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1. Introduction

Experience with the SLAC Linear Collider (SLC) has indicated that back-

grounds caused by transverse and energy tails of the beam distribution will be

a fundamental problem of next-generation linear colliders. Even one high energy

particle hitting the wall in the final quad can create unacceptable detector back-

ground.

Any collimation design for the next-generation linear colliders must satisfy

the following requirements:

(1) It must provide an effective scraping despite the small (of the order of a

micron) beam sizes. In fig. 1 we show the layout for a typical final doublet

for X-Band beam parameters. The beam energy is 250 GeV. The magnet

aperture is dictated to be about 2 mm from wakefield considerations, allowing

for 1σ
∗

beam jitter. With a pole tip field of 1.2 Tesla and a free length to

the interaction point (IP) of 1 meter, the geometry is uniquely determined.

The plot for 500 GeV is quite similar.

The curved lines are beam particle trajectories at 10 σx and 10 σy. The

straight lines tangent to these curves indicate the synchrotron radiation en-

velope of these rays. For satisfactory operation, we assume that no beam

particles and only a few synchrotron photons may hit the inner bore of the

magnet.

Allowing some safety margin, we conclude that the x motion must be colli-

mated at about 5 σx and the y motion at 15 σy. Though our analysis will

be for general “n” sigma collimation, the specific lattice we construct will

illustrate that it is possible to collimate at 5 σ in both x and y planes.

∗ The definitions of some basic accelerator physics concepts that we will encounter frequently
in this work are reviewed in Appendix A.
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(2) It must protect scrapers against mis-steered beams which may hit them and

possibly damage them. There are two problems associated with a train of ten

bunches of 1010 electrons per bunch at 250 GeV hitting a scraper [1]. The

first problem occurs at the surface of the scraper which may melt because of

energy deposited in a small area. More quantitatively, we are interested in

the largest spot size to cause failure of the scraper surface. For Ti, which is

one of the best candidates according to SLC experience, the onset of melting

at the surface occurs when the rms cross-sectional beam area is [1]

σxσy ' 900 µm2 . (1)

The second problem occurs within the body of the scraper where the energy

deposition from the shower peaks typically at several radiation lengths (X0)

(' 8 X0 for Ti).

(3) It must keep scraper-induced wakefield kicks on the beam below a tolerable

level. If the beam does not pass exactly through the middle of the scrapers,

it gets transverse deflections due to geometric and resistive wall wakefields.

If these kicks are comparable to the angular divergence of the beam, the

emittance will increase.

The kick due to geometric wakefields varies longitudinally as the bunch den-

sity along the bunch [2], as shown in fig. 2. An expression for this kick, which

includes the effect of both edges of a scraper, has been derived analytically

and verified numerically [2] for the situation where the scraper gap is small

compared to the scraper length, and the bunch length σz is comparable to

or longer than the scraper gap. For small offsets the transverse deflection

of a particle is produced by the dipole wakefield only, and hence it is pro-

portional to ∆〈y〉/g where ∆〈y〉 is the beam offset from the middle of the
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scrapers and 2g is the scraper gap. The wakefield kick, which is valid for

cylindrically symmetric geometry, is given approximately by

∆y′(z) =
4 reN

γ

∆〈y〉
g

1
√

2πσz
e
− z2

2σ2
z (2)

where γ = E/mc2, N and E are the number of particles per bunch and energy

respectively, z is the longitudinal position in the bunch and re the classical

radius of the electron. If the scraper consists of parallel plates separated

by 2 g, the kick is larger by a factor of π2/8. To reduce the effect of the

geometric wakefield kick, one can taper the scrapers with a taper angle θtap

(θtap = π/2 for a step scraper.) For small taper angles (θtap ≤ 100 mrad)

the dependence on the taper angle is linear [3,4],

∆y′(z) =
θtap

(π/6)

4reN

γ

∆〈y〉
g

1
√

2πσz
e
− z2

2σ2
z . (3)

The wakefield kick resulting from the interaction of the dipole moment of the

beam distribution, with the resistive wall of the scraper with conductivity κ,

is (see Appendix C):

∆y′(τ) =
4reNLscr

γ

(
λ

πσz

)1/2 ∆〈y〉
g3

f(τ) (4)

where

f(τ) =
1
√

2π

∞∫
0

dτ ′
√
τ ′

e
−1

2
(τ − τ ′)2

, (5)

λ ≡ 1

µ0cκ
, (6)
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Lscr is the length of the scraper, and τ ≡ z/σz denotes the location within the

bunch. This expression assumes a smooth, cylindrically symmetric geometry

of radius g. If the scraper consists of parallel plates separated by 2g along the

y-axis, the kick is larger by a factor of π2/8 [5], as in the case of geometric

wakefields. The above expression is valid in the range

g2/λ À σz À (λg2)1/3 . (7)

For scrapers made of Ti with κ ' 2.8×1017 sec−1, and typical bunch length

for next-generation linear colliders of 100 µm, λ = 8.5× 10−11 m and eq. (4)

is valid for all g such that

0.1 µm ¿ g ¿ 10 cm . (8)

Both conditions will be satisfied in our design. For small gaps this is the

dominant wakefield effect. K. Bane has numerically integrated eq. (5) and

the result is plotted in fig. 3.

In the next section we find the conditions that must be satisfied in order for

mechanical collimation to be a workable collimation technique for a next-generation

linear collider. Furthermore we demonstrate that mechanical collimation is pre-

cluded for the vertical degree of freedom in the Next Linear Collider (NLC), SLAC’s

next-generation linear collider design. In the following section we present the non-

linear collimation scheme as a possible alternative. We introduce the principle and

write the conditions such a design must satisfy. These conditions determine a set

of lattice parameters for the collimation systems. We present a possible lattice de-

sign, calculate its tolerances and discuss energy collimation. Before we conclude

we examine the possibility of nonlinear collimation with octupoles. Finally we
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summarize the issues and point out the problems of the current design as well as

questions remaining to be answered.

2. Mechanical Collimation

The design of a mechanical collimation section must satisfy the following

requirements:

(a) The scraper half-gap must be equal to nσy,

gy = nσy (9)

for scraping particles beyond nσy.

(b) The rms value of the geometric wakefield kick must be less than σ′y/5,

〈(∆y′gw)2〉1/2 ≤ 1

5
σ′y . (10)

This requirement leads to a maximum 2% increase of the spot size. Equation (10)

becomes for untapered, parallel-plate scrapers (see Appendix B),

C1

∆〈y〉
g

≤ 1

5
σ′y (11)

where

C1 =
1

31/4

π2

8

4reN
√

2πγσz
.

For N = 1×1010 particles per bunch, beam energy E = 250 GeV and σz = 100 µm,

C1 = 0.84× 10−6.

6



   

(c) The rms resistive wall wakefield kick must be less than σ′y/5,

〈(∆y′rw)2〉1/2 ≤ 1

5
σ′y . (12)

For a parallel-plate scraper this condition reads (see Appendix C),

C2

∆〈y〉
g3

Lscr ≤
1

5
σ′y (13)

where

C2 =
π2

8

[
K(
√

3/2)

2
√
π

]1/2
4reN

γ

(
λ

πσz

)1/2
,

where K is the complete elliptic integral. For the parameters quoted above

C2 = 1.12× 10−13 m.

(d) As mentioned in the Introduction, in order to ensure protection of the scrapers

when a mis-steered beam hits them, the beam area at the scrapers must satisfy

σxσy ≥ 900 µm2 . (14)

It is often the case that tapered scrapers must be used in order to satisfy the

geometric wakefield condition (b). However tapered scrapers are necessarily longer

and hence the resistive wall wakefield is increased as it varies proportionally with

the length of the scraper. Therefore we must evaluate the resistive wall wake for

tapered scrapers and find the common solution of both conditions (11) and (13).

To estimate the resistive wall wake of a tapered scraper we can, to a first

approximation, substitute Lscr/g
3 by the integral
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I =

LTOT∫
0

dz

g3(z)
(15)

where LTOT is the total length of the scraper (see fig. 4), and g(z) is the gap as a

function of z.

Assuming the geometry of fig. 4 where the scraper varies linearly with the

longitudinal coordinate z in the regions A and C, we have

g(z) =

{
r + (2/L) (g0 − r) z for 0 ≤ z ≤ L/2

g0 for L/2 ≤ z ≤ L0

. (16)

Then the integral I is

I =
L(r + g0)

2 g2
0 r

2
+
L0

g3
0

. (17)

Hence the resistive wall wakefield condition, eq. (13), becomes

C2∆〈y〉
[
L(r + g0)

2 g2
0 r

2
+
L0

g3
0

]
≤ 1

5
σ′y . (18)

The geometric wakefield condition, eq. (11), becomes

12C1

π

(r − g0)
L

∆〈y〉
g0

≤ 1

5
σ′y (19)

where we have approximated θtap by

θtap '
2(r − g0)

L
. (20)
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If we now require that the equalities of both eqs. (18) and (19) be satisfied, we can

eliminate L and solve for L0 in terms of βy at the scraper. For a beam offset equal

to 1σy, L0 is given by

L0 =
n3ε

3/2
y

5C2
β

1/2
y,scr −

30C1

π
βy,scr (21)

and the value of βy,scr that maximizes L0 is given by

βy,scr =

[
π

3× 102C1C2

n3 ε
3/2
y

]2

. (22)

We have assumed r À g0. The maximum L0 is then,

L0,max =
π

3× 103C1C
2
2

n6 ε3y . (23)

Notice the strong dependence of the last two expressions on n. A necessary con-

dition for mechanical collimation to work is L0,max to be of the order of a few

radiation lengths of the scraper material,

L0,max ≥ 3X0 . (24)

This is because a thin scraper will not be able to disrupt the beam sufficiently in

order for significant changes of the beam parameters to take place. From eq. (23)

we calculated the minimum vertical normalized emittance εy,N for which (24) is

satisfied, assuming scraping is at 10σy and the beam energy is 250 GeV: εyN,min =

0.75× 10−6 m rad. We also calculated the number of sigma beyond which we can

scrape without violating (24), for εy = 10−13 m rad: nmin ' 39.
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On the other hand the protection condition, eq. (14), imposes a constraint

on the product of the beta functions at the scraper,

βx,scr βy,scr ≥
81× 10−20

εxεy
m2 . (25)

Both conditions (24) and (25) must be satisfied in order for mechanical collimation

to work.

Let us consider the NLC example. NLC beams are flat with a ratio of

horizontal to vertical emittance equal to 100 to 1. The incoming beam to the

collimation section, which is assumed to be at the end of the linac and before the

final focus, has horizontal and vertical normalized emittances equal to

εx,N = 5× 10−6 m rad , εy,N = 5× 10−8 m rad . (26)

For beam energy equal to 250 GeV, and scraping beyond 5 σy, L0,max = 1.5 µm,

which corresponds to about 4× 10−4 of a radiation length for Ti. Thus condition

(24) is not satisfied, and simple mechanical collimation for the NLC vertical plane

at the 5 σy level is impossible. However, it is possible for the horizontal plane.

3. The principle of nonlinear collimation

The idea here is to blow up the part of the beam we want to collimate so that

mechanical scrapers can be used effectively without inducing significant wakefield

kicks. Throughout this process, the core—which contributes to the luminosity of

the machine—must remain unaffected.

Linear optical magnification has been excluded for the NLC as we demon-

strated in the preceding section. On the other hand, higher-order multipoles such

as decapoles, dodecapoles, etc., are not useful because they don’t penetrate to the
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small distances necessary. However, for a TeV linear collider beam, skew sextupole

and normal octupole fields, placed at a point where the beam size is large, seem

promising. This is demonstrated in fig. 5, which displays the initial phase space of

the beam distribution extended to 20 σ, with σ equal to 8 µm. (We have assumed

β = 2, 000 m.)

Normalized coordinates have been used so that the phase space is circular.

Superimposed are plotted the angular deflections of a beam particle as functions

of its transverse position due to skew sextupole and normal octupole fields, which

are given by

∆y′sext =
Bpole Lsext

a2(Bρ)
y2 (27)

and

∆y′oct =
Bpole Loct

a3(Bρ)
y3 . (28)

Notice that these expressions are highly simplified. The justification lies on the

fundamental design consideration of the nonlinear collimation shceme of minimiz-

ing coupling effects at the nonlinear elements. This design requirement, which is

presented later (Section 4.1.6), ensures that

y2 À x2

at the skew sextupoles. Quantitatively, σ2
y,sext ≈ 600 σ2

x,sext. The same assumption

holds true for normal octupoles. Thus, the x–y coupling at the nonlinear elements

will be systematically neglected.

In the above, Bpole denotes the pole-tip field, a denotes the pole-tip radius, L

denotes the length of the magnet, and (Bρ) denotes the magnetic rigidity. The plot

of fig. 5 uses parameters entering the above formulæ which assume their maximum
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values achieved by the current technology of conventional magnet construction.

These values are: 1.2 T for the pole-tip field, 1 m for the magnet length, and 1 mm

for the pole-tip radius. The energy is assumed to be 250 GeV. Notice that the

sextupole field reaches deeper into the beam distribution; the octupole field does

not affect the core as much as the sextupole field does. Eventually, we shall present

results using both nonlinear forces. For the time being, we employ the octupole

field to describe the proposed nonlinear collimation scheme.

The initial beam distribution whose phase space plot is shown in fig. 6(a)

goes through an octupole magnet. The resulting phase space is shown in fig. 6(b).

Then follows a rotation in betatron phase by π/2. The new beam distribution

is plotted in fig. 6(c) where the mechanical scrapers are shown by the shaded

area. So by passing the beam through an octupole magnet followed by a π/2

rotation, we have created long, angular tails which are subsequently turned into

position tails and cut off by the scrapers. The core, which has been modified in

the process, can be put back together by adding to the above lattice its mirror

image [6]. Figures 6(d) and (e) are the phase space plots of the beam distribution

through this last section of the lattice. This technique is well known. A system

consisting of two nonlinear elements of the same or opposite polarity (depending

on their multipolarity), placed π apart in phase advance with unit magnification,

ignoring chromatic and chromo-geometric aberrations, amounts to a −I, where I

is the identity transformation.

Since in a real machine both position and angle tails cause background prob-

lems, one would like to clean up the beam profiles in both phases (say x and x′).

The following schemes take this into account. It includes two lattice sections, each

of which consists of two nonlinear elements π apart; thus collimation in both phase

space directions is possible. The two lattice sections are next to each other, sep-
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arated by a phase advance of π/2. Next we demonstrate how this scheme can be

used to collimate the vertical plane for the NLC.

4. Nonlinear collimation in the NLC

4.1 Scheme with skew sextupole pairs

Collimation in the NLC is proposed to be done mechanically in the horizontal

plane and nonlinearly in the vertical plane (scheme with skew sextupole pairs).

The horizontal scrapers will be placed at high horizontal beta function points,

interleaved with the vertical scrapers. Energy scraping takes place downstream

from transverse scraping. A schematic representation of the collimation section of

the NLC is shown in fig. 7.

The collimation design must satisfy all of the following conditions.

(a) It must scrape transverse tails beyond nσ in both planes.

(b) It must scrape energy tails.

(c) Resistive wall wakes at all scrapers must be acceptably small.

(d) Geometric wakes at all scrapers must be acceptably small.

(e) Geometric and resistive wall wakes at the sextupoles must be acceptably

small.

(f) Long sextupole aberrations must be acceptably small.

(g) Protection of horizontal, vertical and energy scrapers must be insured.

(h) Stability tolerances on sextupole and scraper offsets must be acceptable.

(i) The collimation systems must not create unacceptable chromatic or chromo-

geometric aberrations.

Next we elaborate on each of the above conditions and thus arrive at the allowed

design parameters of the collimation system.
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4.1.1 Scraping in the vertical plane

This condition implies that particles whose vertical coordinates are greater

or equal to nσy at the sextupole must be mapped into vertical positions greater

or equal to gy at the scraper,

∆yscr(|ysext| ≥ nσy,sext) ≥ gy . (29)

An nσy particle at the skew sextupole will experience a kick

∆y′sext =
1

2
ks(nσy)

2 (30)

where ks is the integrated sextupole strength,

ks =
2Bpole Lsext

a2(Bρ)
.

Here Bpole denotes the pole-tip field, Lsext is the sextupole length, a is the pole-tip

radius of the sextupole and Bρ is the magnetic rigidity. Again, the minimization

of x–y coupling gives rise to the above simplified expression of the skew sextupole

kick. This kick will in turn give rise to an offset at the scraper

∆yscr = Ry12 ∆y′sext , (31)

where Ry is the vertical transfer matrix between sextupole and scraper. Combining

the above equations we arrive at the condition

1

2
Ry12 ks n

2εy βy,sext ≥ gy . (32)

4.1.2 Resistive wall wakes at the vertical scrapers
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As we showed earlier the resistive wall wakefield kick at the scraper is given

by

∆y′scr = C2

f(τ)

〈f2(τ)〉1/2
∆〈yscr〉
g3
y

Lscr (33)

which becomes at the downstream sextupole

∆ysext = Ry12 ∆y′scr . (34)

An offset through the skew sextupole gives rise to a normal quadrupole kick of

magnitude

∆y′sext = (ks ∆ysext) y .

We require that the rms value of these kicks be less than σ′y/5 (to avoid unaccept-

able longitudinal jitter of the final focal point),

ks〈(∆ysexty)
2〉1/2 ≤ 1

5
σ′y . (35)

Condition (35), combined with eqs. (33) and (34) becomes,

C2ksR
y
12 Lscr βy,sext ∆〈yscr〉 ≤ 1

5 g
3
y . (36)

The jitter at the scraper can arise from two sources:

(a) The jitter in the beam emerging from the linac, which can be written in

terms of the jitter in the slope at the skew sextupole,

∆〈yscr〉 = tσscr = tRy12

√
εy

βy,sext
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where we assume that the jitter emerging from the linac is “t” sigma. In

subsequent calculations t is chosen to be 1/5.

(b) Jitter created by the skew sextupole kick because of beam centroid jitter at

the skew sextupole. After subtracting out the average jitter, this term equals

∆〈yscr〉 = 1
2

√
2 t2ksεy βy,sext R

y
12 . (37)

In our design the main source of jitter is (b), hence we can write condition

(36) from item (b) alone,

C2k
2
sεy(R

y
12)

2 Lscr β
2
y,sextt

2 ≤
√

2
5 g3

y . (38)

Another possible source of jitter at the scraper is incoming energy jitter at the

sextupoles. In our design however the vertical dispersion at the sextupoles is small,

and hence this term is negligible.

4.1.3 Long sextupole aberrations

The potential for long-sextupole aberrations is given by [7,8]

VLS =
1

48
k2
s Lsext y

4

assuming small horizontal beam size. Therefore the long-sextupole kick is

∆y′ =
1

12
k2
s Lsext y

3

and we require

〈(∆y′)2〉1/2 ≤ 1

5
σ′y .
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This leads to the condition

5
√

15

12
k2
s Lsext εy β

2
y,sext ≤ 1 .

For the two sextupoles of the −I transformation, the above equation determines

the maximum allowed vertical β-function,

βy,sext ≤ 23, 000 m . (39)

We assumed a pole-tip field of 1 Tesla, pole-tip radius of 1 mm and sextupole

length of 10 cm.

Equations (32), (38) and (39) determine the parameter space for the vertical

plane, once the values of Ry12 and Lscr are specified. The scraper length was chosen

to be equal to three radiation lengths of Ti, namely 11.3 cm. To arrive at this value

we used the code EGS [9] to calculate the number of electrons that make it through

the 3X0 of Ti, with energies between 245 and 250 GeV. We found that 5 out of 107

electrons belong to this energy bin. A plot of the penetration probability versus

target thickness in radiation lengths is shown in fig. 8.

If one assumes 1011 initial electrons with 1% in the tails, 109 particles may

hit the scraper. The attenuation of 5 × 10−7 implies 50 particles have lost less

than 2% of their energies. Hence another scraping section might be necessary for

sufficient attenuation. Also particles hitting the scrapers near the edge may exit

the scraper with little energy loss and subsequent scraping is required to remove

them from the beam.

The value of Ry12 is directly related to the total length of the system and

hence it should be kept minimum. For Ry12 = 50 m (which corresponds to a

length between sextupole and scraper of about 30 m), an 11.3 cm long scraper and

scraping beyond 5 σy, we plotted the above equations in fig. 9.
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The region A enclosed by the three curves corresponds to the allowed space.

Now we can choose the parameters of the collimation design in the vertical plane:

βy,sext = 6, 000 m and gy = 95 µm .

Next we check to see that the geometric wakefield condition is satisfied both at

the scrapers and the sextupoles for the above choice of parameters.

4.1.4 Geometric wakefields at the vertical scrapers

Following arguments similar to the ones employed before, and assuming un-

tapered scrapers we arrive at

βy,sext ≤
g2
y

25C2
1 k

2
s (Ry12)

4 εy
.

This equation implies that

βy,sext ≤ 14, 000 m ,

which is satisfied.

4.1.5 Geometric and resistive wall wakes at the sextupoles

The geometric wakefield condition eq. (10) at the sextupoles, for an offset

∆〈y〉 = σy,sext ,

is satisfied for βy,sext ≤ 240 m. In our design βy,sext = 6, 000 m so we clearly have

to taper the beam pipe at the sextupoles. In order for eq. (10) to be satisfied, the
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taper angle must be

θtap,sext ≤ 20 mrad .

Each tapered section of the sextupoles is then 25 cm long, assuming that the beam

pipe radius is 5 mm.

To calculate the magnitude of the resistive wall wakes from the tapered

sextupoles we use eq. (18) with L0 = 10 cm, L/2 = 20 cm and g0 = 1 mm.

For ∆〈y〉 = σy,sext,

〈(∆y′rw)2〉1/2 ' 1

10
σ′y,sext ,

hence the resistive wall wakefield condition is satisfied at the sextupoles.

4.1.6 Horizontal considerations

An important consideration that determines the x-plane parameters is the

x-y coupling at the sextupoles. To minimize coupling effects we must ensure that

at the sextupoles,

ks y
2 À ks x

2 ,

which establishes a condition on βx at the sextupoles,

βx,sext ¿ βy,sext

εy

εx
.

In our case,

βx,sext ¿ 60 m .
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If we place the horizontal scrapers at a relatively high βy point, i.e., at βy ' 600 m,

then in order to ensure scraper protection, βx at this point must be greater than

1,400 m. In fact we chose

βx,scr = 2, 000 m

which implies a scraper gap gx = 700 µm for 5 σx scraping. Once the β-function

at the scraper is fixed, the β-function at the sextupoles follows,

βx,sext = 0.1 m .

The condition ks y
2 À ks x

2 implies that the kick in the vertical plane

due to a horizontal displacement is small. In addition, there is a horizontal kick

proportional to xy. However, this kick can also be neglected, since the resulting

displacement at the horizontal scraper is negligible (of the order of 0.1 µm), which

is a result of the relatively small horizontal beam size at the sextupoles.

We now address the question of geometric and resistive wall wakefields at the

horizontal scrapers. Again here both wakefield kicks must be below σ′x/5. These

conditions are simultaneously satisfied if the horizontal scrapers are tapered by an

angle of 43 mrad. Each tapered section of the scrapers is then 10 cm long.

Finally we check to see if the horizontal geometric wakefield kick from the

sextupoles is below the σ′x/5 limit. It turns out that this condition is satisfied for

βx,sext ≤ 240 m ,

well above our design value of 0.1 m for βx,sext.

4.1.7 Lattice — Energy collimation
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A lattice design which satisfies the above specifications is presented in fig. 10.

It starts with a −I transformation where horizontal and vertical scraping of

the first phase space direction takes place. This is followed by a 2 π section dedi-

cated to energy collimation. Next there is a 3π/2 phase advance in the horizontal

plane and π/2 in the vertical plane transformer section. A phase advance of π/2

in both planes would have been possible at the expense of considerable increase in

length. The last section of the line is identical to the first one. It is used to scrape

the second phase space direction and energy again. The total length of the system

is about 500 m.

Energy collimation is done by transforming off-energy particles to large am-

plitude ones through the introduction of horizontal dispersion. There are two

scrapers in each energy scraping section placed at high dispersion points. The hor-

izontal and vertical β–functions at these locations are the same as the ones at the

horizontal scrapers. Both energy scrapers consist of a thin (' 3 X0) and a thick

part (' 20 X0). The thin part will be responsible for the primary beam energy

collimation. By making it thin we bypass protection problems that occur within

the body of the scraper, if the whole beam is offset. The role of the thick part

will be to absorb the debris from both horizontal and energy collimation that has

occurred upstream. If the beam is offset, the beam area at this second scraper is

much larger and thus protection of the scraper is insured.

Furthermore each of the two energy collimation sections includes a normal

sextupole pair forming a −I transformation. Their function is to correct the hor-

izontal chromaticity. To correct the vertical chromaticity a small amount of ver-

tical dispersion has been added to the lattice at the skew sextupoles. Simulations

show that this entire lattice demonstrates an excellent behavior with respect to

chromatic and chromo-geometric aberrations in both transverse planes.
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4.1.8 Stability tolerance on scraper offset

We mentioned earlier that beam jitter at the sextupoles is the main source

of beam jitter at the scraper. Thus, in order to determine the stability tolerance

on the scraper offset, we use eq. (37) to find

y0,scr ≤ 0.20 µm .

From eq. (4) one can estimate an absolute steering tolerance by requiring

that

〈(∆y′rw)2〉1/2 ≤ 1

5
σ′y,scr

and solving for ∆〈y〉. It turns out that this tolerance is

∆〈yscr〉 ≤ 6.6 µm .

Notice that as the scrapers are moved in to place the beam must be held steady

at the sextupole with a steering corrector. The above tolerance requires that the

scraper motion be smooth at the 0.2 µm level.

4.1.9 Stability tolerance on sextupole offsets

In order to get some insight into the question of tolerances we derive a general

result for the tolerance on the sextupole offset. If we combine the scraping condition

eq. (32) with the requirement that the quadrupole-like kick due to the sextupole

offset y0,sext must satisfy eq. (35),

ks y0,sext〈y2〉1/2 ≤ 1

5
σ′y ,
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we arrive at

y0,sext ≤
n2

10

Ry12 εy

gy
. (40)

Notice that the only parameters that can affect this offset tolerance are effectively

the length of the system (via Ry12), the scraper gap and the number of σ’s we are

scraping at. For our choice of parameters this jitter tolerance on sextupole motion,

is

y0,sext ≤ 0.13 µm .

4.1.10 Protection of scrapers

As we mentioned in the Introduction there are two problems associated with

a train of bunches hitting the scrapers: the first occurs at the surface of the scraper

while the second occurs in the body of the scraper. The surface of the scrapers is

protected by design. More precisely, at the horizontal scrapers the area occupied

by 1σ of the beam is

σx σy = 140 µm× 7.9 µm = 1, 100 µm2 ,

close to the 900 µm2 limit quoted earlier. Later designs will improve on this.

For the vertical scraper one can calculate the maximum particle density on

the scraper for a beam which is mis-steered by more than nσy,

dN

dxdy
=

N

2π nksR
y
12 εy ε

1/2
x βy,sext β

1/2
x,scr
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where N is the number of particles per train now. In order for the vertical scrapers

to be protected,

dN

dxdy
≤ N

2, 000× 10−12
m−2

where the more stringent limit of 2, 000 µm2 has been chosen instead of the 900 µm2

quoted earlier. For ten bunches of 1010 particles per bunch the above criterion

becomes

dN

dxdy
≤ 5× 1019 m−2 . (41)

In our design

dN

dxdy
= 3× 1018 m−2

far beyond the 5× 1019 m−2 limit of eq. (41).

The problem of the body of the initial scrapers is solved by making the

scrapers short, three radiation lengths of the material.

4.2 Scheme with octupole pairs

It is of interest to calculate the stability tolerances for octupole magnets. It

turns out that for octupoles

y0,oct ≤
n2

3
√

3

Ry12 εy

gy

which leads to tolerances about a factor of 2 looser than for eq. (40) with the same

choice of parameters. However, displaced octupoles give rise to sextupoles. Thus

there is a need to have correctors for such aberrations, or diagnostic techniques to

eliminate them. Also, the jitter tolerance at the octupoles is more than a factor
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of two tighter than for the sextupoles. This is because jitter at the scraper due to

beam jitter at the nonlinear element varies linearly with the offset for octupoles,

whereas it varies quadratically for sextupoles.

5. Conclusions

We have illustrated a possible collimation scheme for a TeV linear collider.

We have precluded the possibility of using mechanical scraping for the vertical

plane in the NLC design. We presented a possible alternative which employs me-

chanical collimation for the horizontal plane and nonlinear collimation (scheme

with skew sextupole pairs) for the vertical. This design succeeds in satisfying all of

the requirements imposed on collimation systems, including effective collimation

of transverse and energy tails, control of wakefield effects, protection of scrapers,

and control of geometric and chromatic aberrations. The stability tolerances at

the scrapers and sextupoles are similar to those occurring in the NLC Final Focus

system; given the precision of the beam position monitors envisioned for an NLC

Final Focus, these tolerances should not rule out nonlinear collimation as a candi-

date for beam scraping in a future linear collider.
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Appendix A:

Basic Concepts

The transverse motion of a particle in a linear accelerator consists of betatron

oscillations about a central trajectory. The transverse displacement of the particle

xβ from the central trajectory can be expressed as

xβ = Aβ1/2(s) cos [ψ(s) + δ] , (A.1)

where A and δ are constants determined by the initial conditions, and β(s), the

Courant–Snyder amplitude function [10], is a periodic function of s, with periodic-

ity determined by the magnetic lattice. This is a pseudoharmonic oscillation with

varying amplitude β1/2(s), and wavelength

λ = 2π β(s) . (A.2)

The phase advance ψ(s) is given by

ψ(s) =

s∫
0

ds′

β(s′)
, (A.3)

and is equal to the number of oscillations in radians, per period of s.

Let us now consider a Gaussian distribution of particles, instead of a single

particle. The rms emittance ε is then related to the betatron amplitude by

(xβ)
2
rms ≡ σ2

x = β(s) ε . (A.4)
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In the presence of linear fields the emittance is an invariant; therefore, the betatron

amplitude becomes a local measure of the beam size. For an arbitrary distribution

of particles, the emittance is defined by

ε =
√
〈x2〉〈x′2〉 − 〈xx′〉2 , (A.5)

where the average is taken over the beam particles.

Note that throughout this paper, σ will denote the standard deviation of the

Gaussian distribution of the beam in either of the transverse dimensions x or y.

Similarly, σ′, often referred to as the angular divergence of the beam, will denote

the standard deviation of the Gaussian distribution of the beam in either of the

angular dimensions x′ or y′.
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Appendix B:

Emittance growth due to transverse wakefield kicks from a scraper

We calculate the effect of a wakefield kick of the form

∆y′(z) =
4 reN

γ

∆〈y〉
g

1
√

2π σz
e
− z2

2σ2
z (B.1)

on the beam emittance. The emittance with respect to the beam centroid is defined

by

ε2 =
〈
(y − 〈y〉)2

〉 〈
(y′ − 〈y′〉)2

〉
−
〈
(y − 〈y〉)(y′ − 〈y′〉)

〉2
(B.2)

where y and y′ are the vertical displacement and slope of a particle from the central

trajectory, and the average is taken over the beam distribution, along y, y′ and z,

given by

f(y, y′, z) dy dy′dz =
β

(2π)3/2 σ2σz
e
−

[y2 + (βy′ + αy)2]

2σ2 e
− z2

2σ2
z dy dy′dz .

(B.3)

Under a transverse kick of the form (B.1),

〈y〉 = 0 and 〈y2〉 = σ2 , (B.4)

since the kick simply displaces the beam distribution along the y′ axis by a constant

amount ∆〈y〉/g, without changing the distribution along the y-axis.
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Furthermore,

〈y′〉 =
Θ1
√

2
, (B.5)

and

〈y′2〉 =
σ2

β2
(1 + α2) +

Θ2
1
√

3
, (B.6)

where

Θ1 ≡
4 reN
√

2π σz γ

∆〈y〉
g

. (B.7)

Also,

〈yy′〉 = −σ
2 α

β
. (B.8)

Thus the total emittance is given by

ε2 = ε20

[
1 +

(2−
√

3)

2
√

3

(
Θ1

σ′

)2]
, (B.9)

where ε0 = σ2/β and σ
′2 = ε0/β.

30



     

Appendix C:

Emittance growth due to resistive wall wakefield

C1. Resistive wall wakefield

The transvere wake force experienced by a test particle e, as a result of the

interaction of the dipole moment I1 of the beam distribution with the resistive wall

of a smooth, cylindrically symmetric pipe of radius g and conductivity κ is [11],

F⊥ =
2e I1

π g3

( c
κ

)1/2 1

Z1/2
, (C.1)

where

I1 =
q

√
4π ε0

∆〈y〉 . (C.2)

Upper case Z designates the longitudinal separation between the test charge and

the beam, i.e., Z = ct−z, where z is the longitudinal coordinate fo the test particle.

This expression is valid in the range

g2

λ
À Z À

(
λg2
)1/3

, (C.3)

where λ is defined as

λ ≡ 1

µ0 c κ
. (C.4)

To calculate the total force on e at point z within a Gaussian bunch,

we integrate over the appropriate distribution ahead of z. For Z near (λg2)1/3,

the exact wake force has a maximum and then goes to zero at Z = 0. How-

ever, since (λg2)1/3 ¿ σz, even if we replace the correct wake by continuing the
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expression (1.1) in this region, we make a negligible error. Thus the total force is

given by

Fe(z) =
e2N
√

2π σz

c Z0

π

(
λ

π

)1/2 ∆〈y〉
g3

∞∫
z

dz′

(z′ − z)1/2
e
− z

′2

2σ2
z , (C.5)

and the transverse kick is given by

∆y′(z) =
Fe(z)L

mγ c2
, (C.6)

where L is the length of the finite conductivity element, e.g., the scraper.

Thus, the wakefield kick is given by

∆y′(τ) =
4 reN L

γ

(
λ

π σz

)1/2 ∆〈y〉
g3

1
√

2π

∞∫
0

dτ ′
√
τ ′

e

−(τ − τ ′)2
2 , (C.7)

where τ = z/σz denotes the location within the bunch.

C2. Emittance growth

Now we calculate the effect of this wakefield kick on the beam emittance.

The emittance with respect to the beam centroid is given by (B.2) and the average

over the beam distribution yields

〈y′〉 = Θ2

Γ(1/4)

2
√

2π
, (C.8)

〈y′2〉 =
σ2

β2
(1 + α2) + Θ2

2

K(
√

3/2)

2
√
π

, (C.9)
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〈yy′〉 = − σ2α

β
, (C.10)

where K is the complete elliptic integral and Θ2 is defined by

Θ2 ≡
4 reN L

γ

(
λ

π σz

)1/2 ∆〈y〉
g3

. (C.11)

The total emittance is given by

ε2 = ε20

{
1 +

Θ2
2

2
√
πσ
′2

[
K(
√

3/2)−
Γ2(1/4)

4
√
π

]}
, (C.12)

where σ
′2 = ε0/β.
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Figure Captions

1. Layout of a typical final doublet for X-Band beam parameters.

2. Kick of one scraper edge for beam size σz = 1.0 mm and scraper gap

g = 0.5 mm. The dotted line is the charge distribution.

3. Resistive wall wakefield as a function of the longitudinal position inside

the bunch.

4. Definition of the parameters entering the calculation of tapered scrapers.

5. Phase space plot of a beam distribution extended to 20 σ. The two curves are

the angular deflections of a beam particle as functions of its position due to

sextupole and octupole fields (σ = 8 µm, β = 2, 000 m).

6. Nonlinear collimation.

7. Schematic representation of the collimation systems in the NLC, located

between the linac and final focus (FF). S̄ stands for skew sextupole; x, y, E

stand for horizontal, vertical and energy scraper respectively.

8. Penetration probability versus target thickness, in radiation lengths of Ti,

for energies between 245 and 250 GeV.

9. Parameter space for nonlinear collimation with sextupoles.

10. Optics design for the collimation systems in the NLC.
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