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ABSTRACT 

In order to locate the origin of internal-symmetry groups, we study extended 

- quantum kinematics for internal spaces over various mathematical fields, i.e. com- 

mutative division algebras. We consider two possibilities: 

(1) that internal symmetries-such as isospin symmetries-are kinematical isome- 

tries of underlying spaces which can depend on time; or 
. . . 

(2) that such internal symmetries are involutions (such as C, P, and 7’) or slight 

generalizations of them. 

By inspecting several realizations of Extended Commutation Relations (ECR), we 

find that (1) is actually realized only on the non-commutative division algebras 

while internal symmetries in (2) are interpreted as Galois groups for appropriate 

field-extensions of a base field. A unique feature of our formalism is the appearance 

of a set of new quantum numbers, which characterizes similarity classes of simple 

algebras and are numerically equal to exp[27ri(m/n)] with relatively prime rational 

integers m and n (0 5 m < n). The dynamical calculations based on ECR are 

briefly discussed. 



I. INTRODUCTION -- 
f 

-. 
If one asks basic questions in particle physics such as “How many neutrino- 

species are there in the universe?” or “What is the theoretical explanation for 

the value of m,,/me?” and so on, it would soon be realized that the traditional 

dynamical theories like quantum field theories are quite useless in answering these 

questions unless they are equipped with some ad hoc assumptions. This is obviously 

because the nature of problems is unprecedented from the conventional standpoint 

and thus most of the existing dynamical theories are practically neutral to them. 

One heuristic approach to these problems would be to put aside all the use- 

ful yet unconfirmed hypotheses for a while (however useful they may be for phe- 

nomenological analyses) and then try to understand the consequences of a minimal 

number of assumptions, which are taken as weakly as possible. This strategy should 

be followed to its extremities as long as it is consistent with firmly established prin- 

ciples such as various conservation laws. The next step would be to determine an 

appropriate framework to answer the basic questions posed earlier in this paper, 

rather than quickly reproducing the existing data by employing widely available 

methods. 

Among many alternatives, we have chosen the symmetry rule as our guiding 

principle. Keeping this in mind, let us consider basic internal symmetries such 

as isospin symmetry and C, P, and 2’. New approaches to these problems are 

presented. As will be shown, it would be nothing but a reconstruction of ordinary 

quantum mechanics, with the only difference being that the underlying space and 

its groups of automorphisms are now slightly generalized to incorporate internal- 

symmetry spaces in it. 

In a previous work,r we considered discrete isospin groups and identified the hi- 
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erarchy structures between various observed symmetries with the process of group 
.- 

t extensions. Then the kinematics was introduced into internal space, which is en- 

-: tirely based on group concepts. The particular type of groups mentioned here has 

originated in the realization that the observed isospin symmetries can be appro- 

priately described by finite subgroups2 of SU(2). 

In this work, we proceed further along this line and will seek to find explicit _ - 
- representations for internal kinematics. Before attempting this, we have to be more 

specific about an isospin group, namely whether it is: 

(Case A) a time-dependent isometry group in internal space just like the rotational 

- or translational group in ordinary S-space; or 
. . 

(Case B) an involution like C, P, or T or its suitable generalization. 

As an example of the latter case, we note that the operation C is not generally 

realizable as a physical process in the sense that electrons are not changed into 

positrons by emitting (absorbing) -any known particles. In contrast, e- can go to 

V, by emitting IV-. So this may be classified under Case (A). Indeed, one can think 

that this is the very reason to put V, and eL into the same leptonic isomultiplet, as 

is familiar in electroweak theory. If Case (A) is valid, then isospin space is much 

the same as the ordinary 3-space except for an obvious lack of translational degree 

of freedom. The time-dependent transformation or rotation of vectors in it should 

actually take place. 

We refer to Case (A) as the active type. According to conventional view, 

however, one cannot of course detect such rotations as far as isospin-symmetric 

interactions are concerned. This is because there is no way to determine a particular 

direction. Moreover, even in the presence of a large symmetry breaking, one usually 

assumes that the basic interaction is completely symmetric, to be broken only 
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.- 

by “residual mechanism” for which one can choose a favorite one from various 
.- 

z alternatives. 

-. So, there is no need to speculate on possible internal rotations. This view is 

also included in Case (B) and will be referred to as the “passive” type. However, 
.- there would be no practical difference between uactive” and “passive” types as long 

as one uses the concept only in a phenomenological way. We consider both types 

in the following, although our emphasis is on the active type because it seems more 

natural in explaining the origin of symmetry groups. 

.- 
. . 

In Case (A), th e k inematics can be introduced by identifying the automorphism 

groups of underlying space after a suitable topology is set up. Then one can 

establish ECR and a related algebra, which is subsequently decomposed into simple 

components, i.e. simple algebras. 

- In the case of ordinary Canonical Commutation Relations (CCR) in quantum 

mechanics, this process can be performed straightaway, and gives us a clear phys- 

ical insight. As this example provides us with a unique opportunity to acquaint 

ourselves with internal kinematics, the main features of this formalism are recalled 

somewhat in detail, from a new standpoint together with ECR for the SU(2) case. 

This is shown in Section II. If the internal symmetry is that of Case (A), then it 

turns out that the non-trivial incorporation of this symmetry as the kinematical 

isometry-group of internal space generally requires a formalism which is based on 

various number fields. This combination of ECR with general linear groups GL(R) 

opens a perspective with a dazzling extent and richness. We will only scratch the 

surface of this discipline for our limited purposes. 

In contrast, the consequence of finite internal symmetries in Case (B) seems 

to be more modest than that of Case (A). Th e relevant groups are most naturally 
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.- interpreted as Galois groups for appropriate field extensions in this case. The 
t 

-. 
principle adopted here for Case (B) is a sequence of split extensions of finite groups. 

Consequently, we first focus on Case (A) an d consider ECR over various fields. This 

is the subject of Section III. 

_ - 

In Section IV, we consider Case (B) and discuss tensor algebras and then the 

Clifford algebra. These concepts are clearly needed in formulating kinematics in a 

closed form. The Clifford algebra is defined only when a quadratic form is given. 

It will be essential to obtain anticommutation relations. The introduction of the 

concept of “particles” will not be undertaken yet on the grounds that it seems to 

require additional assumptions about Hamiltonians or quadratic forms. - . 

- 

We would therefore be content with the description of general framework in 

this paper. The choice of underlying fields is also a highly non-trivial problem 

in both Cases (A) and (B), although our basic formulas such as ECR in Eq. (20) 

below are as simple as the corresponding quantum mechanical ones. Any realistic 

use of our formalism has to be left to subsequent works. 

Finally, in Section V, we summarize the results and make a few remarks. 

II. ALGEBRA OF CANONICAL COMMUTATION RELATIONS 
AND ITS EXTENSION TO W(2) 

The CCR in quantum mechanics is interpreted as a statement about Euclidean 

translation and takes the familiar form [~,p] = i (tL = 1) in its simplest form. 

Writing it in the Weyl form3: 

exp [iap] exp [iTq] exp [-icp] = exp [iT (q + 011 9 (1) 

where 0, r are real parameters (a, T, E R); one can interpret exp[-iap] as an 

operator of the translation q + q + 6. As this elementary fact is one of the basic 
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-- motivations for subsequent developments, let us recall the consequences of Eq. (1) 
r 

a little further including less familiar results. 
-. 

If we introduce an operator: 

S (0,~) = exp [i (0~ + cdl , 

which is defined by a power series expansion, then it is also written as: 

S (0, T) = exp [-i 671 exp [ibp] exp [iTq] 

= exp [i ar] exp [iTq] exp [iap] . 

(2) 

(3) 

.- . 
The multiplication rule for S (0,~) follows from Eq. (1): 

S (a, 7) S (o’, T’) = exp [$nLA)] S(o+a’, 7+7’) . (4) 

- 

This may be regarded as a special case of tensor product of algebras, which is 

considered later. It is one of the most basic steps in obtaining new algebras. When 

a classical physical quantity is expressed as a function of p and q as: 

do dr exp [imp] exp [iTq] F(a, 7) , (5) 
-00 

in terms of a coefficient function F, then the corresponding quantum mechanical 

quantity (operator) is obtained as: 

f(P, q>Q = JJ dadr S(O,T) F(aq) (6) 

by using the same function F(a, 7). This is, of course, the well-known prescription 

of Wey13 (see also J. Schwinger, Ref. 4). One may regard the expression (6) as 
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c 
a linear combination of S (a, 7) over all possible values of CJ and 7. It should be 

stressed, however, that the following discussion is independent of this prescription 

which connects f(p, q) with f(p, q)Q. 

_ - 

Now, let us consider the set of all possible linear combinations of S (a, 7) with 

coefficients from C, the complex number field. Under rule (4), this set is closed 

under multiplication as well as addition, and constitutes an algebra, to be called 

Weyl algebra (WA). Obviously, Eq. (6) t e 11 s us that any quantum mechanical op- 

erator is an element of WA. The structure of WA in the present case is summarized 

as follows: 

.- I. WA corresponding to Eq. (1) is a direct sum of a countable infinite number . . 
of simple algebras; and 

II. Each simple algebra is one-dimensional and has its own generating idempo- 

tent; that is, a projection operator. The eigenfunction of this operator in 

Schrijedinger representation. (p = -i d/dq) is identical to a harmonic oscilla- 

-. tor wave function in one dimension. 

To be more precise, let us consider an element of WA defined by 

1 
E. = - 

2lr JJ dadr exp [ -; (2+2)] S(c7,T) . (7) 

This element was originally considered by von Neuman5 and has a remarkable 

property: 

E; = E. , 

Ei (hermitian conjugate) = Eo # 0 
(8) 

. 

This is easily confirmed by using Eq. (4). W  e may construct all possible projection 

operators E,, (n = 0, 1, 2, . . .) for WA, so that they are mutually orthogonal and 
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constitute a complete set, i.e. 

E; = E,, , 

En Em = &,m En , 
(9) 

and 

c E, = 
n=O 

Our result for n > 0 together with Eq. (7) is summarized by the formula6t7: 

I (identity) . (10) 

. . . 
where 

tn = Ln (2P) emp 9 

p = (02 + ?)/4 
(12) 

and 

J%(Z) = (5) ($)n (eszxn) 
are n-th Lagurre polynomials (n = 0, 1, 2, . . .). The property (II) given previously 

is easily confirmed by solving the equation En+n = T,& (n = 0, 1, 2, . . .) with 

p = -i d/d q. As is understood from this derivation, we assumed Eq. (1) only, and 

considered its algebra over C. Then all other results are implied. In this sense, 

the knowledge of simple algebra is almost equivalent to knowing the “primordial 

form” of physical states, namely harmonic oscillator wave functions in quantum 

mechanics. Although there will be no guarantee for such a situation to prevail in 

more general cases, there is certainly no obvious reason against the possibility that 

a simple algebra is a primordial form of a “particle” in the framework considered 

later. 
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-- If the Hamiltonian is given as an element of WA, then its eigenvalues are com- 
t 

pletely specified as usual. The privileged role of the harmonic oscillator Hamilto- 

nian manifests itself in the fact that each of its eigenfunctions belongs to a single 

projection operator En. Any perturbation can generally induce a transition be- 

tween simple algebras corresponding to distinct En. The lesson obtained from 

_ - these considerations is as follows. When a space, either internal or external, with 

- an isometry group is given and the corresponding Weyl-type algebra is constructed, 

it already contains all the necessary kinematical information within it. Establish- 

ing such kinematics for various isometry groups is one of the central themes of this 

paper. 
. . 

Consider next the case of SU(2) ro a t t ions, in contrast to the one-dimensional 

translations. The analog of Eq. (1) in this case has been obtained previously by 

us in the angular Schriiedinger representation.7 Here we record only its form: 

where 

exp [in - JJ E exp [iyJz] exp [ipJY] exp [ioJz] 

A is the operator for Euler rotation (a, p, 7) and D(J) is the standard rotation matrix’ 

for SU(2). In th e simplest nontrivial case j = l/2, the latter is explicitly given by: 

jy1/2) (@h/g = 
( 

cos i exp [-; (d+ $)/2] -sin 5 exp[-i (4 - $)/2] 

sin $[; (4 - $)/2] cos 4 exp[i(4+$)/2] > * 
(14) 

As is easily confirmed for j = 0, l/2, 1, . . . , by power-series expansion, Eq. (13) 
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- 
is satisfied by angular Schr&dinger operators given by: 

c Jy = - i [- sin f$ cos 6 (a/&) 

+ cos 4 (a/%) + (sin 4/ cm 0) (a/a+>] , 

Jz = - i (a/t.+b) . 

(15) 

We notice several outstanding features of our ECR, Eq. (13): 

- (a) the phase factor exp [k] in Eq. (1) is replaced here by a noncommutative 

matrix %) (cy, p, 7) ; 

(b) 6(j) for all irreducible representations of SU(2) appear; and 

(c) the operator exp [in . Jl acts on each entry of the matrix .6(j) (&3$) sepa- 
. 

rately. 

As for item (c), consider the (1,l) element of 6(i) (&3$) as an example. The 

tr%nsform of it under exp(i n . .7) is written explicitly as: 

- 
exp [; zr . Jj cos 5 f3 exp[-(4 + +)/2] exp 1-i 11 . 4 

= cos i exp [-i (a + 7)/2] cos t exp [-i (4 + $)/21 

+ sin f exp [i (a - 7)/2] sin i exp [i (4 - $)/2] 

= (1,l) element of 5(1’2)(op~) 5(1’2)( de+) . 

(16) 

This type of transformation formula for SU(2) is possible only if each entry 

in matrices and exp(in . J)have functional forms as indicated here, as long as we 

adhere to conventional number systems such as C, R, Q (rational number field), 

etc. When one tries to represent Eq. (13) entirely by matrices without using any 

variables or derivatives, then each entry of matrices must itself be a matrix, or 

more properly an element of a certain ring. Therefore, the mechanism of the root 
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_- of Eq. (13) should b e understood in a more general concept than the mere matrix- 
c multiplication, on which our previous ECR are based.’ 

Consider next the classical quaternion algebra H over R generated by three 

unit quaternions j, Ic, and e(j2 = Ic2 = .!J2 = -1, jlc = -kj = l , etc.). 

By using Euler parameters (Q, p, 7)a.s before and writing: 

R (a&) = exp [+/2] exp [-P/2] exp [--cyWl , 

one can put Eq. (13) into the form: 

“+ “+ 
R(W) x0 

0 
R(ap$l = 3) (apf) x0 

0 
* 

X- X- 

where (i2 = -1); 

x+. = - (l + ik)/fi 

x0 = j 

x- = (bik) &! . 

(17) 

(18) 

(19) 

Notice that Eq. (18) is purely an algebraic relation and expresses the fact 

that the division algebra H has SU(2) /{Al} x SO(3) as a group of automor- 

phisms. The operator R(@y), which is an element of H, induces a rotation in 

3-dimensional quaternion space spanned by j, k,!. Obviously, this type of repre- 

sentation is preferred over the angular Schrijedinger representation given in Eq. (15) 

for our purpose because no measurable, continuous angular parameters seem to ex- 

ist in internal space. However, it should be noted that, when a group is given, an 

irreducible representation of it by the relation like Eq. (18) is possible only if its 

dimension is at most four due to the fact that the dimension of H is only four. 
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.- A higher dimensional representation of ECR requires the use of division algebras 
c 

over fields more general than C or R. The formation of tensor algebra followed by 

decomposition to simple algebras will be performed in a parallel way to the case 

of Eq. (l), although we do not explicitly show this here. When the base field is R, 

the simple algebra is either of the type Mn(H) or Mn(R) where M, denotes an 

n x n matrix with entries from a division algebra in the bracket. This completes 

our review and observation from a new standpoint of ECR for SU(2) over R. 

The problem before us is to see whether a similar ECR and its representation 

are possible in the case of particular types of finite internal-symmetry groups. In 

.- the next section, we attempt to formulate this problem more thoroughly, including 

the results summarized here. 

III. EXTENDED COMMUTATION RELATIONS (ECR) 
OVER VARIOUS NUMBER FIELDS 

As we have seen in Section II, a full knowledge of ECR over a given space 

can provide us with complete kinematical information. Moreover, we may expect 

that it can even suggest to us the primordial form of physical states, even without 

the knowledge of Hamiltonians. We also learned that the matrix representation of 

ECR requires, in general, the use of noncommutative division algebras instead of 

fields (which equal commutative division algebras). 

To understand the general mathematical framework which is used in the fol- 

lowing, let us first recall some elementary notions. ‘-13 Consider a division algebra 

D of finite dimension d2 over any field. Many types of division algebras are math- 

ematically known, depending on the choice of field F. Let V be an n-dimensional 

vector-space over D. The space of homomorphisms of V into itself constitutes a 

ring, denoted by End(V). Th is ring is isomorphic to the matrix algebra &(D), 
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.- which was already introduced for the choice D = H or R (see Section II). End(V) 
c 

is isomorphic to a simple algebra of dimension n2d2 over F. An element of this 

algebra is an n x n matrix whose entries belong to a division algebra D, which 

in turn is #-dimensional over F. We formulate two mathematical problems as 

follows: 

_ - (I) When a field F is given, what types of division algebras do exist; and 

(II) What is th e u automorphism group of the algebra J&(D)? f 11 

Question (II) may be replaced by a slightly different one, i.e. to know the 

structure of the group Mn(D)x consisting of invertible elements of Mn(D). This is 

.- . . because M,(D)x is homomorphic to the full automorphism group of M,(D).‘!11912 

Moreover, it is necessary to include not only automorphisms, but also anti-auto- 

morphisms when one considers unitary groups. 14J5 The answer to (I) is completely 

known for special types of fields including all local (such as padic) and global (such 

as algebraic number) fields. Some of these fields are ubiquitous in recent physical 
- literature l6 although they are used in different contexts from ours. The answer to , 

(II) seems to be generally more complicated than (I). As both problems are purely 

mathematical in character, one can use the known results if necessary. Therefore, 

we suppose that both (I) and (II) have been solved. 

With these preparations in mind, let us consider the analog of Eqs. (1) and 

(13). It will be of the form (xcD): 

x-l M, (D)x = Mn (h)xMn (D) , (20) 

where Fz indicates a set of elements of F, which uniquely specifies an element 

x over a suitable basis of D. Further multiplication by y-’ and y indicates that 
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-- Mn (Fz)‘Mn (&,)’ = Mn (KY)‘. So Mn (J’z)x constitutes a representation of a 
c 

group which is homomorphic to Dx E D - (0). We notice that Eq. (20) may be 

replaced by a little more general relation. Indeed, x in Eq. (20) actually stands for 

a diagonal n x n matrix: 

D 
_ - D 

x= i I *. 

D 

which is only a special subalgebra of Mn(D). 

- 

(21) 

Therefore one may consider the group M, (0) x and its subgroups. Here one 

should be aware of two points. Firstly, the division algebra D used in Eq. (20) 

has to be non-commutative in general. Otherwise the ECR is reduced to a trivial 

relation, as was noticed before. Secondly, subgroups generated by x of the form 

(21) need not be normal subgroups of Mn( 0)". Therefore, ECR expressed as 

Eq. (20) is still possible even if Mn(D)x is a simple group. Now we recall that 

Mn( F)X corresponds to s(j) (o, ,8, y) in SU(2) case. Therefore, what we expect 

for ECR is the situation such that Mn(F) x is simply an irreducible representation 

over F of a given internal-symmetry group G. We already confirmed that this is 

actually realized for SU(2) and O(3); namely, such ECR exist explicitly, as shown 

in Eqs. (13) and (18). 

This requirement seems to be quite natural because the internal symmetry 

group is understood to be the result of internal transformations which can generally 

depend on time. The central problem in this section is: suppose one starts with 

a given field F. Construct a division algebra D. Then, is there any choice of 

the field F such that the automorphism group of D is isomorphic to the given 
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internal-symmetry group G? This is identical to the n = 1 case of problem (II), 
- 

* which was already solved by our assumption. In practice, we identify G with finite 

r. group < 3,3,2 > or < 4,3,2 >, which are finite subgroups of SU(2) of order 24 

and 48, respectively.rp2r1’ 

_ - 

Before considering examples, let us briefly summarize the answer to (II) in 

several cases. In the standard notation, l5 the invertible elements of M,,(D) con- 

- stitute a multiplicative group GL,(V) w ic is called a general linear group and h h 

is obviously identical to &(D)‘. As the central of &(D)’ is FX (multiplicative 

group of F), one can set up a homomorphism called the reduced norm: 

.- . . Nd : GL,(V) + FX . (22) 

- 

Now, the norm one group SL, (V) is defined to be the kernel of this map. One 

more important subgroup of G&(V), denoted by En(V), is generated by a class 

of particular elements of G&(V), .called transvections. It is a normal subgroup of 

G&(V). We do not need to enter into a detailed discussion of it. Suffice it to say 

that these groups satisfy: 

En C SL,(V) C GL,(V) . (23) 

Several salient features of these groups are*“: 

(a) If D is a finite field Fd, then all these groups are finite, and En(V) = SL,(V). 

(b) Assume n 2 2 and the center F of D is a local or global field. Then 

En(V) = SL,(V). Moreover, GLn(V)/En(V) is isomorphic to FX (lo- 

cal field case) or a known subgroup of FX (global field case). In particular, 

for the classical quaternion algebra over Q(R), GL, (V)/ E, (V) is isomorphic 
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.- - 
to Cl:@:), th e multiplicative group of positive numbers of Q(R). Therefore, 

all remaining structure lies in the group En(V) for these fields. 

(c) The quotient E,,(V) / {Center of En(V)} is a simple group in all but these 

two cases: n = 2 with D the finite field F2 or F’3. 

Among these properties, (c) is the most relevant to our purpose. As the center 

of En(V) is F in our case, En(V) * p is ractically identical to the group of automor- 

phisms Aut Mn(D). 

The case of finite fields should be excluded in order to obtain a non-trivial ECR 

because they are commutative. Then E,(V)/{Center En(V)} are all simple. Yet, 

.- these groups still admit many subgroups which are, however, not normal. This . . 
is not surprising. In fact, finite subgroups of SU(2) used previously1$2 are not 

normal either. One may thus expect to have many finite subgroups of E,(V) (and 

JM~(D)~). The detailed study of these subgroups is not undertaken here. Once 

ECR’s are explicitly found, then the complete formulations of resultant kinemat- 

ics as well as dynamics should be possible by using those fields described above. 

Namely, the dynamics is then based on a Weyl-type algebra consisting of the set 

(Mn(D)} in analogy with ordinary quantum mechanics. As it seems to require 

additional assumptions on Hamiltonians or quadratic forms, it must be left to sub- 

sequent work. We mention merely that a global field such as an algebraic function 

field contains a transcendental element t over finite field. This suggests to us a 

possibility for introducing a space-time variable through division algebras. In the 

final part of the next section, we will discuss another step which is necessary in 

formulating kinematics for states satisfying anticommutation relations. We also 

speculate that a highly unconventional approach to basic problems undertaken by 

Noyes18 can possibly be submerged into our theoretical environment, as far as a 
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field with non-zero characteristics can be chosen at our starting point. _- 
c 

-. l7. ISOSPIN SYMMETRIES AND TENSOR ALGEBRAS 

As we have seen in Section II, it is necessary to form a tensor algebra in order 

to get a whole Weyl-type algebra. In the notation used in the previous section, we 

now describe a general method to get a tensor product of two simple algebras over 

- the same base field, since this is required in any realistic formulation. Then we 

shall consider Case (B). A ccording to Wedderburn’s theorem of associated algebra, 

there is a unique division algebra D to each central simple algebra Mn(D). Indeed, 

this justifies the notation used here. ’ Two such algebras are similar to each other if 

_ - 

- 
. 

they are Mn(D) and Mm(D); namely, if they correspond to the same D. Therefore, 

central simple algebras are classified into several distinct similarity classes. These 

classes constitute a group under tensor product, and this group is called a Brauer 

group of field F. It is denoted by B(F). F or a local field F, it is isomorphic to 

Q/Z, where 2 is the ring of rational integers. ‘-13 This is an additive group modulo 

one consisting of all rational numbers. Or equivalently, each element of B(F) is 

uniquely specified by a root of 1 in C, i.e. by giving exp[2G(m/n)] with relatively 

prime integers m, n satisfying 0 5 m < n. It is called a Hasse invariant.g For all 

matrix-algebras considered in our previous work, ’ this invariant is trivial; namely, 

it is equal to 1 due to the fact that B(C) = 0 (identity). Also, a set of these 

invariants can uniquely characterize division algebras over global fields. They can 

be interpreted as new quantum numbers for our theory as long as these familiar 

fields can be employed as base fields. 

We notice that when one starts with a given field, tensor products of Mn(D) 

over F corresponding to all elements of the relevant Brauer group appear. This is 
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.- a completely solved problem for all fields which we discussed in Section III. These 
c 

observations apply to both Cases (A) and (B) of Section II. Keeping this in mind, 
-. 

_ - 

let us consider Case (B) for internal symmetry groups. If the isospin groups are 

special types of finite groups, as were considered previously,*v2 they are solvable 

groups4.e. constructed out of cyclic groups. Moreover, these cyclic groups are of 

order 2 or 3. This suggests to us that they are not very different from C, P, T 

transformations. 

In quantum mechanics, we know examples of involutions; namely, operations of 

taking complex conjugation, or hermitian conjugation, and so on. This operation 

.- . represents a certain type of (anti-) automorphism of underlying number systems 

or algebras. Indeed, C, P, T are closely connected to these (anti-) automorphisms 

(involutions, in case of order 2) of the number system. Therefore, a natural question 

arises: Can one represent finite isospin-symmetry groups as (anti-) automorphisms 

of underlying number fields? As it turns out, this is possible if we start with some 

base field F which is distinct from an algebraically closed field such as C. Namely, 

starting with F, one can consider its finite-dimensional Galois extension E such 

that Galois group 1~ G, where G is a solvable group, used as an internal symmetry 

group. Indeed, it has been known for a long time in the theory of elliptic curves 

that the finite isospin group such as < 3,3,2 > arises quite naturally in this way.” 

But we refrain from entering into this subject any further because the physical 

picture behind it has not been sufficiently clarified. 

As discussed in Section I, we do not need to consider any time-dependent 

kinematical structure of this group. The central problem here is: Why is there 

just such symmetry group as G and not others? A possible answer would be given 

by saying that G is the result of a sequence of split extensions of an elementary 
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-. cyclic group of order 2. This process has already been described elsewhere.’ It is 
c 

noteworthy here to point out that the extended field E over 1” is considered to be 

an n-dimensional vector space V over F, where n = card Gal(E/F), i.e. order of 

Galois group. It is then tempting to form a tensor algebra, which is defined to be: 

T(V)=F$V$(V~V)$(V~V~V)~ **- - (28) - 

If a suitable quadratic form Q(s), (zxV) is g iven, one can construct a Clifford 

algebra C(V, Q) = T(V)/KQ of 2n dimension, where IcQ is an ideal of T(V) 

generated by Q. In our case, n is always even (n = 24 for G =< 3, 3, 2 >). Then 
.- . . the Clifford algebra is decomposed into a tensor product of quaternion algebras in 

a unique way. 

- One may also think that this is the most natural way to introduce anticommu- 

tation relations in the framework described in Section III. It is possible to identify 

Q(X) with Hamiltonians of the system or some other conserved quantity. However, 

it seems difficult to tell more about the consequence of the assumption (B) at the 

present stage. This is simply because the present framework is not yet restrictive 

enough to allow physically meaningful predictions about masses, flavors, etc. In 

a subsequent work, we will try to work out the details of this formalism for both 

Cases (A) and (B). 
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V. CONCLUDING REMARKS _- 
L1 

_ - 

When one encounters new physical phenomena, the first thing to do is to try to 

understand those phenomena by using existing, well-established theories. If this 

turns out to be unsuccessful, then the next step is to extend or modify existing 

methods in order to cover new phenomena, taking care to retain the logical and 

physical structures of established theories as much as possible. 

We applied this policy to the basic problems related to internal symmetries. 

As is clear from our considerations, an important problem in this approach is to 

find out a base field F from physical conditions, over which one can construct 

.- division algebras for Case (A) or Galois extensions for Case (B) of Section II. . 
Although we attempted in a previous work’ to introduce “flavors” and considered 

also Gell-Mann-Okubo type mass-formulas for mesons, the framework used there 

is now to be superseded by the one presented here. The consideration of space- 

time dependence as well as a concrete formulation of dynamics will be reported in 

subsequent works. 
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