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.-. 

. A number of powerful computer programs have been developed which are ca- 

pable of computing- the resonant frequencies of closed lossless cavity resonators. 

.- 

In addition, field distributions, cavity impedance, and Q due to weak losses in 

walls and dielectrics are readily computed. Examples are MAFIAI, URMEL2, and 

SUPERFISH3. These programs have proved to be valuable tools for the design 

of cavities for accelerating structures and radio frequency power sources. These 

programs do not, however, have built in procedures for calculating the Q due to 

coupling to an external waveguide. There is currently a strong interest in cavities 
- 

.- which are heavily damped by external coupling. It is the purpose of this paper to 
_ - . 

develop procedures for calculating Qe.t and resonant frequency which are reliable 

even when the external coupling is very strong. 

It is clear from the work of Slater4 that the desired information can be obtained 
. 

by inserting a terminating short on the end of the waveguide and studying the 

behavior of the combined cavity, output structure, and waveguide as the distance 

of the terminating short from the end of the waveguide is varied. Gluckstern and 

Li5 have described a computer method of applying the Slater method. Goren and 

Yu6 have described an equivalent circuit a.pproach and a simple computer method. 

We describe an alternate method here similar in character to the Slater method, 

but in our opinion simpler to derive and better suited to computer application. 

1. BASIC THEORY 

We consider a cavity coupled to a single waveguide of uniform cross-section. 

The generalization to many outputs is straightforward. Although the connection 

between the cavity and waveguide may be fairly complex as, for example, in the 

accelerating structure recently proposed by Palmer7, we shall consider the cavity 

to end and the outp.ut, to begin at the point where the cross-section of the output 
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Yvaveguide becomes uniform. We refer to this point as the output origin’. Paralleling 

Slater we consider the waveguide to be shorted with a conducting plane at a distance 

from the output origin. One may think of the system as a cavity resonator and 

waveguide resonator coupled together through the output circuit. Typical examples 

of the dependance of the resonant frequencies of relevant modes on the shorting 

distance are shown in Figs. la and lb. Fig. la exhibits the behavior when the 

.- external coupling is quite small (Qect M 1600). The dashed lines correspond to 

the wave guide modes present with no coupling between the waveguide and the 

cavity. The frequencies are all-normalized to the frequency of the uncoupled cavity, 

so that the uncoupled cavity resonance is fixed at ordinate one. The solid curves, 

-. 

- 
.- which represent the frequency of the coupled system when a small iris is opened 

- _ 
between the cavity and waveguide, exhibit avoided crossing behavior near each 

point where the uncoupled waveguide and cavity mode curves would cross. Fig lb 

exhibits the evolution of this behavior when the coupling is increased (Qezt M 38). 

Our formulation will deal with frequency, w, as a function of +!I,, the phase change 

-. along the guide, given by 27rD/X, where As is the guide wavelength and D is the 

waveguide length. This behavior (for the Fig. lb case) is illustrated in Fig. 2. 

The $ - w curves corresponding to the various curves of Fig. la or lb differ from 

one another only by additive multiples of r. Thus only one such curve is shown in 

Fig. 2. Fig. 3 (again for the Fig. lb case) shows G E -( 1/2)(&!1/dw) plotted as 

a function of w. All of the 1+4 - w curves produce a single G curve. The G curve 

exhibits a typical resonance form, and we shall see that the peak of this curve occurs 

. at the resonant frequency of the cavity with the waveguide feeding into a matched 

load. When multiplied by the resonant frequency, the height of the curve, apart 
.-- 

from a small correction to be discussed later, is equal to Qezt. Since we shall be 

considering lossless cavities exclusively, there is no distinction between Qezt and Q, 

and we shall henceforth simply use Q. 

2 



_. - 
In order to specify what we mean by the resonant frequency and Q of our 

_-. 
. cavity, we consider the boundary value problem presented by the cavity with its 

waveguide output, which we now consider to be infinitely long. We assume perfect 

conductor boundary conditions on all of the walls. As one proceeds along the 

waveguide towards infinity the fields are required to approach those of the principal 

mode (assumed here to be the only one which can propagate without attenuation) 

propagating towards infinity (referred to henceforth as the outgoing wave boundary 

condition). The eigenmodes of such a system are complex, with positive imaginary 

part, corresponding to oscillations which are exponentially damped in time. Writing 

this eigenvalue as u +jv, we identify u with the resonant frequency of the waveguide 

._ loaded cavity and u/2w with the cavity Q. Many other definitions of these quantities _ _ . 

have appeared in the literature, based on the properties of such things as resonance 

curves, and stored and dissipated (or radiated) energy concepts. Many of these 

require additional specifications in order to totally avoid ambiguity. While these 

issues can usually be ignored for typical situations, they may become signifigant 

-- ‘in the case of very low Q’s. Our definition avoids such problems. Furthermore 

damping rate, which is equal to v for field amplitudes, is usually an item of central 

interest for heavily loaded cavities. We also avoid the need for the specification of a 

reference plane as the concept does not appear in our specification of the boundary 

value problem9 . 

While it would be most reliable and straightforward simply to computationally 

solve the eigenvalue problem defined above, programs having that capability have 

not to our knowledge been developed. We shall therefore proceed along the line 

suggested above and relate the $ - w curve of Fig. 2 to the resonance parameters 
-- - 

u and V. 

The z dependence of the transverse electric field between the waveguide origin 

and the shorting plane is of the forrn 
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,&kr + ne-jkz 

where k = 27r/A,, 3 is distance along the waveguide axis, and R is the reflection 

coefficient referred to the waveguide origin plane. Since it must vanish at z = D, 

the shorting plate position, it must also be proportional to 

2jsin(kz - $I - nr) = (ejkr _ ,2i+,-jkz),--jti 

Comparing the two forms we see that R = -ezp(2j$). We now observe that because ,.-e 

the eigen frequency corresponds to a situation in which there is an outgoing wave but 

- * no incoming wave, the reflection coefficient must have a pole there. This, combined 
.- _ _ _ 

with the fact that R must have absolute value one for real values of w, means that 

it may be written 

qw) = -w,- u + jve--2jx(w) = -,zj$ 
w-u-jv 

(1.1) -- 

where x(w) is a real function, analytic at w = u + jv. It represents non resonant 

effects, effects of distant resonances, and effects associated with the mode structure 

of the wave guide. We next take the logarithm of both sides of Eq. (1.1) to obtain 

t/~(w) = tun-‘( --&I- x(4 + n7r (1.2) 

We shall assume that x(w) can be adequately represented for real values of its 

argument in the vicinity of the resonance by the first two terms of its power series 

expansion about u. Thus we write 

Equation (1.3) is the basic approximation upon which our method is based. While, 

x(w) can be approximately removed by application of the detuned short procedure4, 
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*?,ve find it to be more convenient for computer application to determine it by fitting 

.-- to the computed 1c, -w relation”. 

Differentiating Eq. (1.2) and applying Eq. (1.3) we find 
. 

ldlC,l v ---= - 
2dw ~(w-u)~+v~ + ;xf(u). (1.4) - 

It is apparent that Eq. (1.4) exhibits a typical resonant form with peak at 

w = u, and when multiplied by u, with peak value Q + $ux/(u). The second term 

represents the correction that we mentioned earlier. It tends to be of order one ,-a- 

while Q is moderately large to quite large compared to one. 

We note that Eq. (1.2) is unchanged when a reference plane other than the 
- 

.- - _ origin is selected. It is clear from the definition of the reflection coefficient that a 

shift in the reference plane a distance d towards the incoming wave multiplies the 

ex_pression for R by a factor ezp( -2j kd), which is equivalent to changing x(w) to 

x(w) + kd. On tl ie other hand, the definition of II, changes from kD to k(D - d) so 

that the relation expressed by Eq. (1.2) is unaffected. The choice of reference plane 

- 

: 

can make a difference, however, when the approximation (1.3) is made. Because 

the dependence of k on frequency is not linear in a waveguide, a large value of z 

could introduce a large error in (1.3). Wh 1 i e we have no real reason to claim that 
. 

z - 0 is the best choice, our experience to be discussed later shows that it is a - 

satisfactory choice. The detuned short method attempts to choose the position of 

the reference plane in such a way (frequency dependent) that x(w) is eliminated all 

together. As mentioned previously, we consider the implementation of the detuned 

short method to be less convenient computationally than the procedure which we 

are proposing”. 

The choice of representation of R(w) by Eq. (1.1) is not unique. There may 

be situations in which it is useful, for instance, to exhibit two resonances. The 

resonances may be too close to the frequency of interest to make the approximate 
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‘--Eq. 1.3 adequate in itself. Taking account of the fact that n(w) has a pole in the 

..- complex plane at both resonances we replace Eq. (1.1) with 

W---I +jvl 
R(w)-= -w - u1 _ jv, 

w - u2 + jv2 e-2jx(w) = -e2j+ 
w - u2 - jv2 (1.5) 

Correspondingly Eq. (1.2) becomes 

g(w) = tan-y $+--) + tan-‘( &) - x(w) + nr W) 
,-- 

X(w) is now analytic at both poles and a linear approximation analogous to 

- 
Eq. ( 1.3) would normally be employed. 

.- 2. IMPLEMENTATION FORMULAS - _ 
. 

The expression (1.2) together with the approximation (1.3) provides a four 

p_arameter representation of the exact relation between $J and w. We shall refer 

to this representation as the four parameter formula. A set of computations with 

different values of D provides a number of $-w pairs. It is convenient to think of 

these pairs as data and to think of the determination of u and Q as arising from a 

four parameter fit to the data. Model calculations carried out in the next section 

will provide strong evidence that the four para.meter formula provides an excellent 

representation of the exact relation. It will further be seen that for Q values in 

excess of 20 a three parameter representation obtained by setting x/(u) equal to 

zero is also excellent. Thus explicit formulas which determine u and Q from just 

three or four points are of interest. 

We shall now show that for arbitrary choice of x/(u), it is possible to obtain 

--- --explicit expressions for u, v, and X(U) such that the four parameter formula passes 

- 

through any three points in the $-w plane. Let us designate the three points by 

($i, wi) where i = 1, 2, or 3. Then from Eq. (1.2) and (1.3) we have 
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-. v+!J; + x(u) + x/(u)(wi - u) = tan-‘(z). 
w; - u (24 

._. 
Taking the difference of the above for i=l and i=2 yields 

44 - ti2 + Xf(U)(Wl - W2) = tan-i(L) - tan-1( ’ 
Wl - u 

). 
w2 - u 

(2.2) . 

. 
.- Next take the tangent of both sides, use a standard trigonometric identity, and 

- rearrange slightly to get 

- Now take the reciprocal and multiply by (or - ~2) to obtain .- _ - . 

-(WI - W2)COt[~~ - $2 + Xl(U)(Wl - w2)] = -v - cwl - u;w2 - 4 s B12. (24 

Here we identify B 12 with the left hand side of (2.4) and note that it is com- 

pletely determined by a pair of the originally designated points and the assumed 

value of x/(u). Defining B23 analogously we define 

AZ B12 - B23 

W3 - Wl 
P-5) 

‘a quantity determined by the three designated points and x/(u), and find, following 

simple algebra, that 

cw2 - u> = A 
V P-6) 

--- --Eq. (2.6) can be combined with (2.4) to eliminate v and obtain 

W2 + ABl:! + WI A2 
u= 

1+A2 ’ P-7) 
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-. - 
Now that u has been determined, v and X(U) can be determined successively 

.-. 

.., 
using, from (2.4) and (2.6) 

v = (u - wl)A - B12, (24 

and from (2.1) 

.- 
x(u) = tan-1 w9 

,-t 
Any of the three points can be used in (2.9). Indeed, despite the unsymmetric 

- appearance of the formulas, the results obtained for the parameters are independent 

of the designation of the points as 1,2,3. Eqs. (2.7), (2.8), and (2.9) show that 

the three parameters are (apart from the trivial n7r ambiguity in x(u)) uniquely 

determined by the three points and xl(u). Thus if three points are computed from - 

. three values of D and x/(u) is set equal to zero, one gets a three parameter fit of the 

-. 
resonance curve which passes through the three points and provides a value for u 

and Q. 

If a fourth point is provided by a fourth value of D, one can normally choose 

x/(u) so that the parameterised representation passes through all four points. While 

neither a solution nor uniqueness is any longer guaranteed, in practice a solution 

will always be found. If there is more than one solution, it may be necessary to 

compute additional data points to determine which of the solutions best fits the 

additional points. Furthermore solutions which give negative values for u or v must 

be rejected. 

In order to determine x/(u), we use Eq. (2.1) with i=4, rearranged as follows. 

w4 - u - “COeb4 + x(u) + xf(u)(w4 - u)] = 0 (2.10) 
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- 
Since u, v, and x(u) have all been determined by assuming a value for x/(u), the 

left hand side of Eq. (2.10) can be regarded as a function of x/(u), and x/(u) is 

determined as a root of (2.10). Th e root or roots may be located approximately 

by computing (2.10) over a suitable range of values, and a simple numerical root 

finding procedure can be used to locate an accurate value of X/(U). 

In order to increase confidence in the results, one may wish to compute data 

points for additional values of D. One may then investigate the stability of the 

parameters with respect to the particular set of points chosen. Alternatively one 

may do a least squa,res fit to all of the computed points. We have carried out 

such fits based upon the left hand side of Eq. (2.10). The expression (with 4 

.- - . replaced by i) is squared and summed over all the points. The resultant expression 

is then minimized with respect to the parameters. A numerical search procedure 

is required. The least squares fit method works even when the number of points 

equals the number of parameters, and thus could be used instead of the more 

straightforward method described above. 

3. APPLICATION TO AN ANALYTICAL WAVEGUIDE MODEL 

In order to assess the reliability of the approach described in 1 and 2, we 

have studied a resonator formed by placing a zero thickness conducting iris across 

a shorted waveguide. The wave guide is taken to be of standard rectangular form 

propagating in the standard TErs mode. The iris opening is centered with respect to 

the waveguide width with edges parallel to the electric field, a configuration referred 

to as a symmetric an inductive iris. The entire structure is illustrated in Fig. 4. 
. 

Both the cavity and its output structure are intended to be electromagnetically 

similar to a Klystron cavity. With this in mind, we have chosen the cavity length 

and width to be equal. The coupling of the cavity to the wave guide output can be 

varied by varying the width of the opening in the iris window. Below the cutoff of 

the higher waveguide modes, the configuration shown in Fig. 4 can be rigorously 
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“presented by the equivalent circuit shown in Fig. 5. The open waveguide with 

_-. the outgoing wave boundary condition is represented in Fig. 5a, and the waveguide . 

with variable short at distance D from the iris is shown in Fig. 5b. The parallel 

lines represent transmission lines with propagation constant k satisfying 

k2 = (;)’ - (T/U)“. 

_ While exact formulas for the shunt susceptance B are not known, highly accurate 

expressions may be found in the Waveguide Handbook by Marcuvitz”. For our pur- 

poses, however, it will be sufficient to use the simpler, but less accurate expression12 

,.-f 

- (normalized to the characteristic admittance of the waveguide) 

B = -( g)cot2( 2). (3.1) 

The object of our model is to compare the results of our implementation pro- 

cedure applied to the Fig. 5b configuration with the coupled resonance parameters 

associated with the loaded cavity configuration in Fig. 5a. In addition we are inter- 

ested in comparing our parameterised $-w relation with the relation obtained from 

the equivalent circuit of Fig.5b. These objectives can be accomplished if the “data” 

used in the implementation formulas are obtained from the equivalent circuit using 

Eq. (3.1) and if (3.1) is used in both Fig. 5a and 5b. The other important point 

is that the analytic properties of our relations with the approximate (3.1) are quite 

similar to those with the more accurate expression that could be used and hence 

quite realistic. The equivalent circuits of Fig. 5 imply 

27r rd 
cotku + -cot2 

ku 
z+j=O (3.2) 

for the externally loaded cavity, and 
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271. 
cotku + -cot2 2a 

ku 
nd + cot(kD) = 0 

. . 
for the cavity with output shorted at distance D. To simplify our expressions 

and avoid reference to arbitrary dimensions, we work with frequency and wave 

number normalized to values associated with the closed waveguide cavity, us and 

ko respectively. Thus we define z = ku/r and note that 

x2 = 2( $2 - 1. 

With this change in notation we have the following three working relations 

and 

2 
colhx + -cot2 

2 
g+j=O, 

2 
cot7rx + -cot2 

X 
g + cot(ax$) = 0, 

2 
cotlrx + -cot2 

rd 
X 

2a + cotll, = 0, 

(3.2’) 

(3.3’) 

(3.4) 
with 

2 = [2(w/u,)2 - 115 (3.5) 

Eq. (3.2’) is to be regarded as a function of w/u,. Its complex roots in this 

variable can be determined by a simple numerical procedure to as high an accuracy 

as desired. Hence it is used to determine the exact values of u/u,, v/u,, and hence 

Q. A simple one dimensional root finding procedure applied to (3.3’) can be used 

to determine the (u/uO) - D relation for various modes. Fig. 1 was in fact obtained 
.-- - 

in this way. Eq (3.4) can be explicitly solved for $ in terms of w/u, and used to 

provide $J - (w/uO) pairs for use in the formulas of fj 2. Figs. 2 and 3 were obtained 

from Eq. (3.4) and its derivative with respect to w/u,. 
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-. - 
The results obtained in the comparison between the exact values of the reso- 

_- nance parameters and those obtained from the three and four parameter formulas 

. are shown in Table I. By and large the frequencies used for determining the 1c( - w 

data points were first guesses and are listed in the last column of the table. While 

the four parameter formula gives more accurate results in every case, the agreement 

with the exact results is seen to be generally excellent for both. We have investi- 

gated the stability of the results with respect to the choice of frequencies and found 

that to be excellent as well. For example, in the case d/u = 0.5 selection of frequen- 

ties from the range 0.91 to 0,97 led to no variation whatever (to the accuracy of 

Table I) in u or Q for the 4 parameter formula. In the case of the three parameter 

. 

-.-C 

._ formula Q values varied over the range 22.9 to 24.9. Included in the comparison 
_ _ 

were cases in which the points used were all on one side of the resonance. Another 

example is provided by the d/u = 0.65 case. Here with points selected in the fre- 

quency range 0.83 to 0.97 the Q variation was 7.94 to 8.00 in the 4 parameter case 

and 7.76 to 9.37 in the 3 parameter case. All cases were examined in a comparable 

way, and from the results obtained we conclude that the excellent agreement shown 

in Table I was not due to an accidentally propitious choice of frequencies for the 

-- 

determination of the data points. 

Encouraged by the excellent results noted above, we have investigated the 

possibility of determining the resona.nce parameters by using only two waveguide 

lengths. Four useful data points can be obtained by choosing a pair of D values near 

a region of avoided crossing and using the frequency values associated with each of 

the two branches exhibiting the avoided crossing behavior. For example, referring 

to Fig. lb, the lower pair of curves at normalized length R = 1.0 and 1.1 might 
.-- - 

be used. The avoided crossing near R = 2.0 could be used instead. Because the 

data points are constrained to be further from the resonance pole in the complex 

plane than was typical of the examples of Table I, somewhat less accuracy would 

12 



I 

b, expected. However the stability of the results reported above suggests that the 

loss of accuracy may be quite small. This procedure has potential advantages for 

computer applications to real models, because a number of computer programs (e.g. 

URMEL and MAFIA) would yield both modes in the same run. Thus one could 

in principle determine the resonance parameters from only two runs provided that 

the lengths were chosen wisely. There is also a possibility that computer accuracy 

problems may be reduced with this procedure. The results of applying the method 

to the waveguide model are shown in Table II. We refer to the various curves of 

Fig. 1 as branches and number them 1,2,... in order of increasing frequency. It 

appears from Table II that the lowest two branches are satisfactory for the higher 
- 

.- __ .Q cases, but that it is better to use branch 2 and 3 for the lower Q cases. Overall, 

the quality of the results is quite comparable to those shown in Table I. 

,.-lt 

In order to investigate the accuracy with which the G-w relation given by Eqs. 

(3.4) and (3.5) ’ is modeled by its four parameter representation, we have computed 

the difference between $ as determined by Eqs. (1.2) and (1.3) using the parameters 

associated with the fits exhibited in Table I and the 1c, determined by Eqs. (3.4) 

and (3.5) as w/u, is varied from .71 to 1.15. The lower limit of the frequency range 

was determined by the proximity of the waveguide cutoff. The choice of upper limit 

was arbitrary. The fit was of course best in the vicinity of resonance and was of 

order 10S5 rad or better. Table III lists the range in line widths over which the 

deviation was less than 0.01 rad (and 0.1 rad for the very low Q cases). The overall 

quality of the fit is consistent with the insensitivity of the parameters to the choice 

of fit points. 

4. APPLICATION TO A DAMPED ACCELERATOR CAVITY MODEL 

As discussed in the introduction, the method described in this paper was devel- 

oped for use in conjunction with computer codes designed to determine the resonant 
* 

frequencies of closed cavities. As a first exa.mple of its use in this manner we selected 

13 



_.  ‘- 

- 5  cavity d e s i g n e d  by  R o b e r t P a lmer r  as  a  stu d y  m o d e l fo r  a n  acce lera tor  cavity 

wi th heav i ly  d a m p e d  t ransverse m o d e s . T h e  cavity h a d  b e e n  bui l t  a n d  stu d i e d  ex-  

p e r i m e n tally. B u t wi th th e  e x p e r i m e n ta l  m e th o d s  e m p loyed  it was  n o t poss ib le  to  

m e a s u r e  th e  Q  u n a m b i g u o u s l y . A lth o u g h  th e r e  was  c o n fus ion  d u e  to  ove r l ap  o f th e  

very  b r o a d  r e s o n a n c e  with a  n a r r o w  r e s o n a n c e , it was  conc luded  th a t th e  Q  o f th e  -  

. pr inc ipa l  d e flec t ing m o d e  was  p robab l y  b e tween  1 0  a n d  2 0 . 

A  s c h e m a tic d r a w i n g  o f th e  c o n fig u r a tio n  stu d i e d  is s h o w n  in  Fig. 6 . T h e  con -  

fig u r a tio n  s h o w n  h e r e  dif fers f rom th a t desc r i bed  in  r e f. 1 3  in  th a t th e  rec tangu la r  

w a v e g u i d e  u s e d  fo r  th e  o u tp u ts is r ep laced  by  d o u b l e  r i dge  w a v e g u i d e . Th is  c h a n g e  

was  i nco rpo ra ted  b e c a u s e  in  o r d e r  to  d a m p  t ransverse m o d e s  o f b o th  polar izat ions,  

fo u r  o u tp u ts r a th e r  th a n  two w o u l d  b e  r e q u i r e d  in  a n  actua l  acce lera tor  structure. 

T h e  r e q u i r e m e n t o f fo u r  o u tp u ts lim its th e  g e o m e trically pe rm issab le  width,  a n d  

th e  r idges  a r e  necessary  to  a l low a  cutoff f requency  suff iciently l ow to  d a m p  th e  

u n w a n te d  m o d e s 1 4 . Fo r  th e  M A F IA  c o m p u ta tio n  r e p o r te d  h e r e  th e  d a m p e d  po la r -  

isat ion was  assu red  fo r  th e  d a n g e r o u s  t ransverse m o d e s  by  impos ing  a  N e u m a n n  

b o u n d a r y  cond i t ion  o n  th e  x, z p l a n e  a t y =  0  a n d  restr ict ing th e  c o m p u ta tio n  to  

th e  r e g i o n  y >  0 . 

B e c a u s e  th e  ful l  cavity st ructure h a s  th r e e  s y m m e try p l anes , it is poss ib le  to  

r igorous ly  classify th e  m o d e s  with respect  to  the i r  behav io r  o n  r e flec t ion in  th e  

*sym m e try p l anes . W e  shal l  u s e  th e  d e s i g n a tio n  D D , D N , e tc. to  charac ter ize  th e  

m o d e s . T h e  first letter r e fe rs  to  r e flec t ion in  th e  “b e a m ” (i.e. z) d i rec t ion a n d  

th e  s e c o n d  to  r e flec t ion in  th e  b e a m - w a v e g u i d e  p l a n e  (i.e. th e  x d i rect ion) .  D  

( for  Dir ichlet)  m e a n s  th a t th e  in  p l a n e  electr ic fie l d  is o d d  u n d e r  r e flec t ion a n d  th e  

n o r m a l  electr ic fie l d  c o m p o n e n t e v e n . T h e  behav io r  is reve rsed  fo r  N  ( for  N e u m a n n ) , 
.-- -  

a n d  th e  behav io r  o f th e  m a g n e tic fie l d  is oppos i te  to  th a t o f th e  electr ic fie ld.  W e  

n o te  th a t a  sim i lar  s y m m e try character izat ion a .pp l ies  to  th e  w a v e g u i d e  m o d e s , a ,n d  

a  cavity m o d e  coup les  on ly  to  w a v e g u i d e  m o d e s  wh ich  s h a r e  its s y m m e try. M o d e s  
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of a particular symmetry character can be isolated by imposing a Neumann (N) 

_-. or Dirichlet (D) b oundary condition on each symmetry plane and restricting the 

. . computation to the region in which all three coordinates are positive. For programs 

such as MAFIA, which produce many modes from a single run, this procedure is 

not necessarily helpful, and it was not employed for our MAFIA calculations. It 

was, however, employed for the SUPERFISH calculations of the ridge waveguide 

modes. 

A total of seven MAFIA runs were carried out at seven different waveguide 

lengths using a mesh of more than 44000 points to represent the half of the structure 

with y > 0. Care was taken to ensure that previously fixed lattice structure not 

,-f- 

- 
.- change as the waveguide length increased. Additional lattice points were simply _~ _ _ 

added. Each run produces the lowest ten modes, but we shall confine our discussion 

here to the lowest seven. Three of the modes showed no frequency variation in the 

first six digits as the waveguide length was varied. We list them below. 

SYMMETRY FREQUENCY(MHz) CUTOFF(MHz) 

DN 15928.4 26226 

NN 17274.4 26257 

DD 24466.1 76231 

The column labeled “cutoff’ refers to the lowest cutoff frequency of the ridge waveg- 

uide for each symmetry type. All turn out to be TE modes. Cutoff frequencies for 

the waveguide modes were determined by SUPERFISH computations using a 3300 

point lattice filling one fourth of the ridge waveguide cross section. Symmetry con- 

ditions were imposed by boundary conditions as discussed previously. Because the 

frequencies of these modes are well below the cutoff of the waveguide mode to which 

they couple, the waveguide provides no damping for them. 

The symmetry character and other properties of the modes were verified with 

field plots. The DN mode is the accelerator mode with 0 phase advance, the NN 
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<ode the accelerator mode with 7r phase advance, and the DD mode is the dipole 

mode with 0 phase advance. The structure was designed with a 17 GHz accelerator 

in mind so that the position of the accelerator modes is approximately correct. We 

note that all 0 phase advance modes have D symmetry with respect to reflection in 

the beam direction and hence are decoupled from the principal mode of the ridge 

waveguide (ND symmetry). The dipole modes are the principal modes that one 

wishes to damp, but the frequency of the mode at 0 phase advance is such that the 
. 
mode is out of synchronism with a highly relativistic beam15. The fact that these 

modes are independent of the waveguide length over the range studied shows that 

the relevant part of the lattice structure indeed does remain fixed as the length is 

varied. It also shows that the exponential tails of the cutoff waveguide modes are 

sufficiently attenuated at the lengths studied to make their effects negligeable at 

the terminating conducting plane. 

The remaining four modes all have ND symmetry. For this symmetry the low- 

est waveguide cutoff frequency is 12300 MHz 16. The next lowest cutoff frequency 

is at 65486 MHz. Both are TE modes. Since the highest frequency that occurs 

among our seven modes is around 30000 MHz we conclude on the basis of the 

observations made above that all cutoff waveguide modes can be ignored in our 

analysis. The MAFIA computed frequencies of the ND modes for the sequence 

of cavity lengths are listed in Tables IV and V. The theoretical values listed along 

side some of the frequencies are obtained from the formulas developed in this pa- 

per. The fit points used to determine the parameters are identified in the tables 

by being centered between the columns of computed and theoretical values. The 

four modes listed correspond to just two cavity modes. Resonant frequencies and 

Q values associated with the cavity modes and computed from four fit points as 

described in 92 are also listed in the tables. Fig. 7 presents a plot of the theoretical 

curves and the MAFIA computed points. We discuss the modes and the fits below. 
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-. 
- The lowest frequency mode (Table IV) is a mode whose existence depends 

.-. upon the slot in the accelerating iris. Its field configuration is very similar in form 

to that of the principal mode of the ridge waveguide. The slot appears as a con- 

tinuation of the gap between the waveguide ridges, and the bulk of the cavity can 

be thought of as an enlargement of the inductive region of the ridge waveguide 

structure. These modes have come to be referred to as slot modes. They were not 

observed in Palmer’s measurements with this mode17. We discovered their existence 

and potential significance as a result of these computations. Similar modes have 
,.-f 

been observed in the structure reported in ref. 14. The resonance parameters were 

determined by means of the four parameter fit described in fj2, using the four fit - 
.- _ _ _ points indicated. The theoretical values were obtained by numerically solving Eq. 

(1.2), using the Eq.(1.3) approximation and the parameters determined by the fit 

points. As one might expect from the geometry of the configuration, and the nature 

-. 

of the mode, the Q is very low (7.62) so that the mode is heavily damped as desired. 

We note from Table IV that the fit is essentially perfect for this mode.17 
. 

It was clear from observation of the field pattern that the principal excitation 

of the second mode listed in Table IV was in the waveguide rat her than the cavity. 

Furthermore attempts to find a four parameter resonance fit resulted in a negative 

Q. The fit shown in the table was obtained by using the two resonance formula, 

Eq. (1.6). The resonance parameters ur, zlr were taken from the four parameter fit 

to the slot mode, and 2~2, 2)2 were taken from the fit to the mode to be discussed 

in the next paragraph. A linear approximation was used for x(w) with parameters 

chosen so as to cause the solution of Eq. (1.6) to pass through the two indicated fit 

points. It is interesting to note that the resultant two resonance formula provides 

a quite respectable fit to all 28 points listed in Tables IV and V. The deviation is 

less than 0.15% for the first mode, less than 0.44% for the third mode (Table V), 
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:ad ranges from 0.4% to 2.6% for the fourth mode (Table V). As discussed below, 

_-. 

..I 

the four parameter fit to the fourth mode is not particularly good either. 

The third and fourth modes, listed in Table V, are two branches of the same 

cavity mode. It corresponds to the usual principal deflecting mode in accelerator 

cavities and was the mode of principal interest in this investigation. It is the 7r 

mode counterpart of the fixed frequency DD mode at 24466.1 MHz. The choice of 

waveguide lengths was intended to optimize the determination of its properties. We 

recall that the existence of several branches for a single cavity mode was discussed 

in $1 and in $3 and illustrated in Fig. 1. Accordingly, only a single set of resonance 

parameters is reported. The theoretical fit to the computed points is again essen- 
- * 

.- tially perfect on the lower branch, and parameter variation with choice of fit points 
- . 

on the lower branch is quite negligible. 

The fact that our choice of lengths produced two branches for the same reso- 

nance enabled us to examine a number of consistency issues. First we note that the 

lower branch parameters produce a less than perfect set of theoretical values for the 

-. upper branch frequencies. Accordingly we computed a set of upper branch param- 

eters based upon the last four points listed for mode 4. We found 24338.0 MHz 

for the resonant frequency and 8.32 for Q. This is to be compared with 24364.2 

MHz and 8.70 from Table V. Using the four parameters from these fit points we 

determined theoretical values for the remaining three mode 4 points. While the 

agreement was improved, it still did not compare with the match obtained for the 

other three modes, and the theoretical value for the highest frequency was 128 MHz 

high. We also computed a set of parameters from cross branch pairs of fit points, 

using the .918 cm and 1.118 cm waveguide lengths. Here the results were 24393.0 . 

k?Hz for the resonant frequency and 8.91 for Q. We regard these discrepancies as 

of methodological significance and will therefor discuss them further below. We do 

not consider them to be of much practical significance, however, and hence consider 
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Brem to support the overall reliability of the methodology that we are proposing. In 

particular we note that the cross branch method; which requires only two MAFIA 

. runs, gives an adequate determination of cavity properties. 

There is no reason in principle why one should not be able to use different 

waveguide lengths for cross branch determinations, for example waveguide lengths 

.- 
(cm) of 1.318, 1.218 from mode 4 and .918, .818 from mode 3. However, attempts 

to determine parameters with this point selection failed at first. The success of 

this kind of cross branch fit depends upon MAFIA accurately computing the guide 

wavelength, which in turn corresponds to an accurate determination of the waveg- 

uide cutoff frequency. This issue having been raised, we investigated the sensitivity ~- 
. . - _ of our parameters to the value specified for the cutoff. We were pleased to find 

that for a mode 3 determination, a 1% decrease in the cutoff caused only a .048% 

,.-f’ 

increase in Q and a .0034% decrease in resonant frequency. (As noted in footnote - 

16 we consider our cutoff determination to be within 1% of the correct value.) One 

can in fact determine a MAFIA computed value of the guide wavelength from the 

computed points and the four parameter fit to the lower branch. We explain the 

procedure by means of an example. First note that at a waveguide length of 1.318 

- ’ cm the mode 4 frequency is 24582.7 MHz. The four parameter fit of the lower 

branch can be used to determine a waveguide length which produces the identical 

frequency for mode 3. The two lengths should then differ by one half a guide wave- 

length. One can then check to see if the cutoff determined by this procedure agrees 

with the one used in the four parameter fit. Adjusting until this is the case we find 

that the required length for mode 3 is .69196 cm, and the self consistent cutoff is 
.-. 

11620.8 MHz. With this modified value of the cutoff and using the same set of fit 

points as used previously (including the set mentioned in the opening sentence of 

this paragraph), we -obtain the following values: 
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_. -. 
FREQUENCY(MHz) Q 

_-. 
Lower Branch (Mode 3) 24357.8 8.72 

. . 
Upper Branch (Mode 4) 24352.9 8.47 

Cross Branch (Two lengths) 24373.1 8.54 

Cross Branch (Four lengths) 24352.4 8.51 

We see that the four length cross branch fit now produces consistent results, and 

.- that the change in the lower branch determined parameters due to the cutoff change 
- 

is minimal. The overall mode 3 fit with mode 3 determined parameters is somewhat 

degraded as compared to Table V. Because we believe 12300 MHz to be a more 

accurate value for the cutoff, we used it for the computations Table V.18 The mode 
- 

.- 4 overall fit is improved using mode 3 parameters and even more so using mode 4 
_~ - . 

‘parameters. The highest frequency mode at the D equals .668 cm., however, is still 

93 MHz high in the best case. 
- 

Because it has some bearing on the comparatively large discrepancy for the 

highest mode 4 frequencies, we briefly comment on the remaining three highest 

-- frequency modes produced in the MAFIA runs, Recalling that we have so far 

confined our attention to the lowest seven modes, we refer to them as modes 8, 

9, and 10 in order of increasing frequency. There is a marked degradation in the 

MAFIA accuracy parameters lg for these modes and also to a lesser extent for the 

highest frequency modes listed in Table V, so that parameters determined are quite 

tentative. The 8’th mode is DN with resonant frequency 28400 MHz and Q 3.8. 

The 10’th mode is NN with resonant frequency 31900 and Q 76. Note that modes of 

these symmetries now exhibit external loading because the resonant frequencies are 

now above the waveguide cutoff of corresponding symmetry. The 9’th mode is a clear 
.-. - 

ND doublet. We have not attempted a two resonance analysis both because of the 

low accuracy and because of a somewhat inadequate number of points. However the 

resonant frequencies a,ppear to be at 30800 MHz and 31900 MHz. ND resonances 
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at these frequencies would be expected to depress the highest frequency modes in 

.-. Table V and their presence is almost certainly the primary reason for the observed 

remaining discrepancies. 

We concluded from the above analysis that the configuration studied above 

satisfactorily damps the lowest two deflecting modes. The Q of the accelerating 

. mode remains high despite the fact that its resonant frequency is well above the 

cutoff of the principal waveguide mode. The decoupling of the accelerating mode 

depends upon the symmetry mismatch between it and the principal waveguide 

mode. In a fabricated cavity some departure from symmetry is inevitable, leading 

to leakage of the accelerating mode through the waveguide. We estimate that the 

.- coupling of the accelerating mode should be reduced from that of the deflecting mode 
- _ 

by roughly the square of the departure from symmetry. Thus a readily achievable 

2 ?40 limit on departure from symmetry should lead to a Q in excess of 20000. One 

could of course raise the cutoff frequency to a value above the accelerating mode 

frequency. This is most easily accomplished by increasing the gap between the ridges 

in the wave guide. Such a procedure increases the Q of the dipole mode to 13.9 (as 

determined by an analysis of the sort carried out in this section), a value which is still 

considered to be satisfactorily low. A more serious concern is that it leaves the slot 

mode undamped. It is possible, however, that the transverse impedance of this mode 

is sufficiently low that it may not need to be damped. We are currently applying 

our method to other designs of damped accelerator cavities including circumferential 

slot designs7 as they may have have fabricational advantages. 

5. CONCLUDING REMARKS 

As indicated in the preceding section, the methods developed in this pa.per are 

currently being applied to a variety of design problems. Much of this is being carried 

out without direct confrontation with experiment. We have been relying principally 

upon internal consistency as evidence for the reliability of the results. It should be 
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mentioned that not all of our applications have presented as consistent a picture 

.-. as that reported here, but the results have always been useful and informative. 

The limited confrontation with experiment has been encouraging, but has not been 

carried out far enough to be definitive. It should also be noted that, for very low Q, 

standard methods of measurement may be unreliable. For example, the lower the 

Q the more difficult it is to detune the cavity sufficiently to implement the detuned 

short methodlo. 

We believe that the waveguide model adequately demonstrates the theoretical 

reliability of the method when the approach of the resonant frequency to the wave 

guide cutoff is not excessively close and when the resonances are well enough sepa- 
.- - . rated. For the waveguide model the ratio of the lowest resonant frequency (coupled) 

to the cutoff is 1.228, and the ratio of the frequency of the resonance studied to 

the next higher resonance is about .63. Modifications of the model to broaden the 
. 

range studied are planned for the future. Situations requiring a two resonance anal- 

ysis are likely to become important in the study of higher modes, and an extended 

waveguide model should be helpful in developing it. 

For situations which we consider to be theoretically validated by the wave 

guide model, problems with computer implementation may still arise. We do not 

yet have a systematic understanding of the level of computer accuracy required to 

obtain consistent results. The work reported in $4 shows that the required level is 

achievable, but unanticipated problems have arisen in other situations. Computer 

modeling of cavity geometry is generally not exact. For example curved surfaces 

are typically replaced by polyhedra. While this has not been a significant problem 

for the study of mode spectra and structure, imprecise modeling of the output 

structure can have a significant effect upon Q. This is because external coupling is 

quite sensitive to the details of the output design. 

. 
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_. -- - 
Methods following the general approach described in this paper are still under 

. . 
development. Our aim is to develop and validate it to the point that it can be 

routinely and reliably applied with a minimum expenditure of computer and analysis 

time. As we have shown in this paper, our method is a useful tool even in its present 

stage. 

. 
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FOOTNOTES 

1. T. Weiland et al. DESY Report M-86-07, June 1986. 

2. T. Weiland, Nuclear Instruments and Methods 216, 329 (1983). 

3. EC. Halbach and R. F. Holsinger, Particle Accelerators 7, 213 (1976). 

4. J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950) (Bell 

Telephone Laboratory Series) Ch. 5 $1. 

5. R. L. Gluckstern and R. Li, Proceedings of the 1988 LINAC Conference, CE- 

BAF report 89-001, (1989) pp. 356-358. Also T. Kageyama, KEK-Report 89-4 

(1989). Both of tl iese papers determine the location of the detuned short by an - 
.- _ _ extrapolation procedure, which yields a frequency independent position. For 

low values of Qezt, the frequency dependence of its location over the resonance 

- width can have a substantial effect. (see reference 10) 

6. Y. Goren and David Y. L. Yu, SLAC/AP-73 (1989). 

7. R. B. Palmer, Proceedings of the Summer study on High Energy Physics in the 
. 

1990’s, Snowmass, Colo., Edt. S. Jenson (World Scientific, Singapore, 1989), 

pp. 638-641. 

8. The choice of the output origin as a reference plane is really arbitrary but 

desireable for most effective application of the method to be described. One of 

the features of our method is its avoidance of the concept of “detuned short” 

as a means of determining the reference plane. 

9. The resonant frequency defined by Slater’s method is related to ours by 

.-- - w2 = u2(1 + 1/4Q2) 

His Q is w/2v rather than u/2v. The relation is identical to that which pertains 

to an L. C. R: series resonant circuit when one compares the conventional 
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definitions with those which one would obtain from the damped oscillation 

.- solution. 
. 

10. We plan to discuss the relation between the two methods and compare their 

accuracy in a future publication. 

11. N. Marcuvitz. Waveguide Handbook, MIT Radiation Laboratory Series V-10, ’ 

(McGraw Hill, 1951, Reprinted with revisions in IEE Electromagnetic Waves 

Series V-21 1986). 

12. Microwave Transmission Data, T. Moreno, (Sperry Gyroscope Company, Inc., 
,.-f’ 

. Great Neck, NY, 1944) p. 102. 

13. Reference 7, especially 3.1 and Fig. 4. 
- 

.- 14. H. Deruyter, H. Hoag, A V. Lisin, G. A. Loew, R. B. Palmer, J. M. Paterson, C. _~ _ _ 

E. Rago, J. W. Wang; Damped Accelerator Structures for Future Linear e+- 

Colliders, SLAC-PUB-4865 (M ar. 1989). To be published in the Proceedings 

of the IEEE 1989 Particle Accelerator Conference. 

15. See reference 7 $2 and Fig. 2. The mode designated (c) in Fig. 2 corresponds 

to the dipole 0 mode. 

16. The principle mode cutoff was determined using SUPERFISH, with the 3300 

point mesh mentioned in the text. (The actual value was 12301 MH,). Com- 

parison with coarser meshes showed that the cutoff frequency decreased with 

decreasing mesh size. Using the values to produce a crude extropolation to 

zero mesh size yields 12184 MH, for the cutoff frequency. We also computed 

the cutoff using the analytic approximations in reference 11. A computation 

based upon formulas in $8.1 yielded 12286 MH,, while one based on those in 

58.8 yielded 12292 MH,. W e b 1’ . e leve the figure 12300 MH, used in the text to 
.-- - 

be high, but by no more than 1%. 

17. It should be noted, however, that the parameters are very sensitive to the 

frequencies of the points, especially when a set of adjacent points is used for 
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- 
fitting. Due to the fact that the resonant frequency is very close to the waveg- 

_-. uide cutoff, the entire range of phase covered is only .42 rad which is much less 

than the optimum range of 1.5 to 2 rad. The associated frequency differences 

are small and even round off has a noticeable effect. The range of lengths cho- 

sen for the study were determined with the dipole mode in mind (Table V), as 

the existence of the slot mode had not been anticipated. 

18. In connection with a different problem, we used MAFIA to compute resonant 

frequencies of a ridge waveguide cavity. Resonant frequencies were found for 

one, two, and three half -wavelengths of the fundamental TE(ND) waveguide 

mode. Using a mesh size comparable to that used for the cavity calculations 

reported in this paper, we found that the computed cutoff frequency decreased .- _ - . 
as the cavity resonant frequency increased, with an overall variation of 5.7Y0 

-- 

observed. All cutoff frequencies increased and the overall variation decreased 

to 0.16% when the number of mesh points was increased by a factor of 28. The 

extropolated cutoff agreed quite well with SUPERFISH, URMEL, and Mar- 

cuvitz based results. These observations make more understandable the fact 

that our results appear to be more consistent if we allow the cutoff frequency 

to decrease for the analysis of the higher frequency modes. 

19. Our MAFIA runs were restricted to the lowest ten modes. The decrease in the 

accuracy parameters is characteristic of MAFIA for the upper modes of a run 

and could be avoided for modes 8, 9, and 10 by including an additional number 

of modes in the run. 
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_. - FIGURE CAPTIONS 

_-. Figure 1. Typical examples of relative frequency f plotted as a function of relative length . 

-- 

r. The frequency f is normalized to the frequency of the uncoupled cavity mode, 

and the waveguide length is normalized to one half the cutoff wavelength. The 
“. . 

cavity mode is sufficiently isolated, so that other cavity modes do not have a 

significant effect over the frequency range shown. Figure la represents a weakly 

coupled case. The dashed curves are the uncoupled waveguide resonances. 
- 

Figure lb shows the evolution of the plot as the coupling is increased to a 

moderate value. 
,~_f- 

Figure 2. Behavior of the phase variable $J as a function of relative frequency f. The 
- 
_. _ . 

particular example shown corresponds to the lowest frequency curve of Figure 

lb, with the proviso that the negative 4 portion, which occurs for f > 1.0, is to 

be ignored. The $ - w curves corresponding to the successive higher frequency 

curves of Figure lb are obtained by adding 7r, 27r, etc. to the ordinates of the 

above curve, and for these higher curves the entire frequency range shown is 

relevant. The droop in the curve that becomes evident as f approaches 1.4 is 

indicative of the presence of another cavity mode at somewhat higher f. 

- Figure 3. A typical example of the dependence of -@,!~/df on the relative frequency. 

Again the example is that used for Figure lb and Figure 2. The peak of this 

. curve occurs at the resonant f and -if% is approximately equal to Qezt. 

Figure 4. The wa.veguide model 

Figure 5. (a) Equivalent circuit for the waveguide model with outgoing wave boundary 

condition. The distance of the terminating characteristic impedance from the 

shunt susceptance is arbitrary. (b) Equivalent circuit for the waveguide model 

with terminating short at distance D from the output window. 

Figure 6. Schematic drawing of the cavity and waveguide structure used for the calcula- 

tions of $4. _ 
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%‘igur!7. Frequencies f of the lowest four (ND symmetry) coupled cavity-waveguide 

modes of the model discussed in $4 plotted as a function of waveguide length 

D. The plotted points are obtained from the seven MAFIA runs. The points 

designated by x are the fit points (i.e. the points used to determine the pa- 

rameters), other points being designated by +. The curves are obtained from 

the theory described in the text and used to compute the points in the (Th) 

-- columns of Table IV and Table V. 
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TABLE I: Waveguide cavity results. 

This table compares results obtained from solving the complex frequency eigenvalue 
problem (labled exact) with those obtained from the three parameter (3 p) and four 
parameter (4 p) formulas. The right hand column lists the frequencies chosen for 
these formulas, the first three being used in the three parameter formula. 

1 d/a 1 u (exact) 1 u (3~) I u (4 P) II Q (exact) I Q (3 P) I Q (4 P) I h’s I 

I I 
I 

I II I 
I I 

I I- 
ll 

I I II i 
I 
I 

-_-----*---------------------------------------------- - _ 
I -4 I I .96417 I .96406 1 .96417 11 62.69 1 63.17 I 62.69 

I I 1 
I I I 
I II I I 

I I I I II I I ______----_-__---_------------------------------------ - _ 
I -51 .94240 1 .94175 1 .94240 11 -23.99 1 24.03 1 23.99 

I- I I/ I 
I 
I 

- - - - - 
.978 1 
.980 1 
.982 1 ,--f 

.984 1 
-_-__ 

.95 1 

.96 / 

.97 1 

.98 1 
----- 

.92 1 

.93 1 - 

.94 1 
I I I I. II I I 1 .95 / 
T - ‘*s‘l- - -*;;,;, --; - -lm6 ;-* s;s~7 - ‘l~ - - ;1.14; - ; - - -;1:92 _I_ - -l;;l-4- I - -.s~-l 

I I I I II 
I I 1 .915 I 
I I I .93 I 

I I I I II I I 1 .945 1 
; -*& _I_ - -.9059; - ; - -.ssas6- _I -.sblsd - -l1 - - - s.ol- - 7 - _ - a:83- _I_ - - - - - - - - - .8;-l 

7.99 1 
I I I 1 .89 1 
I I 
I I I 

I II 1 .91 I 
I II 1 .93 1 

. T - -.; _I_ - - .sss;s - ; - - -;55 _I - -.saS; - -l; - - - s.sgw - 7 - - - b16~- _I_ - - - - - - - - - .84‘l 
5.82 1 

I I I II I 
.86 1 
.88 1 

I I I II 1 .90 1 
__________-_______-_------------------------------------------ 
I .75 I .8684 1 .8573 1 .8661 11 4.40 ( 5.52 1 4.28 1 .83 ( 

-- --I 
I I I .85 I 
I I iI I I .87 I 

I I II I I .89 I 



Table II: Waveguide Cavity Results Based Upon Two Waveguide Lengths. 

Like Table I, this table compares exact frequencies and Q’s with those obtained from 
the four parameter formula. Here the four data points required are obtained from runs 
at two waveguide lengths using pairs of data points from adjacent branches, the same 
branch pairs being used for each length. In Table 1, the four data points are from a 
single branch but from runs at four cavity lengths. 

- 

I d/a I u (exact) I u (4 p) I Q (exact) I Q (4 p) I (d/a) values ( Branches 1 
__-___---_-------------------------------------------------- - 
I *30 I .98071 I .98071 1 216.35 1 216.35 1 1.08 I I,2 I 
I I I .I I I .95 I I --t. 

;-.-i-J 
-----_------------------------------------------------ 

.96417 I .96417 I 62.69 1 62.68 1 1.05 1,2 I 
I I I I I .95 1 I I 

. 
; - .sb - 7 - - .94;46 - T - -38 I - - -;3-9 _I_ - -23:96- - T - - - ;.; ; - - - - I_ - - - le,-2v - - I 

I I I I I I 1.02 I I 
; - .;-- ; - - .;; ,;, - ; - -; 61m5m I - - -lm1-; _I_ - -l‘l~61- - 7 - - - ;*;; - - - -I_ - - - ;,m2s - - ; 

I* I I I I I 1.26 I I - 
I -60 I 1 .91633 I I 11.13 I 2.30 1 2, 3 1 
I I I 1 I I 2.20 . I I 
; - ,;- ; - - .sb;s; - ; - -.,,jl-4- ; - - - s:61- _I_ - - ;:69 _ ; - - - ;.sa _ - - -I_ - - -;,‘2 - _ _I 

I I I I I I 1.58 I 
I a65 I 1 .90163 I I 7.98 1 2.50 1 2, 3 I 
I I I I I I 2.30 1 I 
; -.;. _ ; - - .aaels - ; - -.sss;s ; - - - - - - - - _ - _ -j.,, _ ; - - -;.40 _ - - - )_ - _ -~,-3- - - I 

5.89 1 
I I I I I I 2.60 1 I _---__-----------_---------------------------------------- 
i-.75 1 .8684 1 .8650 1 4.40 1 4.33 1 2.50 1 2, 3 1 
I I I I I I 2.70 1 I -__------_-------_------------------------------------------ 
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Table III: Quality of Fit 

This table shows the range in linewidth over which the four parameter 
representation is within 0.01 rad of the correct phase for the wave guide 
model. The figures in parentheses refer to the range for a 0.1 discrepancy. 

. . 

- 

d/a Range of fit (line widths) 

0.3 z-84 

0.4 z-23 

0.5 7.5 

0.6 3.2 

0.65 2.4 (>4) 

0.7 1.2 (>2.8) 

0.75 0.86 (>2.1) 
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Table IV 
I- . 

Computed frequencies of the first and second mode for a series of waveguide lengths compared to 
a theoretical representation. Single entries correspond to fit points used to determine the 
parameters for the theoretical representalion. Only the first mode is a cavity 
mode. The resonant frequency and Q were determined by means of lhe four parameter 
representation, using the indicated fit points as discussed in 9 2. 

Mode 1 Wave Guide 
) Length (cm) 

Mode 2 - 
Frequencies (MH,) Frequencies (MH,) 
(Come) fTh) I I (Comb) fTh) 

13382.9 I .668 18826.0 18832.0 -~-e’ 

13270.4 13270.4 
13237.1 

I .818 1 17781.6 17782.7 
.868 17484.6 

13205.5 13205.5 I .918 I 17210.2 17209.5 
13093.3 1.118 16303.6 

13044.1 13044.0 
12998.5 

I 1.218 I 15943.5 15845.8 
1.318 

I 
15632.0 15637.8 

Resonant 
Frequency (MH,) 13626.3 I I 

Q i 
- 



- 

_- Table V 

. Computed frequencies of the third and fourth modes for a series of waveguide lengths compared 
lo the four parameter representation. Single entries correspond to fit points used to determine 
the four parameters. These two resonances correspond to two branches of the same cavity mode. 
The resonant frequency and Cl emerge from the four parameter fit. Possible reasons for the 
relatively poor agreement in the mode 4 case are discussed in the text. 

Mode 3 I Wave Guide Mode 4 
Frequencies (MH) I Length (cm) Frequencies (MH) 
co 0) 

24:88.6 
(Th) I I (Co 0) 

I 
.668 

I 
30073.5 

(Th) 
30486.3 

23734.7 .818 28013.2 28202.6 
23500.8 .868 27458.0 27598.6 
23252.1 I .918 I 26960.9 27066.8 

22102.9 22103.0 
I 

1.118 
I 

25498.0 25543.3 
21476.1 21476.4 1.218 24999.8 25038.7 
20856.5 20857.4 1.318 24582.0 24622.6 

Re_sonant f I 
Frequency (MH,) 24364.2 1 I 

I 
Q 8.70 I 
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