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I.  INTRODUCTION

A fundamental test of the picture that hadron production in e+e- collisions

proceeds through the formation of a virtual photon which then couples to the

charges of a quark-antiquark pair is the measurement of the lowest-order hadronic

cross section, aiod , divided by the calculated lowest-order p-pair cross section,

0Use. This ratio, R, is expected to depend only on the dynamics of the coupling

of the quark-antiquark pair to the virtual photon.

In the quark-parton  model’ (&PM), where strong interaction effects among

the outgoing quarks are neglected, R is equal to the sum of the squares of the

quark charges (Qi) times a kinematic factor:

kPM = 32 (pi(3; “‘) Qf ,

i = l

where

( >
l/2-

Pi =
s-4mf

7
s

P-11

[I.21  -

m; is the mass2 of the jth quark, ,L?i is its velocity relative to the speed of light,

fi is the center-of-mass energy of the e+e- system, nf is the number of quark

flavors which can be produced, and the factor of 3 accounts for the three different

color degrees of freedom. In the energy region of the measurements reported in

this paper, nf = 4, and &JPM M 3.3. According to the theory of Quantum

Chromodynamics (&CD), the emission of one or more hard gluons in the final

state is expected to raise this prediction by about lo%, an increase which is

proportional to the value of the running strong coupling constant, a,(s).

Previous measurements3 of R in the range 5.0 < fi < 7.4 GeV have indi-

cated a possible discrepancy4 between theory and experiment. At fi = 7.0 GeV
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the data lie about 16% above the theory, while at 5.0 GeV the discrepancy is

only 5-8%. The systematic scale error in these data is typically l&12%.  While

the apparent disagreement between theory and experiment may be due to sys-

tematic problems in the data, Barnett et ~1.~ have considered the possibility that

there may be a threshold for new particles near fi = 6.0 GeV. To resolve these

possibilities, the Crystal Ball collaboration undertook a program to measure R

with reduced systematic errors. Initially, data were collected at fi values of 5.2,
-_- -

6.0, 6.5 and 7.0 GeV for a total integrated luminosity of 0.4 pb-‘. A second,

higher statistics run covered 11 energy points between 5.0 and 7.4 GeV for an

integrated luminosity of 3.8 pb-‘. These two datasets are henceforth referred to

as “Run 1” and “Run 2,” respectively. All data reported here were collected at

the SLAC e+e- storage ring SPEAR.

The experimentally measured value of R is obtained as follows:

&3p= 4%
PP f-$p * q&ad * (1+ 6) ’

obs N co11  -
ahad  = L

,

obswhere ahad is the observed hadronic cross section for e+e- annihilation into

hadrons; Zhad is the calculated detection efficiency for observing these events.

The bar indicates that this efficiency is averaged over all hadronic events, in-

cluding those with initial-state radiation. The factor ghad contains the higher-

order Quantum Electrodynamic (QED) corrections which must be applied to

&zd
obsin order to obtain dhad . The quantity NC011 is the number of candidate

hadronic events recorded during a colliding-beam run with integrated luminosity

and selected by appropriate criteria. To obtain gi$ , the number NC011 must be
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corrected for backgrounds from beam-gas scattering, r decays and two-photon

collisions. Nbg , the number of background beam-gas events, is estimated from

separated-beam data collected at each energy. The terms (~a),, and (~a),,~ are

the calculated cross sections for detecting events from the background processes

and

e+e-  + r+r-(r) , r* + anything PI

-_- - e+e- + e+e-yy  , yy + hadrons P-61

in the colliding-beam data sample.

In Section II, the properties of the Crystal Ball detector relevant to the R

measurement are described. In Section III, the procedure to obtain the beam-

beam luminosity is presented. Section IV describes the criteria for selecting can-

didate hadronic events from e+e- annihilation. Sections V.l and V.2 describe the

procedures used to estimate the backgrounds in the colliding-beam data sample

due to beam-gas, r-pair and two-photon collision processes. Section V.3 discusses

the calculation of the efficiency &d for observing annihilation hadronic events

in the apparatus after event selection criteria have been applied. In Section V.4,

the results of the radiative correction procedure described in Appendix A are

presented. In Section V.5, the sensitivity of the results to the criteria used to

reject beam-gas events is explored. In Section VI. 1, the measured R values are

presented and compared with results obtained by other experiments in the range

5.0 < fi < 9.4 GeV. In Section VI.2, the QCD prediction for R (henceforth

referred to as RQcD) is fitted to the data to extract (Y, at fi = 6.0 GeV. A com-

parison is then made with other values of os as determined from measurements

of R in the PEP/PETRA energy range.
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II.  APPARATUS

The Crystal Ball detector shown in Fig. 1 is a nonmagnetic calorimeter de-

signed to measure electromagnetically showering particles (y, e*) with excellent

resolution in energy and angle. The various components of the detector have

been described in detail elsewhere5j6; the properties especially relevant to this

measurement are summarized below.

-The main component of the Crystal Ball detector is a transversely segmented

shell of 672 thallium-doped sodium iodide [NaI(TZ)] crystals, 16 radiation lengths

thick, providing 93% of 47r steradians solid angle coverage for both neutral and

charged particles. Under experimental operating conditions, this portion of the

detector (henceforth referred to as the “Ball”), achieves a photon energy resolu-

tion a,y/E = (2.7 f 0.2)%/E1/4  (E in GeV) and an energy-dependent angular

resolution of lo to 2’. Four auxiliary arrays of NaI located near the, beam pipe ~

extend the solid angle coverage of the main ball to 98% of 47r steradians. Signals

from this portion of the apparatus, referred to as the “endcap” crystals, are not

used in this analysis. The energy calibration of the NaI(TI) crystals has been

described in detail elsewhere.5y6

In addition to the NaI(TZ), a central tracking system of magnetostrictive

(MS) and multiwire proportional (MWPC) hc ambers immediately surrounding

the beam pipe provide charged and neutral particle separation over the entire

solid angle covered by the Ball.

Two independent triggering systems permit the detection of multihadron

events entering the solid angle of the Ball with nearly 100% efficiency. Figure 2

illustrates the geometrical layout of the Crystal Ball detector. The icosahedron,
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or 20-sided polygon, forms the basis for the detector’s geometry, although the

crystals are stacked to form two mechanically separate hemispheres, one above

and one below the plane of the SPEAR storage ring. Each face of the icosahedron,

or “major triangle,” is subdivided into four smaller units, or “minor triangles.” In

turn, each minor triangle consists of nine optically isolated crystals, also referred

to as “modules.” Triggers are constructed from the analog sums of signals from

.the minor triangles, as well as from the central tracking system.5 Neither the

endcap modules nor the first layer of modules surrounding the tunnel region are

used in defining the various triggers.

The first triggering system5  initiates the readout of the apparatus if any of

the following conditions are met:

1. Total energy trigger: The total energy in the Ball exceeds 1100 MeV.

2. Topology trigger: At least 150 MeV of deposited energy is required in 2 1 ((

major triangles in each of six hemispheres defined by three different planes

each containing the beam axis. 7 Although not available during Run 1, this

trigger imposes a loose momentum balance requirement perpendicular to

the beam direction, allowing the detection of low-mass states produced in

yy collisions.8

3. Multiplicity trigger: In two or three major triangles the deposited energy

per major triangle exceeds 140 MeV and signals from the MWPC chamber

indicates the presence of a charged track, or the energy in each of four or

more major triangles exceeds 140 MeV.

4. Quarlc trigger: In one or more pairs of back-to-back minor triangles, the

energy per minor triangle exceeds 40 MeV.
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A second, electronically independent system5  generates triggers if either or

both of the following two conditions are satisfied:

1. NIM total energy trigger: A total energy trigger similar to the one men-

tioned above.

2. NIM topology trigger: The energy in each of the two mechanically separate

hemispheres exceeds 140 MeV and the total energy in the Ball is greater

---than 600 MeV.

Each of the triggers is required to register signals only within a 40-nsec gate

centered on the beam-crossing signal. Typically, data are logged at a trigger rate

of 3 to 4 hz corresponding to a live time of about 85%.

The most important trigger for this analysis is the total energy trigger. The

efficiency of all triggers for detecting hadronic events is included in the overall

hadronic event detection efficiency discussed in Section V.3. The overall trigger *

efficiency is estimated to be greater than 99% for Monte Carlo-simulated hadronic

events which pass the selection criteria described in Section IV.

Finally, a precision small-angle luminosity monitor provides a second deter-

mination of the beam luminosity which complements the measurement made by

the Ball. The design of this device is essentially the same as that used in a pre-

vious experiment at SPEAR.’ This monitor records Bhabha-scattered electrons

and positrons emerging at approximately 4.25’ relative to the beam direction.

Each scattered particle passes at nearly normal incidence through a 0.03 radi-

ation length thick beam pipe window. Four lead scintillator shower counters,

each 12.5 radiation lengths thick, are mounted symmetrically about the inter-

action region in the plane of the SPEAR storage ring to measure the energy of
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the scattered leptons. A fiducial-defining scintillation counter and its associated

shower counter, together with the shower counter in the opposite arm, defines a

luminosity monitor “arm.” The coincidence rates in all four arms are summed

together to provide a measure of the Bhabha counting rate which is insensitive to

relative transverse and longitudinal displacements between the interaction point

and the monitor.g

-In summary, the features of the Crystal Ball detector particularly relevant to

the R measurement are:

1. Its large and uniform acceptance.

2. The calorimetric nature and redundancy of the event triggers which allow

hadronic systems to be detected with high efficiency.

3. A precision small-angle luminosity monitor complementing the luminosity

measurement in the main Ball.

III. LUMINOSITY

The luminosity of the colliding e+ -e beams is measured using the QED

processes:

e+e- + e+e- 7 [III.11

e+e- +-i-f 7 [III.21

where one or more radiative photons may also be present in each reaction. Two

independent methods are used to measure the luminosity. Method 1 measures
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the small-angle Bhabha scattering rate (process [III.l]) into precision luminos-

ity counters located around the beam pipe. Method 2 measures the large-angle

Bhabha and yy QED rates into the Ball itself. The value of L is obtained by av-

eraging the results of the two methods. A comparison of the two results provides

an estimate of the systematic error. For both methods, the integrated luminosity

for a certain period of data taking is given by:

-_- -
L=Z ) [III.31

where N is the number of QED events observed and CJ is the QED cross section

associated with the small-angle monitor (asmall)  or the Ball (clarge).

The small-angle luminosity monitor constant, s a gsrnall , is determined by a

numerical integration of the radiative Bhabha cross section” over the acceptance

of the monitor. The small-angle monitor constant is determined to be:
0

s ~~~~~~~ = 17240 (GeV2-nb) . [III.41

In the large-angle luminosity measurement, only the energies and directions

determined from the electromagnetic shower patterns in the Ball are used to iden-

tify QED events. No charged-particle “tag” from the central tracking chambers

is required. Thus, there is no systematic uncertainty in the luminosity measure-

ment due to tagging efficiency; both QED processes [III.11 and [III.21 contribute

to the large-angle luminosity event sample.

To identify large-angle QED events, each recorded event is analyzed for con-

nected regionsl2 of energy. Each connected region of energy in the NaI(TI) is
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scanned for local energy maxima. The module containing the local maximum en-

ergy is referred to as the “bump” module. A direction is then associated with that

bump, using a modified version of the shower direction algorithm described in

Ref. 13 to take into account the vertex position. The shower energy is computed

by summing the energy deposited in the bump module with the 12 neighboring

crystals. The lateral energy distribution in the 13 crystals is used to correct the

‘summed energy for position-dependent energy losses.5 A global correction factor

of 1.02255 is also applied to account for lateral leakage outside of the 13 crystals.

This corrected energy sum is henceforth referred to as Ec13 .

Events from processes [III.11 and [III.21 are selected by the following QED

criteria:

1. At least two showers each with ~13 > 0.5, where 213  = 2 . Ec13/&.

2. For at least two showers satisfying the previous condition, 1 COSTS]  < 0.75 ,

where 0: is the angle between the shower direction vector and the beam

direct ion.

3. For at least one pair of showers satisfying the previous two criteria, the

smaller of the two angles dacop between the shower vectors projected onto

the plane perpendicular to the beam direction must satisfy 160’ < &,p <

180’.

The Berends-Kleiss Monte Carlo event generators14v15  are used to calculate

the observed large-angle cross sections for processes [III.11 and [III.21 at fi = 5.2,

6.0, 6.75 and 7.4 GeV. These generators include order-a radiative corrections to

the lowest order processes. The magnitude of the radiative correction is ap-

proximately 3% in all cases. The generated Bhabha events are required to have
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lcos 0: 1 < 0.985 for the e+ and e- tracks, where 0: is the angle between the gen-

erated Monte Carlo track and the beam direction. In addition, events from either

reaction are required to have at least two generated tracks with lcos@I < 0.88

and E/Ebeam > 0.1. For both processes, the product s .cr is independent of fi .

The longitudinal position of the event vertex is generated by convoluting two

Gaussian beam bunches. Each bunch is assumed to have a longitudinal standard

deviation gbUn,.h of 2.5 cm. The size of the luminous region is then (TbUnch/&

or 1.8 cm. The Z- and y-coordinates of the vertex are fixed at zero.16

The response of the Ball to the generated events is simulated by passing

each sample of events through the EGSS l7 Monte Carlo program. Showers are

reconstructed in the same manner as for real data and QED criteria (l-3) are

applied. At center-of-mass energies of 5.2, 6.0, 6.75 and 7.4 GeV, Crlarge , defined

as the sum of observed cross sections for processes [III.11 and [111.2], is computed. e

The product s . glarge is s-independent and an average of s . dlarge over the four

center-of-mass energies yields

s * ulaTge = (1429 f 19) (GeV2-nb) , [III.51

where the error is due to the statistical uncertainty in the detected Monte Carlo

event sample.

Figures 3(a) and (b) hs ow, respectively, the Ec13 energy normalized to the

beam energy and the cos 8, distributions for events passing the luminosity event

selection criteria. The Monte Carlo distributions (histograms) are normalized to

the same luminosity as the data. The energy and angular distributions of the
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data are matched well by the Monte Carlo. By varying the cos 0: requirement

from 0.8 to 0.6 at fi = 7.4 GeV, the luminosity changes by less than 2%.

Table I summarizes the luminosities measured by the large- and small-angle

monitors. The average luminosity L for each data sample is defined to be the

arithmetic average of the large- and small-angle luminosities, where the statis-

tical error is dominated by the large-angle measurement. The errors on ,!ZlaTge

are-purely statistical and are obtained by adding the statistical error in giaTge

(;t 1.3%),  in quadrature with the error in the number of detected large-angle

QED events. The first error in L reflects the statistical error in the large-angle

measurement. The second error in L is the point systematic uncertainty and is

taken to be one-half of the difference between the small- and large-angle mea-

surement s.

Figure 4 displays the ratio of the large- to small-angle luminosity for both ,

running periods. The average ratios for Run 1 and Run 2 are (0.977 f 0.011)

and (0.977 f O.OOS), respectively, where the errors on these numbers are purely

statistical. The largest systematic differences between the large- and small-angle

luminosities occurs above 7.0 GeV.

In addition to the statistical and point systematic errors listed above, an

overall systematic scale uncertainty on the luminosity measurement is estimated

as follows. The systematic scale uncertainty on the large-angle luminosity mea-

surement is estimated by adding in quadrature f 2.2% from uncertainties in the

Monte Carlo simulation of the apparatus and shape of the vertex distribution

and f 2.0% based on measuring the variation of the luminosity as a function of

cos 8,. The systematic error in the measurement of the small-angle luminosity is
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estimated to be f 4.0%. la The large- and small-angle systematic errors are added

in quadrature and divided by two, to obtain a systematic uncertainty on fZ of

*2.5%. To this number an additional ztO.2%  scale error is added linearly to

account for higher-order radiative corrections,lg resulting in a f 2.7% systematic

scale uncertainty in the determination of the luminosity.

._- _ IV. HADRONIC EVENT SELECTION

This section describes the criteria used to isolate e+e- annihilation hadronic

events from events due to the following background sources:

1. Large-angle Bhabha and yy events.

2. Cosmic-ray muons and QED pp events.

3. Events from beam-gas and beam-wall scattering and collectively referred ”

to “beam-gas” events.

4. QED production of r-pairs.

5. Events from two-photon collisions.

In addition to hadronic events from e+ e- annihilation, the raw data sample

includes significant contributions from all sources listed above. The hadronic

event selection process described below effectively removes all background events

from sources 1 and 2. Beam-gas background levels are determined through

separated-beam runs at each energy; the last two background levels are esti-

mated by Monte Carlo simulation. For most of the analyses, only the deposited

energy patterns in the Ball are used to select events of a given type.
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Events are first analyzed for connected regions and bumps, as described in

Section III. Hadronic events are then required to satisfy the conditions listed

below :

1. &ED cut: Events are rejected as e+e-(7)  or y?(y) if more than one shower

has ~13 > 0.5, or if any shower has 213  > 0.75 and there are fewer than

four connected regions with at least 50 MeV of deposited energy.

2;-Multiplicity  cut: Hadronic events are required to have at least three con-

nected regions, each with at least 50 MeV of energy. In addition, at least

one bump module must be associated with a track in the central tracking

chamber.

3. Cosmic-ray cut: The time resolution of the sodium iodide’s readout elec-

tronics is insufficient to effectively reject cosmic-ray events. Instead,

cosmic-ray and pp~y events remaining in the data sample after the mul- ,

tiplicity cut are isolated by topological criteria based on the highly colli-

mated, or “jet-like” patterns of energy deposition characteristic of these

events. The following quantities, defined below, are used to select these

events. An “energy vector” & associated with the lclh crystal is defined to

be the product of the deposited energy, Ek , and the unit vector fik pointing

to the center of that crystal:

An “energy tensor” FP is defined as

[IV.11

[IV.21
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where the indices o and p refer to the three spatial components of gk . The

smallest eigenvalue of Tap is

[IV.31

where i is the unit vector parallel to the direction of the cosmic ray. P2 .t-let

is the sum of the squares of the energy vector components perpendicular

---to the direction of the cosmic ray. Candidate hadronic events are required

to satisfy

I Ickzk log10 (Pt”,.et /GeV2) + 2.8
A= ckEk I 1.8 9 [IV.41

where A is the energy-weighted asymmetry. PtWjet  is required to be larger

for events with larger energy asymmetries.

4. Beam-gas cut: The following requirement removes events with low trans- e

verse momentum relative to the beam direction and is more stringent at

higher center-of-mass energies and for events with larger energy asymme-

tries or smaller visible energies. Hadronic events are required to satisfy the

following condition:

r](xvis, p:-,, s) = loglo(Pf-,/GeV2)  - (VI(S)  + A - 72(x,;,))  > 0 , [IV.51

where the quantities xvi, , the visible energy in the Ball divided by the

center-of-mass energy, and Pf-, , the sum of the squares of the energy

vector components perpendicular to the beam direction, are defined as

Ck Ek

G
[IV.61
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[IV.71

The 71 and rl;! functions are given by

qq = -1.0 + 0.1 . (&/GeV  - 7.0) ; [IV.81

772 = 0.6 if xvi5 < 0.25 ; [IV.91

= 2.4 a(O.5  - x,is) if 0.25 < xvi3 < 0.5 ; [IV.101
-_- -

= 0.0 if Xvi3 > 0.5 . [IV.111

Separated-beam data are then used to subtract the residual beam-gas con-

tamination from the hadronic event sample (cf. Section V.1).

5. Asymmetry cuts: The left-right, top-bottom, and front-back hemisphere

asymmetries are defined as follows:

1 c hi-- c l&l
EZk>O

k

Ale jt-Tight  -
E,“<O

Ck Ek
,

[IV.131

1 c I’% - c @k(
k k

Atop-bottom  =
E;>O E;<O

ck Ek

1 c lzkl - c @kll

Af rant-back  E
Eik> 0 Eik<O

ckEk  ’
[IV.14]

[IV.121

Hadronic events are required to satisfy the following three conditions:

Aleft-right  < 0.8 3 [IV.151

Atop-bottom  -C 0.8 , [IV.161

18



Afront-back  < 0.8 . [IV.171

These requirements are designed to remove events from beam-gas inter-

actions, yy collisions and large missing energy r decays which pass the

previous requirements.

Figure 5 illustrates the requirement used to isolate hadronic events from cos-

-mic rays. The correlation between A and P2t-jet for cosmic-ray data2’ is shown in
-_- -

Fig. 5(a). Cosmic rays passing through the center of the detector produce events

with small A and small Piejet; those grazing the Ball produce events with larger

A and larger P2 .
t-let ’

The solid curve is defined by the equality in Eq. [IV.4];

events to the left of the solid curve are removed from the hadronic sample. For

camp-arison,  Monte Carlo hadronic events are generated at fi = 5.0 GeV, us-

ing the Lund Monte Carlo program JETSET 4.3, henceforth referred to as

LUND 4.3.21922 As indicated in Fig. 5(b), fewer than 4% of the reconstructed 0

hadronic events are removed by the cosmic-ray requirement.

The timing of the energy deposition in the sodium iodide relative to the beam

crossing is used to estimate the contamination due to cosmic rays. Figure 6

shows the timing in nanoseconds of the energy deposition in the sodium iodide

relative to the beam-crossing signal for different levels of event selection. The

lower and upper time limits of each plot are defined by the 40-nsec timing gate

in the experiment. The timing distribution from the raw event sample with

only Bhabha and yy QED events removed is shown as the upper histogram

in Fig. 6. The flat background of events are due to cosmic rays which comprise

about 30% of the total entries in this plot. Imposing the multiplicity requirement

and condition [IV.41 dre uces the cosmic-ray background to less than 2% of the
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remaining events, as shown in the middle histogram in this figure. Finally, the

lower histogram shows the timing distribution for events passing all hadronic

selection requirements. As seen from this figure, the background from out-of-time

events comprises about 1% of this sample. This small background is removed by

the subtraction procedure described in Section V.l.

The level of QED p-pair events in the final hadronic sample is estimated

using the Berends-Kleiss e+e- + ppy Monte Carlo event generator.23 At fi =

7.4 GeV, radiative p-pair events contribute a background of less than 0.7% to the

observed hadronic event sample. This background is neglected in the remainder

of this analysis.

The most serious sources of background in the hadronic data sample are due

to beam-gas and beam-wall interactions. Due to the limited tracking capability

of the central detector, beam-gas events cannot be removed efficiently by making ,

stringent requirements on the position of the event vertex. Instead, the beam-gas

and asymmetry requirements described previously are imposed.

At fi = 7.0 GeV, Fig. 7 hs ows the distribution of the beam-gas v-function for

hadronic events generated by LUND 4.3 and for recorded separated-beam events.

The events in both distributions have already passed the QED and cosmic-ray

requirements. The normalization of the separated-beam data is discussed in

Section V.l. The Monte Carlo sample size is the same as that of the data.

Beam-gas events in this plot having negative q are clearly separated from the

bulk of the hadronic events having positive q values.

Figure 8(a) displays the visible energy fraction xvis deposited in the Ball at

fi = 7.0 GeV, for all triggered events. This plot is dominated by the large
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number of beam-gas and yy collision events at low 2,;s , and to showering QED

events at large Xvi,  . Only about 2.5% of the events in Fig. 8(a) correspond to real

hadronic events. Figure 8(b) hs ows the 5,;s distribution in the Ball for events

passing all the hadronic event selection criteria. The backgrounds present in the

initial data sample have been nearly eliminated in the final data sample. The

remaining background sample, depicted by the shaded histogram, is estimated

‘and statistically subtracted, as described in Section V.l.

The solid curve in Fig. 8(b) is a fit to the hadronic event detection efficiency

estimated by LUND 4.3. The efficiency loss at low and high xvi8 is due to the

criteria which are designed to remove the beam-gas, yy collision and radiative

QED events. As can be seen from this curve, hadronic events with visible energy

fractions as low at 0.15 are detectable.

V. CORRECTIONS

Table II shows NCOll, the number of colliding beam events passing the hadron

selection criteria outlined in Section IV for each data sample at a given value of

6 in Runs 1 and 2. Each sample still includes background events from three

sources:

1. Nbg events from beam-gas and beam-wall interactions.

2. N,, events from -r-pair production by e+e-  annihilation (Eq. [1.5]).

3. N-,-, events from two-photon collisions (reaction [1.6]).

To obtain the corresponding values of R (Eqs. [1.3]-[1.4]),  the beam-gas back-

ground, Nag , is first statistically subtracted from NCOll, as described in Sec-
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tion V.l. The observed cross sections for the remaining backgrounds are esti-

mated by Monte Carlo simulation and subtracted from the quantity (Nc,,ll -

Nbg)/L to obtain the observed hadronic cross section, ~;lb~.  Through the fac-

tor Zhad . (1 + S), 0;1”,9d is corrected for acceptance and event selection losses and

for initial state radiation to obtain aiad. This quantity is then divided by the

calculated lowest-order p-pair cross section to obtain R.

-T-he efficiency factors appearing in Eqs. [I.31 and [I.41  are estimated by Monte

Carlo simulation. This process involves the generation of track four-vectors and

event vertices. The response of the detector to these tracks is then simulated.

Finally, events are passed through the same event reconstruction and data anal-

ysis programs as are used to analyze real data.

Tables II and III list for each data sample in Runs 1 and 2 the contributions of

these three background sources in terms of percentage of NC,,!, . The following *.

sections describe how these background estimates are obtained.

V.l Beam-Gas Background Subtraction

The hadronic event selection criteria are applied to the separated-beam data

and at each energy, the number of separated beam events Nsep surviving these

criteria are obtained. The number of beam-gas events Nbg in the corresponding

hadronic event sample is given by:

Nbg  = f - Nsep , WI

where the constant of proportionality, f, is determined by independent methods.
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In the first method, the product of storage ring pressure times beam current

for each beam integrated over time (PCT) is measured for both colliding- and

separated-beam running. The PCT information was available only during Run 2.

From this method, the normalization constant, ~PCT , is simply the ratio:

WI

For--Run 1, no storage ring vacuum information was available. Instead, the

normalization constant is determined from the ratio of colliding- to separated-

beam current integrals, / Idt.

In the second method, samples of events which fail the beam-gas rejection

requirement, Eq. [IV.5], but which pass all other hadronic event criteria are used

to determine the normalization between the colliding- and separated-beam data.

The quantities bgsep and bgcoll  are the numbers of events occupying the beam-gas e

enriched portions of the separated- and colliding-beam data samples, respectively.

The numbers of r-pair- and yy collision events contained in bgcoll, denoted as bg,.,

and bg,, , respectively, are estimated by Monte Carlo simulation (cf. Section V.2).

The number of hadronic events from e+e- annihilation in the beam-gas enriched

colliding beam sample, bghadron , is estimated by the Monte Carlo simulation

described in Section V.3. The normalization constant determined by this method

is given by:

f
b&1--

data - bgsep  ’

where
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Typically,  bg,,  ,  bg,,  ,  and @hadron comprise 4%,  l%, and 1% respectively, of

bgc,,ll.  The values obtained for fdata are not sensitive to the selection criteria

used to define the beam-gas samples.

Shown in Table II are the values of f, the arithmetic mean of the constants

~PCT  or f11dt  and fdata  - These values of f are used to compute Nbs , the expected

number of beam-gas events in each hadronic event sample, using the observed

number Nsep of beam-gas events measured during the separated beam running

and shown in Table II. The point systematic error in f is estimated to be one-

half the difference between fdata and fl Idt (Run 1) or fdata and fPCT (Run 2).

This error is then propagated through Eqs. [I.31 and [I.41 to compute the point

systematic error in R due to the beam-gas subtraction.

The percentage values of Nbg/NCOll  are shown in Table II. During Run 1, the

background levels ranges from 6% to 15%. In Run 2, the beam-gas contamination e

varies from 8% to 12% except at fi = 7.4 GeV, where the background level is

nearly 18%.

As can be seen from Table III, the relative agreement between the two deter-

minations of the normalization constant is usually better than &lo%. However,

systematic differences between colliding- and separated-beam running conditions

may exist which are not accounted for in f. For example, fPCT, which depends

only on the storage ring pressure and beam currents, will not reflect changes in

background rates due to systematic differences between colliding and separated

beam orbits. The quantity fdata is expected to track such differences.

To estimate the systematic error in f due to different colliding- and separated-

beam operating conditions, the ratio of normalization constants f/fdata is exam-
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ined. The average value for this quantity in Run 1 and Run 2 is 1.05 and 0.95,

respectively. Based on these estimates of systematic differences between colliding-

and separated beam running, we conservatively estimate an overall 10% uncer-

tainty on f. When propagated through Eqs. [I.31 and [1.4], the error in f results

in a f2.2% uncertainty in R.

The remaining significant backgrounds to hadronic events in the colliding-

beam sample arise from processes [I.51 and [1.6]. Monte Carlo estimates of the

observed cross sections are made for each process, as discussed below.

V.2 T-Pair and Two-Photon Background Subtraction

To estimate the observed cross section for radiative r-pairs, the Berends-

Kleiss Monte Carlo program24 is used to generate radiative r-pair four-vectors.

The matrix elements used for the various decay modes of the r are described in
/(

Ref. 25; the branching ratios used in the Monte Carlo simulation are obtained

from Ref. 26.

Figure 9 shows the produced and observed radiative r-pair cross sections.

The fraction of r events surviving the hadronic event selection criteria is 3(r

36%,  depending on the center-of-mass energy. The percentage values of N,,/N,,ll

where N,, = L( EO),, are shown for each energy in Table III. The overall mag-

nitude of the r-subtraction is about S-10%.

The major systematic uncertainty in (~a)rr is due to the modeling of missing

T decay modes. Approximately 92% of all r decays have been accounted for

in exclusive decay channels. The unobserved exclusive decays are assumed to

proceed through the following modes:
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W51
+ 7+27r-27r+z+  ,

with branching ratios of 2.0%,  2.8% and 2.8%,  respectively. Approximately 13%

of the Monte Carlo r decays surviving the hadronic event selection criteria come

-from these modes. Assuming the r detection efficiency is uncertain by 10% due._ _

to the modeling of the missing decay modes leads to a relative uncertainty in R

of f 1.0%. The relative uncertainty in (~a),, due to the Monte Carlo model for

r production is estimated to be f 5%, leading to a relative uncertainty in R of

f 0.5%. Scaling the f 2% systematic error in the detection efficiency of hadronic

events (cf. Section V.3) by the ratio de,, . (1 - err)/(zhad  . (1 - &ad)) leads to

an absolute systematic error of N f 3.0% in the r detection efficiency due to

uncertainties in the modeling of the detector.- Propagating this error through ’

Eqs. [I.31 and [I.41 leads to a f 0.3% relative uncertainty in R. Combining these

errors in quadrature, the total systematic error in R due to the r subtraction is

estimated to be f 1.2%.

To study the hadronic background due to two-photon collisions, a Monte

Carlo model written by D. Burke and L. Golding27 based on the Equivalent

Photon Approximation28 is used to generate events. In this model, the two-

photon collision cross section cry7  is given by

9
dW2 F(W2,s)aF7(W2)  ,

w?L

a&(nb) = 300 + 800/W (GeV) ,

W-Y

WI
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where F(W2, s) is the photon flux factor, W is the available energy in the yy

center of mass, and gT7 ( W2) is the transverse photon-photon cross section for

hadron production evaluated in the limit q2 -+ 0. Wmin is set to 1.0 GeV. The

expression for gyyT in Eq. [V.7] is consistent with the results reported in Ref. 29

and Ref. 30.

-In the Monte Carlo model, all particles in the final state are assumed to be

pions, and 7r+, 7r- and 7r” are produced with the same probability. The track

momenta are generated according to a limited transverse momentum phase space

distribution about the yy direction in the hadron  center-of-mass system. The

transverse momentum spectrum for each track is modeled by a single Gaus-

sian distribution. The average transverse momentum per track is chosen to be

0.5 GeV. A Poisson distribution with a mean-value of 2.1 + 1.6 . log(W/GeV) I

is used to describe the total particle multiplicity. Figure 9 shows the resulting

values of gyy and (w)~~. Approximately 10% of the hadronic events from pro-

cess [III.21 survive after the hadronic selection criteria have been applied. The

percentage values of N,,/N,,,ll where NY7 = L( EO.)~~ are shown for each energy

in Table III. The background of two-photon events in the final hadron  sample is

2%004%.

The systematic scale error in R from the two-photon background subtraction

is estimated to be f 1.0%. This error is primarily due to uncertainties in the

modeling of the production of hadrons emanating from the two-photon interac-

tion and in the overall magnitude of the two-photon cross section into hadrons.
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V.3 Hadronic Event Detection EfRciency

The term Chad is the fraction of produced hadronic events which are recon-

structed and which satisfy the event selection criteria described in Section IV.

Monte Carlo calculations are used to estimate Zhad.  The production of quark

and gluon jets and their subsequent fragmentation into hadrons is simulated by

LUND 4.3. Baryons are built up from quark-antidiquark systems, where an

ant&quark consists of two quarks in a color anti-triplet state.31 The standard

parameter values of this model are used, with two exceptions:

1. A somewhat harder charmed-quark fragmentation function, derived from

D-meson spectra and di-muon production in UN interactions32 is used.

2. The probability to produce a diquark is taken to be 6.5%,  as suggested by

SPEAR data,33 rather than 7.5%.

As shown below, this model reproduces the global features of the data (e.g., ’

visible energy, multiplicity and sphericity34)  over a wide energy range with a

relatively small set of G-independent parameters. This model is described in

detail in Ref. 21.

The simulation of a hadronic event in the detector proceeds as follows. First,

the center-of-mass energy is degraded by the emission of a photon from either

the e+ or e- in the initial state. The hadronic event is generated in the rest

frame of the virtual photon formed from the e+e-  annihilation, and then trans-

formed to the laboratory frame. The event vertex is generated from a Gaussian

distribution (a = 1.8 cm) in z. The transverse coordinates of the vertex are fixed

at z = y = 0. Next, the event is passed through a program which simulates the

response of the Crystal Ball detector to hadronic and electromagnetically inter-

28



acting particles. Muon, charged pion, proton and neutron energy depositions in

the Ball are simulated by the High Energy Tracking Code (HETC) package.35

The energy loss (dE/dX)  of charged kaons is scaled to the pion dE/dX at the

same velocity and the pion and kaon interaction probabilities at fixed kinetic en-

ergy are assumed to be equal. Kl and Kt which do not decay in the apparatus

are assumed to interact like neutrons with the same velocity. In this simulation,

-antibaryons  are assumed to interact like baryons.._ _

Zhad is calculated at six different values of fi between 5.0 and 7.4 GeV.

The results are shown in Fig. 10(a). The indicated error bars reflect the Monte

Carlo statistics. The slight drop in the efficiency at high energies is primarily

due to the more stringent beam-gas selection criteria made at these energies.

In the version of the detector simulation portion of the Monte Carlo program

that is used to calculate the hadronic, r-pair and two-photon event detection ,

efficiencies, all of the acceptance losses present in the real detector are taken

into account except the 4-mm gap between the two hemispheres of the Ball and

the interstities between the crystals. These effects are included in an updated

detector simulation algorithm which is used to compute the Bhabha and QED

yy efficiencies in the large-angle luminosity calculation. At fi = 7.0 GeV, the

detection efficiency decreases from N 87% to N 85% when the newer algorithm is

used. Altogether, we conservatively estimate that uncertainties in modeling the

detector results in a f 1.5% uncertainty in Zhad.

Despite the approximations made in the detector response simulation, the

global features of the data are reasonably reproduced by the Monte Carlo model

over the entire energy range of this measurement. For example, Fig. 11 com-
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pares the background subtracted distributions of x,i,, sphericity and the bump

multiplicity at fi = 5.5 and fi = 7.0 GeV with various predictions of the Lund

Monte Carlo model. In the standard version of LUND 4.3, an equal mixture of

vector (V) and pseudoscalar (P) mesons in the quark fragmentation process is

assumed. The distributions most sensitive to the vector to pseudoscalar particle

ratio are the sphericity and bumps multiplicity distributions. The data favor

-the standard parameterization of equal parts of P and V. The xvis distributions._ _

show little variation in shape from 5.0 GeV [Fig. 11(a)] to 7.4 GeV [Fig. 11(d)],

and these distributions are modeled well by LUND 4.3. In Fig. 11(b) and (e),

the sphericity distributions obtained at fi = 5.0 and 7.0 GeV, respectively, are

shown. The shapes of the sphericity distributions are adequately reproduced

by LUND 4.3 in this energy range, as are the bump multiplicity distributions,

shown in Fig. 11(c) and (f), respectively.

The Pi-jet , PtSZ and energy asymmetry distributions from the kun 2 data ’

at fi = 7.0 GeV are compared to those generated by LUND 4.3 in Fig. 12(a-c),

respectively. No single value of the vector to pseudoscalar particle ratio is able to

completely reproduce the data, although the P = V parameterization yields the

best results. At fi = 7.0 GeV, the P = V, V = 0 and P = 0 parameterizations

result in hadron  detection efficiencies Zhad of (86.8 f l.O)%,  (81.3 f 0.9)%, and

(90.4 f 0.8)01o, respectively. While these changes in efficiency are large ( f 5%)’

the P = 0 and V = 0 parameterizations of LUND 4.3 constitute rather un-

likely choices for the vector to pseudoscalar particle ratio, as can be seen by the

comparisons in Figs. 11 and 12. Based on the comparison of data and Monte

Carlo distributions for these extreme values of P and V, we estimate a f3%

uncertainty in R due to the choice of parameters used in the Lund model.
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To check the model dependence of the efficiency estimate further, the Lund

model is compared with a second, independent model which does not produce

charmed particles or baryons. In this second model, events are generated accord-

ing to a limited transverse momentum phase space distribution about a jet-axis

whose angular distribution with respect to the beam direction is (1 + cos2(0,)).

The parameters in the model are adjusted so that the modeled Pf-, distribu-

-tion_matches  that of the data. The multiplicity distribution predicted by this

second model is much broader than that which is seen in the data. Despite its

shortcomings, the efficiency estimated by this model agrees with the LUND 4.3

calculation within the statistical errors of both calculations (f0.8%).  We con-

clude that the uncertainty in R due to the hadronic model is x f3.0%.  This

result is cross-checked by observing the systematic changes in R due to varia-

tions in the beam-gas selection requirement, as described in Section V.5. Our

estimate of the f3.3010 uncertainty in R due to the hadronic detection efficiency

is obtained by adding the f3.0% modeling uncertainty in quadrature with the

estimated 4~1.5% systematic uncertainty due to the detector model.

V.4 Initial State Radiative Corrections

From the results presented in Tables II and III, the observed hadronic cross

section c&~ can be evaluated. To obtain the leading order [0( 02)] cross section

alad corresponding to the diagram in Fig. 13(a), terms containing additional

powers of the electromagnetic coupling constant a must be estimated and re-

moved from $$. These higher-order terms, generically referred to as radiative

corrections, are represented by a factor (1 + 6) which multiplies aiad to yield the
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observed cross section

obs 0
ahad  = Ohad * &ad  * (1 + 6) . WI

In this analysis, the factor S is approximated as a sum of order-o terms due

to the initial state vertex correction diagram, Fig. 13(b), modifications to the

virtual photon propagator from e, ~1, r and hadronic vacuum polarization loops,

Fig. 13(c), and to bremsstrahlung radiation from one of the initial state charged

particles, Fig. 13(d). These corrections are written as Gvert , Sz,, , St*,, , S;,, ,

S&!, and by, respectively. The vertex correction, vacuum-polarization, and

bremsstrahlung diagrams are shown in Fig. 13(b), (c), and (d), respectively. A

detailed description of the radiative correction procedure is presented in Ap-

pendix A.

The hadronic vacuum polarization and bremsstrahlung correction factors re- ’

quire a model of aiad(s’)  at other energies s’. To evaluate the effect of this model

dependence on R, two different parameterizations of aiad(s’) are used to com-

pute zhad . (1 + 6). The result is shown in Fig. 10(c), where the dashed curve

corresponds to a l/s’ parameterization of aiad(s’) in S7, together with a calcu-

lation of the hadronic vacuum polarization obtained from Ref. 39. The second

parameterization of aftad (s’), referred to as the resonance parameterization, is

obtained from the smoothed R-distribution in Fig. 14. A contribution from the

narrow vector resonances is also included. The radiative corrections are applied

using the resonance parameterization. The l/s’ parameterization results in lower

average efficiencies and larger radiative corrections than in the resonance param-

eterization. The product Zhad . (1 + 6) is found to be remarkably insensitive to
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the form chosen for ajtad( s’), as demonstrated in Fig. 10(c). By comparing the

tW0 Ixm&S for &d . (1 + s), we conservatively estimate a &0.5%  uncertainty in

R due to the modeling of ozad(s’).

The efficiency E(IC) for detecting hadronic events as a function of the radia-

tive photon energy Ic (expressed as a fraction of the beam energy) is shown in

Fig. 15, normalized to the efficiency e(O) for detecting a nonradiative event. The

efficiency to detect an event containing a high energy photon vanishes as Ic + 1.

T-hese events will be highly asymmetric and are removed by the beam-gas and

asymmetry requirements described earlier. As described in Appendix A, the

radiative corrections will increase sharply as the maximum photon energy frac-

tion approaches 1. Fortunately, this effect is compensated for by the rapidly

falling efficiency, which produces a natural cutoff to the bremsstrahlung integral

at k x 0.95. To avoid the uncertainties associated with parameterizing  aiad(s’) ,

in the region near the p, w and 4, we impose a maximum photon energy frac-

tion cutoff km,, = 1 - (1 GeV2)/ s in the Monte Carlo. Lowering the cutoff to

0.8 changes Chad . (1 + 6) by 1ess than 0.5%. We therefore estimate a systematic

uncertainty on R of 410.5% due to the choice of km,, .

The radiative corrections are approximated by order-o corrections to the

initial state. Final state radiative corrections are expected to be small by virtue of

the Lee-Nauenberg theorem.36 This theorem states that there are no leading-log

factors contributing to the final state correction when a sum over all degenerate

states is carried out (since the storage ring picks out a specific energy, the leading-

log cancellations do not occur in the initial state). Hence, to lowest order in cy,

the correction for final state radiation is expected to be 1 + Q/T, or 0.23%. We
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do not apply this small correction because the effect of final state radiation on

the determination of Zhad is not known. Instead, a systematic error of 4~0.25%  is

assigned to R to account for the estimated uncertainty in the magnitude of final

state radiation.

The magnitude of the higher-order corrections is estimated using renormal-

ization group techniques to compute (1 + 6) to all orders in the leading-log

approximation. 37,38 Using the resonance parameterization  for o~,~(s’) as de-

scribed in Appendix A, a full leading-log calculation of (1 + S) is performed

and the result is compared to the analogous order-o calculation, as shown in

Fig. 10(b). The d ffi erence between the two methods is typically N 1%. Since the

effect of neglecting higher-order terms on the product &d . (1 + S) is not known,

we estimate a Itl.O%  error in R due to higher-order radiative corrections.

The overall systematic error in R due to -radiative corrections is obtained s

by adding in quadrature the following uncertainties: &l.O%  from higher-order

radiative corrections; 50.5%  from the modeling of aiad ; &0.5%  for the choice of

kmax and &0.25%  from final state radiation, resulting in a total systematic error

in R of f1.3% due to the radiative corrections.

V.5 Sensitivity to Hadronic Selection Criteria.

In order to determine the sensitivity of the final R values to changes in the

hadronic selection requirements, new ~1 (s)-functions,



ql-hap-j = $‘l(s)  + o-3 [V.lO]

are employed in the beam-gas v-function (Eq. [IV.8]) in order to drastically

change Kou , zhad - (1 + S>, and the levels of the beam-gas backgrounds in the

colliding-beam data samples. Conditions [V.9]  and [V.lO] are referred to as the

“soft” and “hard” beam-gas selection criteria, respectively. The beam-gas back-

ground-levels in the fi = 7.4 GeV colliding beam sample corresponding to the

hard, standard and soft beam-gas criteria are S%, 18% and 46%,  respectively.

The corresponding values for Ehad . (1 + S) are 0.92, 1.06 and 1.10, respectively.

The sum of the r and yy collision background levels remains nearly constant at

approximately 12%. Varying the VI(S) function changes the value of the beam-

gas normalization constant fd& by less than 0.3%.

The R-values resulting from these different selection criteria are shown in Ta- ’

ble V, where R,,ft and &ard are calculated using equations [V.9] and [V.lO], re-

spectively. Despite the large changes in the background levels and hadron detec-

tion efficiencies due to the different selection requirements, the R-values change

only by an average of f 3%. However, the R-values obtained from the hard

selection criteria are systematically lower than those resulting from the applica-

tion of the soft beam-gas criteria. Figure 11 shows the background-subtracted

distributions of x,;, , sphericity and multiplicity of bump modules at fi = 5.0

and 7.0 GeV. Beam-gas events, characterized by small values of these quantities,

appear to be properly subtracted at both energies. The same distributions have

been examined for the soft and hard beam-gas selection criteria and also show

no evidence for under- or over-subtraction.
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The Pf2_,-distribution  for the standard choice of LUND 4.3 parameters at

fi = 7.0 GeV is shown as a solid curve in Fig. 12(b). In comparison with the

data, the Monte Carlo model appears to under-populate the low-Pf-, region of

this figure. We therefore conclude that the &3.0%  variation in R seen while

changing the P?-, requirement over a rather large range is due to systematic

uncertainties in the determination of shod. The results of this analysis are con-

-sistent  with the previous estimates of the systematic error in R of *3.3% due._ _

to the uncertainties in estimating Zhad .

VI. RESULTS

VI.1 Measured R-Values

The data and calculations presented in Sections III-V have been inserted
,

into Eqs. [I.31 and [I.41 to calculate R at each center-of-mass energy. The results

from Run 1 and Run 2 are listed in Table VI and shown in Fig. 16. The error

in R consists of three parts: a statistical error S&,t , a point systematic error

bRpoint sys that depends upon &, and a relative systematic scale error of f5.2%

that is applicable to both data sets. The statistical error is due to the event

statistics of the colliding- and separated-beam data. The point systematic error

includes the uncertainties in the normalization of the background samples and

the statistical errors in the Monte Carlo calculations. These two types of errors

are shown in Table VI for each measurement of R. The average R-values are

obtained by weighting each point with the inverse square of the statistical error.

The systematic scale error is obtained by adding in quadrature the various sources

listed in Table IV.
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Figure 16 shows a comparison of the Crystal Ball results with other

experiments.3j40-44  The Crystal B 11a results show no evidence for structure or

new thresholds above the QCD continuum, at least at the level suggested by the

MARK I data.4 The average R-value of the Run 1 and Run 2 measurements is:

R = 3.44 f 0.03 f 0.18 , [VI. l]

‘where the first error is obtained by adding the statistical and point systematic-_- -

errors in quadrature and the second error is the systematic scale uncertainty of

f5.2%.  This measurement is in good agreement those obtained by the LENA41

and Crystal Ba1144  experiments in the range 7.4 < $ < 9.4 GeV (cf. Fig. 16).

VI.2 Comparison with Theory

Using Quantum Chromodynamics (&CD) to calculate the effect of the strong

interaction between the outgoing quarks, the following perturbative expansion ’

for R has been obtained45-47:

where:

2
f(B)=53+11)(,4) ’ [VI.31

and os( s) is the energy-dependent strong coupling constant. Calculated in the

modified minimal subtraction (MS) scheme,48  the coefficient C2 is given by:

C2 = 1.986 - 0.115nf . [VI.41
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According to the theory of &CD, CY, satisfies the renormalization group

49.equation .

2saa3(4
f3S

= boas2  + blaS3 + b2as4 . [VI.51

The coefficients bo and bl do not depend upon the renormalization scheme and

are given by5’:

-_- - bo=-& [ 1ll-%a )

bl =--$ ,c3;nf, .

[VI.61

[VI.71

The b2 coefficient is computed in the framework of the MS renormalization

scheme and is found to be4’:

azx-1 2 6 9  2

64~~
2857 - 525nf + ynf

I
. [VI.81 -

e

The expression for as(s) computed at an arbitrary center-of-mass energy fi is

given in terms of (Y,(so) (so - (6 GeV)2) as4’:

1 1
-=--$ln[c] -:ln[z] -i(bsbo-b?)(a,(s)-a,(so))  .
asw %(So)

[VI.91

Using tu,(so) as an initial estimate, as(s) is solved for by iteration, using [VI.9].

RQCD is then determined through Eq. [VI.21 at each of the center-of-mass energies

listed in Table VI. Through the fitting procedures described below, o,(so) is then

estimated.

Two different fitting procedures are utilized to determine os(so). The first

method used a x2-minimization  technique. The x2 is constructed from two terms,
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Xkwm 7 which depends only on the overall normalization of R, and contains the

scale error 6s = 5.2010, and xfhape , which depends only upon the variation of R

with energy and is independent of the overall normalization:

X2 = X&m + &ape 7

where

XL-m =
(C; R; - c; Tij2

(6SCiR;)2+Ci'Rf '._ _
and

x2h
3 ape =

c (a - .$$q2
SRf 3

i

[VI.101

[VI.111

[VI.121

and where I& and Ti denote the measured and predicted values of R, respectively,

at each center-of-mass energy 6, and 6Ri is the quadratic sum of the statistical

and point systematic errors on R.

In the second method, a maximum likelihood fitting procedure is used to

determine os(so). The likelihood is defined as follows:

L=?,,exp{-i  ((G)2+T(z)2)} , [VI.131

where the parent distribution of the scale variable S is assumed to be Gaussian,

with a mean value of 1.0 and a standard deviation SS of 5.2%.

Table VIII shows the values of o,(so) obtained from fitting the combined

Run 1 and Run 2 data using the techniques described above. The & and

maximum likelihood procedures yield virtually identical results. The mean value

of CY,(SO) obtained from the two different fitting procedures is

(Y,(so) = 0.12 f 0.11 ) [VI.141
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where the error reflects the combined statistical, point and scale uncertainties of

the measurement.

The stability of this result against changes to input parameter values is

checked. First, the overall scale error is varied. For assumed scale errors of f3.0%

and f7.0%,  the likelihood fit yields os(so) = O.lOf0.07 and os(so) = 0.13f0.12,

respectively. As 6s is increased further, the likelihood fit result approaches

that-nf-  the xzhape  fit, as expected. Next, the charmed quark mass, assumed

to be 1.4 GeV/c2, is varied. The likelihood fit yields cy,(so) = 0.11 f 0.11

and CY’,(SO) = 0.13 f 0.09 corresponding to charmed quark masses of 1.2 and

1.6 GeV/c2, respectively. Finally, varying the number of quark flavors from

nf = 5 (as prescribed4g by the MS renormalization scheme for this energy range)

to nf = 4, yields os(so) = 0.12 f 0.11. Thus, the fitted value for os(so) is

insensitive to moderate variations of input parameter values.

In Fig. 16, the predictions for R based on different values for CY,(SO) are over-

laid on the various experimental measurements. The dashed-dot curve represents

the &PM (cu, = 0) prediction for a charmed quark mass of 1.4 GeV. All the data

shown in this figure are consistent with positive cvs(so). The solid curve in Fig. 16

is the QCD prediction for R resulting from the best fit value for a,(so), 0.12.

Nearly all the data in this figure are consistent with this prediction for R, with

the exception of the Mark I3 data, which are approximately 16% higher than the

QCD prediction.

A 90% confidence level (C.L.) upper limit on cr,(so)is obtained by integrat-

ing the likelihood function (Eq. [VI.13]) from oS(so) = 0 to a value of os(so)

corresponding to 90% of the total integral, giving Q,(SO) < 0.24. This result is
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somewhat lower than the 68% C.L. limit of os < 0.33 quoted in Ref. 41, for

7.4 < fi < 9.4 GeV. The result obtained for RQCD using the 90% C.L. limit

on os(so) is shown as a dotted curve on Fig. 16. With the exception of the

MARK I data, all the measurements in this energy range are compatible with

this predict ion.

Equation [VI.91 may be used to extrapolate os from fi = 6.0 GeV to other

energies. In so doing, cy, is required to be continuous across quark flavor thresh-

olds. At fi = 34.0 GeV, the likelihood fit yields a, = .09’:8; . Expressed as

an upper limit, the result is o s < 0.14 at 90% C.L. The CELLO group has re-

cently fitted all available R-measurements from PETRA and PEP to determine

Q,. The fit to the combined data yields54 os( fi = 34 GeV)  = 0.17 f 0.03. The

Crystal Ball measurement of oS(so) is compatible with the values obtained from

the higher energy measurements, within the stated errors which are dominated *.

by systematics.

VI.3 Summary and Acknowledgments

The Crystal Ball experiment has measured R over the range 5.0 < fi <

7.4 GeV. No significant structure is visible above the QCD continuum. The

average value of R in this energy range is R = 3.44 f 0.03stat f O.Olpo~~t-sys  f

0.18scale - The scale error in this measurement is considerably smaller than those

of previous measurements in the same energy range. In a fit of &JCD to the

data, we obtain CY, = 0.12 f 0.11 at fi = 6.0 GeV, where the error in cy, is

dominated by the zt5.2010  scale error in R. Within the range of the errors, this

result agrees with measurements of a, at higher energies.
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APPENDIX A. Radiative Correction Procedure:

This appendix outlines the method used to extract afl,d from the observed

Ohshadronic cross section, ahad . The leading-order initial state radiative correction

factor S may be written as a sum of terms

._ _
Collectively referred to as Svirt  , the first five terms in this sum correspond to

the virtual processes shown in Figs. 13(b-c).  These diagrams contribute to the

order-a radiative correction by interfering with the lowest-order process shown

in Fig. 13(a). Since no real photon is emitted in these processes, the kinematics

of the produced hadronic system is not altered and these corrections may be

computed independently of the detect or’s geometry.

The first term in [A.l], the initial state vertex correction, contains’an infrared ’

divergence which cancels a corresponding divergence in the bremsstrahlung term.

The finite remainder is55

Svert(S) = 7za [t]DR(--$) +$1] . LA.21

The next four terms arise from modifications to the virtual photon propaga-

tor due to e, p, r and hadron  loops. These terms can be evaluated through a

dispersion relation56

00
sx -S

vat = -
J

ds’ -d”)

d-s-i6 ’ [A*31
Sth
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where ax is the lowest-order e+e- annihilation cross section into the final state

X, and sth is the threshold center-of-mass energy squared. For the production

of a pair of leptons, each of mass m, sth = 4m2 and ax is given by

~x(X,S> = GG(1+ x,2) , WI

where x = sth/s. In this case, the dispersion integral can be computed analyti-
._ _

tally, and the result is37

dG(2 + x)
6 log [:I=]} i f x 5 1, [A.51

4=-w + xc> tan-l 1 if x > 1.3 JzT P-61

When s >> 4m2,  Eq. [A.51 reduces to

g,,(s) = $ {-;+;logs .
1

[A.71 -

Using Eq. [A.6],  the vacuum polarization contribution from heavy quarks with

masses greater than 25.0 GeV is found to be negligible. Altogether, the sum of

the vertex and lepton-loop corrections varies from 10.1% at fi = 5.0 GeV to

10.9% at fi = 7.4 GeV.

As shown in Eq. [A.3],  the ah dronic vacuum polarization-loop correction re-

quires knowledge of f&d(S’)  t tha o er center-of-mass energies fi. The computa-

tion of the hadronic vacuum polarization s,‘,, used in the Monte Carlo simulation

of initial state radiation is described in Ref. 39. SL,, varies smoothly from +2.5%

at fi = 5.0 GeV to +3.0%  at fi = 7.4 GeV.
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Using R measurements from this analysis, together with those from other

energy regions,54,57,58 a smoothed representation of R, denoted as ?i, is obtained,

and is shown in Fig. 14. Using ?i, a second estimate of ~5!:,“, referred to as SLf,  ,

can be obtained by a piecewise evaluation of the dispersion integral in Eq. [A.3].

The components include

1. A continuum part below fi = 36.0 GeV, which is evaluated numerically,

---using ii, as shown in Fig. 14;

2. A continuum part above fi = 36.0 GeV, which is evaluated analytically,

assuming R = 3.93.

3. A contribution from the narrow QQ resonances w, 4, J/~/I, t/Y, Y, Y(2s),

.Y(3s), Y(4s), Y(5s) and Y(6s) which is evaluated by substituting the

Breit-Wigner cross section

n

[A.81 -

into Eq. [A.3],  giving37

6rge s[s - Ad; + r~Qtq+ log(s/M,2)]4x4 = c z (S - M,2)2 + (kfjry)2 ’ P-91
j 3

where I’ge and II’?’ is the electronic- and total width, respectively, of the

dh3 resonance, and Mj is the pole mass.

At fi = 6.0 GeV, the ah dronic vacuum polarization contribution from the

continuum is +2.0%;  the narrow resonance contribution is +0.4%.  s,‘f, varies

from +2.3% at fi = 5 GeV to +2.5%  at fi = 7.4 GeV.
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The bremsstrahlung correction factor results from the radiation of a real

photon by the initial state charged particles. After integrating over the angular

distribution of the radiated photon, the bremsstrahlung correction S, is given

by55

kmaz

$W =
J

G(s,k)dk , [A.101

0

G(s,k)dk=t[l-k+;]  k;:p ,

t=$ [l%($)] ,

[A.111

[A.121

s’ = ~(1 - k) , [A.131

where s’ is the center-of-mass energy squared of the e+e-collision after radiation,

and the quantity t, the equivalent radiator, varies from 0.081 at fi = 5.0 GeV

to 0.084 at fi = 7.4 GeV.
s

For small k, G(s, k) M t/k, and therefore S, is infrared-divergent. This

divergence is cancelled by the divergent part of the vertex correction. The term

S,, in Eq. [A.l] refers to the finite part of the bremsstrahlung correction. Assuming

afl,d(“‘) - l/s’, the bremsstrahlung integral can be evaluated analytically. The

result is

b~‘“(km,x ) = t * log km,, - * - i log(l  - km,, )] . [A.141

The Monte Carlo simulation of initial state radiation from Ref. 59 is used

to estimate the function c(k). In this simulation, the photon energy fractions
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are generated up to a value of km,, given by km,, = 1 - smin/s,  where

Smin = 1.0 GeV2. The maximum photon energy fraction varies from 0.96 at

5.0 GeV to 0.98 at 7.4 GeV. The relative efficiency c(k)/c(O)  is, to a very good

approximation, independent of the model used to generate the photon energies.

The relative efficiency factor as determined at fi = 7.4 GeV is shown in Fig. 15,

and is characteristic of the distributions obtained at other energies. For photon

energy fractions near km,, , the relative efficiency is very small (cf. Fig. 15), thus._ _

rendering the product ‘had . (1 + 6) insensitive to the exact choice of km,, .

In the Monte Carlo simulation of initial state radiation, an exponentiated

form5’ for 6, is used. In the spectral distribution G(s, k), ai,d(s’)  is assumed

to vary as l/s’. The result obtained for &, from the Monte Carlo is virtually

identical to the one calculated using the unexponentiated form, Eq. [A.14].

The emission of a bremsstrahlung photon from one of the incoming charged ,

leptons lowers the collision energy of the e+e-  pair and therefore produces a

correction which depends on the leading-order cross section ajt,d(s’)  at lower

center-of-mass energies. Since the kinematics of the hadronic system is altered, it

is useful to redefine the bremsstrahlung correction to explicitly include efficiency

effects. This is accomplished by rewriting Eq. [V.8]  as

0
&d = ahad * ‘co) * c1 + ‘virt + ‘yobs) 7 [A.151

where brobs is a convolution of the hadronic detection efficiency c(k) expressed

as a function of k, the fraction of the incident beam energy carried off by the

radiative photon, and the spectral distribution of the bremsstrahlung radiation.

The quantity e(O), the efficiency to detect a nonradiative event, is estimated
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by LUND 4.3 to be (94.2 f 0.3)%.  Within the precision of the Monte Carlo

estimate, E(0) is independent of fi.

To obtain the observed bremsstrahlung correction Slobs , the relative efficiency

c(k)/e(O) is inserted into Eqs. [A.101 and [A.111 to give

The cross section aiad (s’) is written as a sum of z . ai, and narrow vector reso-

nance cross sections afe,sd,j . The integration over ?i.$, is performed numerically,

while the contributions from radiation down to the narrow vector resonances are

computed analytically. Substituting

12ar;er5ad
gzj(i’) = (y _ q2)2  + (&q3d)2 [A.171I ((

into [A.161 and integrating, the contribution to b.+ from the radiative tails of

the narrow resonances is

2 perhads;~;&) = t l2 c <OS 3
c(O)R(s) j ri Mj

iv;
kj=l--

s *

‘cj2  e(kj)[ 1l-kj+y ~c 7
3 [A.181

The narrow resonance contribution varies from +1.4%  at 5.0 GeV to +0.4%  at

7.4 GeV, while bYobs varies from -1.0% to +0.2%  over the same energy region.

This result is combined with the vacuum polarization estimate 6,1$ to compute

zhad . (1 + S). The computed values of &d . (1 + S) are shown as solid points

in Fig. 10(c). A second-order polynomial fit to these points, represented by the
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solid curve, is used to interpolate to intermediate &-values. By comparison, the

dashed curve is obtained from a l/s’ parameterization  of CT~,~(S’) in Eq. [A.16],

together with the hadronic vacuum polarization computation from Ref. 39.

In summary, the radiative correction factor Chad . (1 + 6) is computed using

two different models for the underlying cross section aflad( s’). While the terms

Zhad and (1 + S) depend on the modeling of aiad (s’), the product is nearly model-

independent, and ranges in value from 1.04 to 1.07 in this measurement.
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TABLE CAPTIONS

1. Large- and small-angle luminosities.

2. Beam-gas background. The error in f is half the difference between fdata

and either fj ~dt or fpCT . The error in (N,,JJ-N~~)/L reflects the statistical

uncertainties in Nc,,ll, Nsep and ,!Z.

S,B-ackgrounds  from r decays and yy collisions. The errors on the observed

cross sections are due to Monte Carlo statistics.

4. R-values for different beam-gas cuts. Errors reflect the statistical uncer-

tainties in Ncoll, Nsep and L.

5. Contributions to the systematic scale error in R.

6. R-values with statistical and point systematic errors.

7. (~~(6 = 6GeV) fit results.
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Table I

lb
WV

4arge Lsmall
(nb-l) (nb-‘)

L

(nb-l)

Run 1

5.20 78.0 f 1.6 75.8 76.9 f 0.8 f 1.1
6.00 94.0 f 2.0 95.9 95.0 f 1.0 f 1.0
6.50 91.6 f 2.0 96.3 94.0 f 1.0 f 2.4
7.00 117.3 f 2.5 121.9 119.6 f 1.3 f 2.3

._ _ Totals: 381 f 4 390 386 f 2

Run 2

5.00 168.1 f 2.8 171.6
5.25 179.5 f 3.0 181.3
5.50 196.8 f 3.3 199.1
5.75 228.9 f 3.8 229.8
6.00 234.8 f 4.0 239.6
6.25 273.2 f 4.5 274.0
6.50 299.8 .j~ 5.0 298.7
6.75 392.2 f 6.3 401.4
7.00 339.8 f 5.7 340.5 -
7.25 264.9 f 4.7 272.8
7.40 1191.2 f 17.2 1248.7

169.9 f 1.4 f 1.8
180.4 f 1.5 f 0.9
198.0 f 1.6 f 1.2
229.4 f 1.9 f 0.5
237.2 f 2.0 f 2.4
273.6 f 2.3 f 0.4
299.3 f 2.5 f 0.6
396.8 f 3.1 f 4.6
340.2 f 2.9 f 0.4
268.9 f 2.3 f 4.0

1220.0 f 8.6 f 28.8

Totals: 3769 f 22 3858 3813 f 11 f 30
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Table II

f Nsep Nbg  Nag  /N,,JJ  (N,,JJ - Nbg  >/L

(%) (nb)

Run1

5.20 1094 2.04 f 0.01 31 63 5.8 13.41 f 0.48
6.00 1038 1.96 f 0.08 34 67 6.4 10.23 f 0.38
6.50 984 1.33 f 0.07 93 124 12.6 9.16 f 0.37
7.00 1135 1.43 f 0.03 121 173 15.2 8.04 f 0.32

Run2

5.00 2774 5.86 f 1.19 58 340 12.3 14.33 f 0.42
5.25 2722 3.06 f 0.12 88 269 9.9 13.60 f 0.35
5.50 2637 2.97 f 0.36 90 267 10.1 11.97 f 0.31
5.75 2831 6.37 f 0.03 45 287 10.1 11.09 f 0.31
6.00 2743 1.95 f 0.28 143 279 10.7 10.39 f 0.26
6.25 2852 2.03 f 0.08 173 351 12.3 9.14 f 0.23
6.50 2953 1.99 f 0.05 190 378 12.8 8.60 f 0.22
6.75 3565 1.56 f 0.12 231 360 10.1 8.08 f 0.17
7.00 2815 3.19 f 0.20 98 313 8.2 7.36 f 0.19
7.25 2102 2.42 f 0.09 66 160 7.6 7.22’ f 0.20 ’
7.40 9708 37.1 f 1.00 46 1707 17.6 6.56 f 0.23
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Table III

fi NT, /NCOJJ NT7 /ha ( -)TT + ( +r
WV) cw (OJO) (nb)

5.20
6.00
6.50
7.00

Run 1 Data

10.1 2.6 1.81 f 0.03
9.5 3.2 1.39 f 0.02
8.2 3.2 1.20 f 0.02
7.6 3.4 1.05 f 0.02

Run 2 Data

5.00 9.6 2.3 1.94 f 0.04
5.25 9.3 2.5 1.78 f 0.03
5.50 9.5 2.7 1.63 f 0.02
5.75 9.3 2.9 1.51 f 0.02
6.00 9.5 3.2 1.39 f 0.02
6.25 9.1 3.3 1.29 f 0.02
6.50 8.8 3.4 1.20 f 0.02
6.75 8.9 3.7 1.12 f 0.02
7.00 -8.9 3.9 1.05 f 0.02
7.25 8.7 4.1 0.99 f 0.02
7.40 8.2 4.0 - 0.95 f 0.02
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Table IV

harti Rstandard

Run 2 Data

5.0 3.62 f 0.18 3.38 f 0.09 3.42 f 0.12
5.5 3.41 f 0.16 3.26 f 0.09 3.41 f 0.10
6.0 3.81 f 0.14 3.46 f 0.09 3.50 f 0.10
6.5 3.46 f 0.14 3.27 f 0.09 3.37 f 0.10
7.0 3.29 f 0.15 3.26 f 0.10 3.35 f 0.10
7.4 3.38 f 0.26 3.29 f 0.10 3.35 f 0.14

Average: 3.52 f 0.07 3.32 f 0.04 3.40 f 0.04
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Table V

Hadron efficiency estimate: f 3.3
Luminosity: f 2 . 7
Beam-gas subtraction: f 2 .2
Radiative corrections: f 1.3
Tau-subtraction: f 1.2
Two-photon subtraction: f 1.0

Systematic error quadrature sum: f 5.2
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Table VI

lb
WV)

R S&tat  SRpoint  s y s

5.20
6.00
6.50
7.00

Run 1 data
3.44 0.14 0.06
3.44 0.15 0.05
3.62 0.17 0.11
3.71 0.17 0.09

Average: 3.54 0.08

5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.40

Average:

Run 2 data
3.42
3.57
3.41
3.44
3.50
3.31
3.37
3.42
3.35
3.57
3.35

3.43

0.12 0.12
0.11 0.03
0.10 0.06
0.11 0.02
0.10 0.08
0.10 0.03
0.10 0.03
0.09 0.06
0.10 0.04
0.11 0.07
0.14 0.10

-0.03 0.01

Combined average: 3.44 0.03
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Table VII

Minimize: %(So) Comment:

XLn o.lof:;; Depends only on the overall magnitude of R.

dhape

Xt2,t

0.18+::;: Depends only on the G-dependence of R.

0.12::;; Incorporates both the overall magnitude
and &-dependence of R.

-2 log L 0.11::;;
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FIGURE CAPTIONS

1. Schematic of the detector. Two of the four luminosity monitor counters

are shown.

2. Development of the Ball geometry and nomenclature.

3. (a) Deposited shower energy fraction 213  and (b) coseZ for QED Monte

Carlo events (histogram) and data (solid circles) at fi = 7.4 GeV.
-_- -

4. Ratio of the large- to small-angle luminosity versus fi for Run 1 (open

circles) and Run 2 (solid circles). The errors represent only the statistical

uncertainty on the ratio.

5. The energy asymmetry, A, plotted versus Piejet for (a) cosmic-ray data and

-(b) LUND 4.3 Monte Car o1 h da ronic events generated at fi = 5.0 GeV.

The solid curve is defined by the equality in Eq. [IV.4].
*

6. The timing distribution for events where only energetic QED events have

been removed (upper histogram); for events passing the cosmic-ray selec-

tion criteria (middle histogram); and for events passing all hadronic event

selection criteria (lower histogram), at & = 7.4 GeV.

7. The distribution of the beam-gas q-function for separated-beam events

(shaded histogram) and for LUND 4.3 Monte-Carlo generated hadronic

events (unshaded histogram); both distributions correspond to a beam en-

ergy of 3.5 GeV.

8. Visible energy in the Ball, normalized to fi at 7.0 GeV, (a) before and

(b) after hadronic event selection. The shaded histogram in (b) shows the

remnant beam-gas contamination. The solid curve in (b) is the hadronic
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event detection efficiency determined from LUND 4.3, as described in Sec-

tion V.3.

9. Produced and observed cross sections for rr~ events (diamonds) and

hadronic events from yy collisions (squares). The sums of the observed

cross sections are shown as open circles. The solid curves are fits to each

set of cross sections and are used for interpolation.

10-(a) &ad calculated with resonances included in ai,d(s’). The Monte Carlo

estimates are depicted as solid points; the solid curve is a fit to these

points. (b) (1 +S) with resonances included in ajl,d(~‘)  for the order-a case

(solid curve); to all orders in the leading-log approximation (dotted curve).

(C) zhad . (1 + S) using the order-a radiative correction with resonances

included in ajl,d (s’); the Monte Carlo estimates are depicted as solid points.

The solid curve is a fit to these points and is used for interpolation. shad * ((

(1 + 6) assuming a l/s’ dependence for gfl,d( s’) (dashed curve).

11. Background subtracted distributions of xvi, , sphericity and the multiplicity

of bump modules containing at least 50 MeV, for the data (solid points)

at fi = 5.5 GeV ( - )a c and fi = 7.0 GeV (d-f). The predictions of

LUND 4.3 are also shown for P = V (solid curves), V = 0 (dashed curves)

and P = 0 (dashed-dotted curves).

12. (4 q-jet 7 w e?-* and (c) energy asymmetry distributions from the

background-subtracted data (solid circles) at fi = 7.0 GeV. Predictions

from LUND 4.3 with standard parameters are shown as solid curves. The

dashed and dashed-dotted curves correspond to pure P and pure V param-

eterizations of LUND 4.3, respectively.
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13. Diagrams included in the initial state radiative correction procedure for

e+e- annihilation into hadrons: (a) lowest-order process; (b) vertex cor-

rection diagram; (c) vacuum polarization diagrams; and (d) bremsstrah-

lung diagram.

14. Smoothed R values used in the calculation of &$ and Syobs  .

15. The relative hadron detection efficiency e(k)/e(O)  versus the radiative pho-

=-ton energy fraction k at fi = 7.4 GeV.

-16. Comparison of Crystal Ball Run 1 and Run 2 R-values with results from

other experiments. All R-values have been r-subtracted and radiatively

corrected. The vertical error bars represent only the statistical uncertain-

ties on each data point. The open squares are averages of the MARK I data

presented in Ref. 3, where the horizontal error bars indicate the &-range

over which the averages are performed. The solid curve represents the best v

fit of RQCD to the combined Run 1 and Run 2 data with os(so) = 0.12.

The dotted curve corresponds to a,(so) = 0.24 (90% confidence level upper

limit). The dashed-do curve is the R&PM prediction ( cys = 0).t
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