reduced. To be more consistent we

could have included this fact in determining the scaling of energy spread with cur-

rent. For the purely inductive impedance discussed earlier we find that the peak

current increases approximately as N0.8, rather than as simply N, due to potential

well distortion. Thus, for the damping rings we would expect CT, to vary as No.27

rather than as N1i3 above threshold. And this modification, in turn, would result

in a slight reduction in the calculated bunch lengths at the higher currents. For

the results to be presented, however, the difference would not be significant.

4.5.3 Another Threshold Criterion

P. B. Wilson(24) has suggested that one threshold criterion might be that the

slope of the total voltage v’ becomes zero (or equivalently U” = 0) somewhere within

the bunch. This criterion has also been studied by G. Besnier,(‘*) who has used it

to predict turbulent bunch lengthening for ESRF, the European light source. It is

easy to show that if we assume a purely inductive impedance, and we also assume

that the bunch shape remains Gaussian, then Wilson’s criterion is equivalent to
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the Boussard criterion. We can also show that this condition can never be met for

the models of a purely inductive, resistive, or capacitive impedance. For it to be

met requires some high frequency structure in the impedance curve (as is the case,

for example, for the broad band resonator model with a high frequency resonance).

Note that if Wilson’s conjecture (u” = 0) is met at the bottom of the potential

well, then the tune becomes zero for small amplitudes. If, however, u” = 0 is

first m&-at another position within the bunch, as we will see in our potential well

calculations using the damping ring Green function, then the physical significance

of the conjecture is not so clear.

Wilson’s conjecture suggests another, more stringent threshold condition with

a simple physical interpretation. Consider as threshold criterion that there be a

relative maximum in the potential well shape, i.e., u’ = 0, u” < 0, somewhere

within the bunch. If this condition is met then there will be two stable fixed points

within the bunch and one unstable fixed point at the position of the maximum. .,(_
Consequently, a subset of bunch particles will oscillate about a relative minimum

of the potential well, rather than about the absolute minimum. Note that this is a

more stringent condition than Wilson’s and will tend to be met at higher currents

than his condition. Finally, we should stress that both these threshold criteria are

merely conjectures. Their validities need to be demonstrated in a self consistent

manner.

4.6 Bunch Lengthening in the SLC Damping Rings

4.6.1 The Bunch Shape

Using our pseudo-Green function (see Fig. 14) in the potential well equation,

Eq. (20), we have calculated bunch shapes for many values of current, for a ring

voltage V,,, = 0.8 MV. Figure 27(a) displays the rms length Q, and x~w~hf/2.3.55,

and Fig. 27(b) gives the centroid shift (x) of the calculated distributions as func-

tions of current. Length dimensions are again given in units of us (at this rf

voltage CQO = 4.95 mm). In Chapter 3 we saw that the measured threshold at this

rf voltage was Nth = 1.5 X 10 lo . Taking this as our threshold, we extended the po-
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tential well calculations into the turbulent regime by simply scaling the parameter

00 as (Wh)1i3, as was discussed earlier. (The turbulent regime is indicated by

the dashed lines in the figure.) Superimposed on the curves are the measurement

results presented in Chapter 3.

0
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0
0 1 2 3

N/10" 6327A22

Fig. 27. (a) Bunch lengthening and (b) the centroid shift calculated for

the SLC damping rings at V,f = 0.8 MV. The symbols indicate the mea-

surement results.

As we saw for the simple inductive model the current distributions calculated

for the damping rings are more bulbous than a Gaussian. At N = 1.5 x lOlo,

we see that crz = 1.38 and and XFWHM = 3.93. These values compare well with

those obtained assuming a purely inductive machine with L = 50 nH, for which

we found crz = 1.33 and and XFWHM = 3.69. The turbulent threshold is seen as

a slight kink in the curves. Beyond this point gz varies roughly as N’i3. We see

that at N = 3 x lOlo the rms bunch length is increased by 70%. From Fig. 27(b)

we see that the calculations give a significant amount of higher mode losses. At

N = 1.5 x lOlo the centroid shift (xc> = -0.5 is equivalent to a higher mode loss of

30 keV; at 3 x lOlo the loss is 38 keV. For both the bunch length and the centroid

shift the calculations agree well with the measurements.

In Fig. 28 we present the bunch shapes for bunch populations of N = 0.7, 1.2,

2.1, and 2.9 x lOlo. The abscissas give x = t/go, the ordinates are y = ~ZO/(~Q)
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Fig. 28. The calculated damping ring bunch shapes for several current val-

ues, when V,f = 0.8 MV. Superimposed on the curves are the measurement

results.

with 20 = 377 R. Superimposed on the curves are the digitized measurement

results. The fluctuations in the data (especially at the peaks) are due to nonuni-

formity in the response of the screen. Considering that there are no fit parameters,

the agreement between the data and the calculations is very good. Finally, in

Fig. 29 we show the induced voltage Vind and the total voltage v calculated for

these same four currents.

4.6.2 The Incoherent Tune

For the following calculations let us consider the current N = 1.5 x 10” at

vrf = 0.8 MV in the damping rings. Suppose we begin a test particle at rest

at position x = i in the distorted potential well. Then subsequent oscillations
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Fig. 29. (a) The induced voltage Vi,d and (b) the total voltage v = ‘Uind -x

when N = 0.7, 1.2, 2.1, and 2.9 x 10” and V,f = 0.8 MV.

within the well are shown in Fig. 30(b), for the cases ;i = -2, -1, 0, 1, and 2. The

horizontal axis is the time in units of the nominal synchrotron period. We see quite

a variation in oscillation period. The potential well itself is shown in Fig. 30(a);

the dashes give the well of the rf alone. Note that u = 0, the bottom of the well,

is at x = -0.24. Note also that the bottom of the well is not just broadened and

that there is an inflection point (u” = 0) away from the bottom.

For the same current we display, in Fig. 31(b), v(?), for i more negative than

the position of the bottom of the well. We see that, as with a simple inductive

impedance, there is a great tune depression within the bunch. We also note that, as

with a simple resistive impedance, the curve has a minimum within the distribution;

at the minimum v = 0.18. In the same frame we display v(h). [Although h values

up to 10 were included in the calculation, we only show the very beginning of the

h range, in order that the dip in v(h), near h = 0.1, can be seen.] At h = 0 the

tune is 0.66. In Fig. 31( a we show the tune distribution. We see that it is broad,)

centered about v = 0.7 with a full-width-at-half-maximum of 0.24. Also visible in

the plot is a spike, at v = 0.18, containing very few particle.
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Fig. 30. (a) The potential well and (b) five oscillations within the well
when N = 1.5 x lOlo and Vrf = 0.8 MV.
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Fig. 31. (a) The tune distribution and (b) the dependence of tune on 2

and h when N = 1.5 x 10” and V,f = 0.8 hlIV.

In Fig. 32 we characterize the current dependence of the tune distribution by

five parameters: v.05 ,  v.25 ,  v.50 ,  v.75, and v.95 which signify, respectively, the
tune above the first 5%, 25%, 50%, 75%, and 95% of the particles. The region
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with dashed curves is the turbulent regime. We see that the tune spread is quite

large beyond 5 x 10‘. If we look, for the moment, at the the curve representing

the median tune v.50 , we note that it drops most quickly at the beginning of the

range, for currents up to 5 x 10’ and then begins to level off. This general behavior

was observed for the quadrupole tune measurements discussed in Chapter 3. In

absolute terms, however, the 25% shift shown here at 5 x 10’ does not agree with the

3 to 4% shift given by the measurements. We believe that this discrepancy signifies

that the connection between the coherent quadrupole tune and

of a machine with a broad tune distribution is not so simple.

the incoherent tune

1.00

0.25

0

2-90
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N/l 0" 2 6562A3:

Fig. 32. The current dependence of v.05 , u.25 , v.50 , v.75 , and u.95 as

calculated for the damping rings when V,f = 0.8 MV.

5. CONCLUSIONS

The study of bunch lengthening in the SLC damping rings, described in this

paper, can be divided into three parts: the impedance calculations, the bunch

length measurements, and the bunch length calculations.

In the paper’s first part we described the vacuum chamber geometry of the

damping. rings. We introduced a figure of merit for bunch lengthening, the effective

inductance e. We found that the ring impedance is domina.ted  by many small,
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inductive discontinuities-such as bellows, shallow transition, and masks. There

are so many objects that contribute to the total inductance, that if we want to

reduce bunch lengthening, we basically need to rebuild the entire vacuum chamber.

We ended this part of the paper by computing the wakefield of a very short bunch

passing through the entire damping ring, a function that can be used as Green

function for the bunch length calculations.

In the paper’s second part we described measurements of energy spread, syn-

chronous phase shift, and longitudinal quadrupole tune shift with current that

were performed on the SLC North damping ring. We saw that by taking ad-

vantage of the unique hardware features found in the SLC it is possible to mea-

sure the bunch shape of individual damping ring pulses to good resolution. We

found a large amount of bunch lengthening at higher currents; at an rf voltage

of V,f = 0.8 MV and bunch population N = 3 x 10” the rms bunch length was

doubled. From energy spread measurements we found the threshold current-at

the same rf voltage-was 1.5 x 10”.
.,I

In the paper’s final part we described bunch length calculations that are based

on the theory of potential well distortion. We saw, for example, that an inductive

machine has lots of bunch lengthening, a resisitive machine little. We saw that in

an inductive machine the incoherent tune shift and the tune spread are both large,

in a resistive machine they are small. In this chapter we also described a method

of extending the potential well calculations into the turbulent regime, once the

threshold current for turbulence is known. Then taking the measured threshold

value, and using the Green function discussed above, we calulated bunch shapes as

function of current. When these shapes were compared with the measured shapes

we found excellent agreement. Then finally we computed the tune distribution

we expect for the damping rings. As for a purely inductive impedance at higher

currents we found the tunes depressed, with the average tune shift large and the

tune spread broad.
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