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1. INTRODUCTION 
.- 

ic 
Deep inelastic lepton scattering and lepton-pair production experiments measure 

the light-cone longitudinal momentum distributions x = (‘cz +k,“)/(& +pfr) of quarks 

in hadrons through the relation 

FF(x, Q2) = c e~xGqpdx, 0% 
P 

(1) 

FzH(x,Q2) is the leading-twist structure function at the momentum transfer scale 

Q, Four-momentum conservation at large Q2 then leads to the identification z = 

XBj = Q2/2p * q. In p rinciple, .- the distribution functions G,,H could be computed 
. . 

from the bound state solutions of QCD.l For example, given the wavefunctions 

q; (“i,Li’ Xi> in the light-cone Fock expansion of the hadronic state, one can 

write the distribution function in the form2 

- Gq,i&,Q2) = c /- n dx;;2i l@$I (xi, i+ &)I2 c S(xb - 4. (2) n,X, i b=q 

Here xi = lc’/pi = (kf + kf)/(pi + p&) is the light-cone momentum fraction of 

each constituent, where Ci xi = 1 and Ci lcl, = 0 in each Fock state n. The sum 

is over all Fock components n and helicities Xi, integrated over the unconstrained 

constituent momenta. 

An important concept in the description of any bound state is the definition 

of “valence” constituents. In atomic physics the term “valence electrons” refers to 

the electrons beyond the closed shells which give an atom its chemical properties. 

Correspondingly, the term “valence quarks” refers to the quarks which give the bound 

state hadron its global quantum numbers. In quantum field theory, bound states of 
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fixed particle number do not exist; however, the expansion Eq. (2) allows a consistent .- 
T definition of the valence quarks of a hadron: the valence quarks appear in each 

_. Fock state together with any number of gluons and quark-anti-quark pairs; each 

component thus has the global quantum numbers of the hadron. 

_ - 

How can one identify the contribution of the valence quarks of the bound state 

with the phenomenological structure functions ? Traditionally, the distribution func- 

tion G,,H has been separated into “valence” and “sea” contributions: 4 GqjH = 

G $H + GTH 7 where, as an operational definition, one assumes 

. . GyH(x, Q’) = GTH(x, Q2), (0 < x < l), (3) 

and thus GiyH(x,Q2) = Gq,H(xrQ2) - GuH(x,Q2). The assumption of identical 

quark and anti-quark sea distributions is clearly reasonable for the s and s quarks in 

the proton. However, in the case of the u and d quark contributions to the sea, anti- 

symmetrization of identical quarks in the higher Fock states implies non-identical q 

and q sea contributions. This is immediately apparent in the case of atomic physics, 

where Bethe-Heitler pair production in the field of an atom does not give symmetric 

electron and positron distributions since electron capture is blocked in states where 

an atomic electron is already present. Similarly in QCD, the qij pairs which arise 

from gluon splitting as in Fig. l(a) d o not have identical quark and anti-quark sea 

distributions; contributions from interference diagrams such as Fig. l(b), which arise 

from the anti-symmetrization of the higher Fock state wavefunctions, must be taken 

into account. Although the integral of the conventional valence distribution gives 

correct charge sum rules, such as JO1 dx( G,,H (x) - G,,H ( x)), it can give a misleading 

reading of the actual momentum distribution of the valence quarks. 
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The standard definition also has the difficulty that the derived valence quark 

distributions are apparently singular in the limit x + 0. For example, standard phe- 

nomenology indicates that the valence up-quark distribution in the proton behaves 

as Gval N zmaYR for small 2 394 5 
UIP 

where I2!R x 0.5. This implies that quantities that 

depend on the < l/z > moment of the valence distribution diverge. This is the 

case for the “sigma term” in current algebra and the J = 0 fixed pole in Compton 

scatteringk Furthermore, it has been shown7 that the change in mass of the proton 

when the quark mass is varied in the light-cone Hamiltonian is given by an extension 

of the Feynman-Hellmann theorem: 

aiq 
1 

dm; (Q2) = J 
9 G,/, h Q2)- (4) 

0 

In principle, this formula allows one to compute the contribution to the proton- 
- 

neutron mass difference due to the up and down quark masses. However, again, with 

the standard definition of the valence quark distribution, the integration is undefined 

at low x. Even more seriously, the expectation value of the light-cone kinetic energy 

operator 
1 

J dx < Ic f ; + m2 G,/,(x,Q). 
0 

(5) 

is infinite for valence quarks if one uses the traditional definition. There is no apparent 

way of associating this divergence of the kinetic energy operator with renormaliza- 

tion.* Notice that a divergence at x = 0 is an ultraviolet infinity for a massive quark, 

since it implies k+ = k” + k” = 0; i.e. k” t -co. A bound state wavefunction would 

not be expected to have support for arbitrarily large momentum components. 

Part of the difficulty with identifying bound state contributions to the proton 

structure functions is that many physical processes contribute to the deep inelastic 
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lepton-proton cross section: From the perspective of the laboratory or center of mass 
.- 

z frame, the virtual photon can scatter out a bound-state quark as in the atomic 

-. physics photoelectric process, or the photon can first make a qa pair, either of which 

can interact in the target. As we emphasize here, in such pair-production processes, 

one must take into account the Pauli principle which forbids creation of a quark in 

_ - 

- 

the same state as one already present in the bound state wavefunction. Thus the 

lepton interacts with quarks which are both intrinsic to the proton’s bound-state 

structure, and with quarks which are extrinsic; i.e. created in the electron-proton 

collision itself. Note that such extrinsic processes would occur in electroproduction 

even if the valence quarks had no charge. Thus much of the phenomena observed 
. 

in electroproduction at small values of x, such as Regge behavior, sea distributions 

associated with photon-gluon fusion processes, and shadowing in nuclear structure 

functions should be identified with the extrinsic interactions, rather than processes 

directly connected with the proton’s bound-state structure. 

- In this paper we propose a definition of “bound valence-quark” distribution func- 

tions that correctly isolates the contribution of the valence constituents which give 

the hadron its flavor and other global quantum numbers. In this new separation, 

Gq/ptx7 92) = ~9B/::tx, Q2) + G~(x, Q2), non-valence quark distributions are iden- 

tified with the structure functions which would be measured if the valence quarks 

of the target hadron had zero electro-weak charge. We shall prove that with this 

new definition the bound valence-quark distributions GBV q,p (37 Q2> vanish at x + 0, 

as expected for a bound-state constituent. 

2. CONSTRUCTION OF BOUND VALENCE-QUARK DISTRIBUTIONS 

In order to construct the bound valence-quark distributions, we imagine a gedanken 
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QCD where, in addition to the usual set of quarks {q} = {u, d, s, c, b, t}, there is an- 
_-. 

c other set {qo} = {u~,do,s~,co, bo,to} with the same spin, masses, flavor, color, and 

-. other quantum numbers, except that their electromagnetic charges are zero. 

Let us now consider replacing the target proton p in the lepton-proton scattering 

experiment by a charge-less proton po which has valence quarks qo of zero electro- 

magnetic charge. In this extended QCD the higher Fock wavefunctions of the proton 

p and the charge-less proton po both contain qfj and qoqo pairs. As far as the strong 

QCD interactions are concerned, the physical proton and the gedanken charge-less 

_ - 

proton are equivalent. 

.- . We define the bound valence-structure function of the proton from the difference 

between scattering on the physical proton minus the scattering on the charge-less 

pro_ton, in analogy to an “empty target” subtraction: 

F,B’(x, Q2) G Fip(x, Q2) - Fipo(x, Q2). (6) 

The non-valence distribution is thus Fr’(z, Q2) = Fipo(x, Q2). Here the Fi(x,Q’) 

(i = 1,2, etc.) are the leading twist structure functions. The situation just described 

is similar to the atomic physics case, where in order to correctly define photon scatter- 

ing from a bound electron, one must subtract the cross section on the nucleus alone, 

without that bound electron present.’ Physically the nucleus can scatter photons 

through virtual pair production, and this contribution has to be subtracted from the 

total cross section. In QCD we cannot construct protons without the valence quarks; 

thus we need to consider hadrons with charge-less valence constituents. 

Notice that the cross section measured in deep inelastic lepton scattering on po 

is not zero. This is because the incident photon (or vector boson) creates virtual 
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qtj pairs which scatter strongly in the gluonic field of the charge-less proton target. 
_ 

T In fact at small x the inelastic cross section is dominated by J = 1 gluon exchange 

_. contributions, and thus the structure functions of the physical and charge-less protons 

become equal: 

lii [F;(x, Q2) - Fr(x, Q2)] = 0. (7) 

_ - 

In order to isolate a specific bound valence-quark distribution Gr,L for a particu- 

lar quark flavor q, we consider the difference between scattering on the target hadron 

H and scattering on an almost identical hadron with that particular valence quark 

.- q replaced by qo. For example, the difference of cross sections cr [lp(uud) + [‘Xl - 
. . 

a [lpo (uudo) + [‘Xl defines the bound valence down-quark distribution in the proton: 

ei x G,B;/(x, Q2) = FltUZLd)(x, Q2) - FpCuudo)(x, Q2). (8) 

- 
Then 

Remarkably, as shown in Section 4, the bound valence-quark distribution function 

GBV qIH vanishes at x --+ 0; it has neither Pomeron x-r nor Reggeon xmaYR contributions. 

Although the gedanken subtraction is impossible in the real world, we will show 

that, nevertheless, the bound valence-distribution can be analytically constrained at 

small Xbja This opens up the opportunity to extend present phenomenology and relate 

measured distributions to true bound state wavefunctions. 

In the following sections we will analyze both the atomic and hadronic cases, 

paying particular attention to the high energy regime. 
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3. ATOMIC CASE 
.- 

rz 
Since it contains the essential features relevant for our discussion, we will first 

analyze photon scattering from an atomic target. This problem contains an interesting 

paradox which was first resolved by Goldberger and Low in 1968.’ Here we give a 

simple, but explicit, derivation of the main result. 

The Kramers-Kronig dispersion relation relates the forward Compton amplitude 

to the total photo-absorptive cross section 
11 

f(k) - f(o) = $ j dk’k,2 :$‘m ie’ (10) ._ . . 0 

where k is the photon energy. One should be able to apply this formula to scat- 

tering on a bound electron (eb) in an atom. However, there is an apparent contra- 

diction. On the one hand, one can explicitly compute the high energy yeb -+ yeb 

forward amplitude: it tends to a constant value at k + 00, the electron Thomson 

term, f(k) + -e2/$, where rn8 is the effective electron mass corrected for atomic 

binding.” On the other hand, the 0 (e2) cross section for the photoelectric effect 

yet, -+ e’ behaves as OphOto N l/k at high energies. But then the dispersion integral 

in Eq. (10) predicts logarithmic behavior for f(k) at high energy in contradiction to 

the explicit calculation. Evidently other contributions to the inelastic cross-section 

cannot resolve this conflict. 

This problem was solved9 by carefully defining what one means by scattering 

on a bound state electron. For both the elastic Compton amplitude and the inelastic 

cross section one must subtract the contribution in which the photon scatters off the 

Coulomb field of the nucleus (empty target subtraction). Thus a(k) in Eq. (10) is 
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really the difference between the total atomic cross section G~~~~(IC) and the nuclear _- 
z cross section gnucleus( k), w UC is 1 ’ h ’ d ominated by pair production. We will present a 

-. simple proof that the high energy behavior N l/k of the cross sections exactly cancels 

in this difference, which is a necessary condition for a consistent dispersion relation. 

- 

The total cross section for photon scattering on the atom is dominated by two 

main terms: the photoelectric contribution and eSe- pair production, with the pro- 

duced electron going into a different state than the electron already present in the 

l2 atom. On the other hand, in the subtraction, pair production in the field of the 

nucleus is not restricted by the Pauli principle; this cross section contains a con- 

tribution where the produced electron goes into the same state as the bound state 

electron of the atom, plus other terms in which it goes into different states. These 

last-contributions cancel in the difference oatom - flnucleus. Thus the bound-state elec- 

tron photo-absorption cross section is the difference between the photoelectric cross 

section on the atom and the pair production capture cross section on the nucleus, 

where the produced electron is captured in the same state as the original bound state 

electron: ges = apl~otoelectric - Ocapture. This is depicted graphically in Fig. 2. 

We next note that the squared amplitude for the capture process yZ t e+Atom is 

equal, by charge conjugation, to the squared amplitude for yz + e-Atom. (See Fig. 

3.) Furthermore, by crossing symmetry, the (helicity summed) squared amplitude for 

this last process is equal to the (helicity summed) squared amplitude for yAtom -+ 

e-2, with pz and (-pAtom) intercha.nged. This is equivalent to the interchange of 

the Mandelstam variables s = (py + p~)~ and u = (pr - PAtom)2. Thus at high 

photon energies (where s N -u), the two cross sections gphotoelectric and ocapture of 

Fig. 2 cancel, consistent with the Kramers-Kronig relation. In Regge language, the 
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imaginary part of the J = 0 Compton amplitude is zero. 
-. 

c 

-. 

The proof we have presented implicitly assumes the equality of the flux factors for 

the photoelectric process on the atom and the capture process on the nucleus. This 

is normally a good approximation since the atomic and nuclear masses are almost 

identical for Mz >> me. However, for finite mass systems such as muonic atoms, the 

_ - mass of the nucleus and atom are unequal, and the cross sections do not cancel at 

high energy. The difficulty in this case is that the nucleus does not provide the correct 

“empty target” subtraction. 

However, we can extend the analysis to the general atomic problem by considering 

hypothetical atoms A0 consisting of null leptons !o with normal electromagnetic and 

Coulomb interactions with the nucleus but with zero external charge. [In effect, 

we c_onsider an extended QED with U(1) x U( 1) g au g e interactions, where the null 

lepton has charge (-l,O), and the normal lepton and nucleus have charges (-1, -1) 

and (2, Z), respectively.] The empty target subtraction is defined as the difference 

between the cross section on the normal atom A = (Ze) and the cross section on 

the null atom A0 = (Zlo). S ince the mass and binding interactions of A and A0 are 

identical, the photo-absorption flux factors are the same in both cases. 

As in the earlier proof, the matrix element for the photoelectric process on the 

atom A becomes equal in modulus at high energies with the matrix element for the 

capture process on the null atom Ao. Note that in the computation of the capture 

process amplitude, the presence of the spectator lepton lo is irrelevant since it remains 

in the original quantum state (say 1s): The required matrix element of the current 

is 

(Alo(lS)L+(J’“[Ao) = (~e~(is)~+~~er”~~~~~(is)~z) = (~t+(~fip). 

10 



By charge conjugation and crossing this is equal in modulus to 
-. 

It 

(ze-lJ’LIA), -. 

.- 

_ - 

the corresponding photoelectric matrix element with s --+ u. Final-state interactions 

can only affect the phase at high energies. Thus we obtain cancellation of the photo- 

electric and capture cross sections at high energies, and verify the Kramers-Kronig 

dispersion relation for Compton scattering on leptons bound to finite mass nuclei. 

4. REGGEON CANCELLATIONS IN QCD 

.- 
.- . We now return to the analysis of the “bound valence-quark distributions” of the 

proton. According to the discussion of Section 2, the measurement of the bound 

valence-quark distribution requires an “empty target” subtraction: 

a(T*P + x> - a(Y*Po ---f X). 

For example, in order to specifically isolate the bound valence d-quark distribution of 

the proton p(uud), we subtract the deep inelastic cross section on the system po(uudo) 

in which the do valence quark has normal QCD interactions but does not carry electric 

charge. (Both p and pa contain higher Fock states with arbitrary number of gluons, 

qij, and qo@ pairs.) It is clear that the terms associated with J M 1 Pomeron behavior 

due to gluon exchange cancel in the difference. In this section we shall prove that 

the Reggeon terms also cancel, and thus the resulting distribution of bound valence d 

quarks Gfi(z, Q2) = [ [5’$Uud)(~, Q2) - ~~(UUdo)(zr, Q2)]/ez zr] vanishes as 2 + 0. 

As in the atomic case, we now proceed to describe the leading contributions to 

the scattering of a photon from both the proton p and the state po. The high Q2 
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virtual photo-absorption cross section on the proton (lab frame) contains two types 
- 

t of terms: contributions in which a quark in p absorbs the momentum of the virtual 

-. photon; and terms in which a qa pair is created, but the produced q is in a different 

quantum state than the quarks already present in the hadron. On the other hand, 

the cross section for scattering of the virtual photon from the state po(uudo) contains 

contributions that differ from the p(uud) case in two important aspects: first the 

virtual photon can be absorbed only by charged quarks; and in dd pair production 

on the null proton po, the d quark can be produced in any state. Thus the difference 

between the cross sections off p and po equals a term analogous to Crphoto&ctric, in 

_ - 

.- which a d quark in p absorbs the photon momentum, minus a dd pair production 
. 

contribution on po analogous to gcapture, in which the produced d quark ends up in 

the same quantum state as the d quark in the original proton state p. This is shown 

graphically in Fig. 4.13 

Reggeon behavior in the electroproduction cross section can be understood as due 

to the appearance of a spectrum of bound qij states in the t-channel. The absorptive 

cross section associated with t-channel ladder diagrams is depicted in Fig. 5(a). The 

summation of such diagrams leads to Reggeon behavior of the deep inelastic structure 

functions at small x.14 In the rest system, the virtual photon creates a dd pair at a 

distance proportional to l/x before the target. The radiation which occurs over this 

distance contributes to the physics of the Reggeon behavior. 

A corresponding Reggeon contribution at low 2 also occurs in the subtraction 

term indicated in Fig. 5(b). In th e case of the proton target, the d-quark, after 

radiation, cannot appear in the quantum state already occupied by the d-quark in 

the proton because of the Pauli principle. However, the corresponding contribution is 
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allowed on the po target: in effect, the d-quark replaces the do-quark and is captured 
-. 

t into a proton. The capture cross section is computed from the amplitude for y*po + 

-. d*p d&?15 As in the corresponding atomic physics analysis, the spectator do quark 

in the null target po is inert and cancels out from the amplitude. Thus we only need 
._ 

_ - 

to consider effectively the (helicity summed) squared amplitude for r*(uu) -+ d*p. 

However, as illustrated in Fig. 6 this amplitude, after charge conjugation and crossing 

s -+ u, is equal to the (helicity summed) y*p + d*(uu) squared amplitude at small 

x. The flux factors for the proton and null proton target are equal. 

If we write SOphotoelectric as a sum of Regge terms of the form ,BR\s\“~, where CYR > 

0 then the subtraction of the capture cross section on the null proton will give the 

net virtual photo-absorption cross section as a sum of terms S(T BV = CR PR(IsY~ - 
1~1~~). If we ignore mass corrections in leading twist, then s N Q2(1 - X)/X and u 21 

2 -Q /x. Thus for small x every Regge term is multiplied by a factor KR = (-CXE)X. 

For example, for oR = l/2 (which is the leading even charge-conjugation Reggeon 

contribution for non-singlet isospin structure functions), E$UUd) - ~~(uudo) N x3i2. 

The bound valence-quark non-singlet (I = 1) distribution thus has leading behavior 

GBV q/H N x112 and vanishes for z -+ 0. 

We can also understand this result from symmetry considerations. We have shown 

from crossing symmetry Gqlp(x, Q2) - G,,,,(z, Q2) + 0 at low 2. Thus the even 

charge-conjugation Reggeon and Pomeron contributions decouple from the bound 

valence-quark distributions. 

5. CONCLUSIONS 

The observation that the deep inelastic lepton-proton cross section is non-zero, 

even when the quarks in the target hadron carry no charge, implies that we should 
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distinguish two separate contributions to deep inelastic lepton scattering: intrinsic 
-. 

c (bound-state) and t ex &sic (non-bound) structure functions. The extrinsic contribu- 

-. tions are created by the virtual strong interactions of the lepton itself, and are present 

even if the quark fields of the target are charge-less. The bound valence-quark distri- 

butions, defined by subtracting the distributions for a gedanken “null” hadron with 

_ - 

- 
. 

charge-less valence quarks, correctly isolates the valence-quark contributions intrinsic 

to the bound-state structure of the target. As we have shown, both the Pomeron and 

leading Reggeon contributions are absent in the bound valence-quark distributions. 

The leading Regge contributions are thus associated with particles created by the 

photon-hadron scattering reaction, processes extrinsic to the bound state physics of 

the target hadron itself. The bound valence-quark distributions are in principle com- 

putable by solving the bound state problem in QCD. Sum rules for the proton derived 

from properties of the hadronic wavefunction thus apply to the bound valence-quark 

contributions. 

- The essential reason why the new definition of the bound valence-quark distri- 

bution differs from the conventional definition of valence distributions is the Pauli 

principle: the anti-symmetrization of the bound state wavefunction for states which 

contain quarks of identical flavor. As we have shown, this effect plays a dynamical 

role at low 5, eliminating leading Regge behavior in the bound valence-quark distri- 

butions. In the atomic physics case, where there is no leading Regge behavior, the 

analogous application of the Pauli principle leads to analytic consistency with the 

Kramers-Kronig dispersion relation for Compton scattering on a bound electron. 
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Figure Captions 

-. 
Fig. 1 Structure function contributions from the three-quark plus one pair Fock state 

of the proton. The ddpair in diagram (a) contributes to the sea distribution, but 

diagram (b) d ue to anti-symmetrization of the d-quarks cannot be separated 

uniquely into “valence” versus “sea” parts. 

Fig. 2 The bound-electron photo-absorption cross section gyeb is defined as the differ- 

ence of y - Atom and y - Nucleus cross sections. This can also be expressed as 

the difference between the atomic “photoelectric” cross section and the pair pro- 

- duction “capture” cross section on the nucleus, but with the produced electron 
.- 

going into the same atomic state as the original bound state electron. 

Fig. 3 The helicity-summed squared amplitude for the process yZ + e+Atom is 

equal, by charge conjugation, to the helicity-summed squared amplitude for 

y,?J + e-Atom, up to a phase. This is also equal by crossing to the helicity- 

- summed squared amplitude for the process yAtom + e-2, but with s and u 

interchanged. 

Fig. 4 The bound valence-quark distribution of quark d can be calculated from the 

difference between (a) the cross section on the state p in which the virtual 

photon momentum is absorbed by the quark d, and (b) the dd pair production 

cross section in the field of po, but with the produced d quark ending in the 

same state as the d quark in the original proton state p. 

Fig. 5 Amplitudes describing Reggeon behavior at small x (a) in electroproduction, 

and (b) in the subtraction term of Fig. 4(b). 

Fig. 6 The helicity-summed squared amplitude for (a) y*p t d(uu) is equal, by charge 
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conjugation, to the helicity-summed squared amplitude for the process (b) 
_-. 

c y*p + &GE), up to a phase. This is also equal, by crossing symmetry, to the 

-. helicity-summed squared amplitude for (c) Y*(W) + dp, with s and u inter- 

changed. Thus at high energies the Reggeon contribution from the subtraction 

term of Fig. 5(b) cancels the Reggeon contribution of Fig. 5(a). 
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