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ABSTRACT 

The geometry of torsion in the Riemann-Cartan theory can be described by an 

abelian axial vector field interacting with the chiral fermion current in a purely Rie- 

mannian background. On the basis of this observation we note that the Schwinger 

model formulated in curved spacetime can be interpreted as the two dimensional 

version of the Riemann-Cartan theory. In two dimensions as well as in four dimen- 

sions there is a one parameter family of regulators that can be used to compute the 

chiral anomaly. In four dimensions we set the value of the arbitrary parameter equal 

to zero and compute the chiral anomaly, including counterterms, using Fujikawa’s 

approach. The addition of the Wess-Zumino lagrangian changes the original RC- 

theory into a non-anomalous abelian gauge theory of the torsion field. Guided by 

the analogy with the Schwinger model, we offer several forms of LGRAVITY from 

which one can deduce the spin content of the quanta of torsion. 
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The Riemann-Cartan theory, hereafter referred to as the RC-theory, was pro- 

posed long ago as the natural candidate for the gauge formulation of the grav- 

itational interacti0n.l We shall refer to the existing literature for a review of 

the wide range of arguments supporting the gauge formulation of gravity.2 Our 

own motivation to investigate the RC-theory stems from some of the recent and 

current work on anomalies, especially in connection with solvable models in two 

dZiensions.3-6 To elaborate briefly on this point, consider the lagrangian of the 

(euclidean) Schwinger model in curved spacetime: L = LM + LF, where 

LF- stands for the free Maxwell lagrangian, Cab G 4 [ra, ~b] and ufb represents the 

Lorentz spin connection defined in terms of Ricci’s rotation coefficients. Since in 

two dimensions caby5yb = ya, vector fields and axial vector fields are dual to each 

other and LM is equivalent to 

LM = i$efy’ ap + iw;b&b - iey5Ap 
> 

$I . 

Accordingly, in evaluating the quantum anomaly and the effective action, one has 

a choice of possible regulators 

D = iyp EJp + i LdFbCab + e a& - ie( 1 - a)y5A, 
> 

(3) 

in terms of the parameter “a” first noted by Rajaraman and Jackiw ’ in connection 

with the chiral Schwinger model. 

Evidently, the equivalence between (1) and (2) does not hold in four dimen- 

sions. However, in four dimensions (with euclidean signature: ++++) cabcdy5yd = 
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{ya, Cbc} so that totally antisymmetric tensors of rank three and axial vector fields 

are dual to each other. In particular, the spin current 

is the dual of the axial vector current Ji c iTy5y&. The spin current arises as 

the response of the Riemann-Cartan action to a local Lorentz transformation; it 

is easy to show that Sabc is coupled to the totally antisymmetric part TObc of the 

torsion tensor according to 

1 
LFT = 5 Tabc sabc . 

Introducing now the axial torsion field A” - cabcdTb& and using Eq. (4), one is led 

to consider the linear combination 

- i (1 - a)AOJz] (6) - 

which reflects, just as in two dimensions, the ambiguity in the choice of the regu- 

lator used to compute the quantum anomaly and the effective action of the RC- 

theory. In this letter we shall restrict ourselves to the case a = 0; then the RC- 

lagrangian takes the form: L = LM + LGRAVITY, with 

where wFb is the Lorentz spin connection which depends on the vierbein field 

through the Ricci rotation coefficients. Thus, while the conventional interpretation 

of the Schwinger model is that of QED 2 ( in curved spacetime), other interpreta- 

tions are admissible (see for instance Ref. 8). Comparing LM in Eq. (7) with 
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LM in Eq. (2) we suggest that the matter part of the Schwinger Lagrangian be 

interpreted as the RC-theory in two dimensions. In this novel interpretation the 

geometry of the original Riemann-Cartan spacetime is represented, in two as well 

as in four dimensions, by the dynamics of an abelian axial vector field in a purely 

Riemannian background. Note that we have left the form of LGRAVITY unspecified. 

The form of LGRAVITY in the RC-theory is notoriously non-unique but can be ig- 

nored in the computation of quantum effects in the external field approximation. 

We shall come back to the possible forms of LGRAVITY later. 

The lagrangian (7) f is ormally invariant under a U( 1) chiral transformation and 

we now proceed to evaluate the effect of the chiral anomaly on the effective action 

for the torsion field. The same technique (Fujikawa’s methodg) can be applied to 

the RC-theory in either four dimensions or in two dimensions. We are interested 

in the generating functional 

2 z exp[--W(w, A)] = / d$dlC,exp[-sM($, $,w, A) + source terms] (8) 

where Sy($, 4 , w, A) represents, up to gauge fixing terms, the euclidean action 

corresponding to the lagrangian (7). Th e re u arization procedure to calculate the g 1 

chiral anomaly is by now standard and involves the following steps: i) write the RC- 

lagrangian (7) in the form LM = &@1c) and introduce an orthonormal set {&} of 

eigenfunctions of the (hermitian) operator iq with eigenvalues {A,}, ii) define the 

generalized <-function [(s, 2) E Cn~~(z)X,2s&( ) x corresponding to the operator 

(i@)2, iii) introduce the heat-kernel K(x, y, 7) = &$~e-‘~‘&(y) associated with 

the Dirac operator i@. The c-f unction is related to the heat kernel by a Mellin 

transform. In particular, the following relationship holds between ((0, z) and the 

coefficient a2(x) in the asymptotic expansion of the diagonal part K(x, x, T) of the 
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heat kernel, [(0,x) = & aa( The chiral anomaly is caused by the change in 

the functional measure induced by an infinitesimal (euclidean) y5 rotation of the 

fermion fields. The effect of a chiral rotation 1c, = e-y5P(z)X; $ = ~e-y~p(~) on the 

generating functional is 

Z = 
J 

fidxexp [ J - 2 8x (det $)P(x) $+ Tr(y5az) 

(9) -- - 
- J d4x(det$) (LM@,x) - PWV~Jp5)] 

and the requirement SZ/Sp(x) = 0 gives 

V P Jp5 = (4t)2 Tr(y5a2) . 

(‘7, = Riemannian covariant derivative) . 

(10) 

The coefficient aZ(x), which is a polynomial in the background fields, has been 

tabulated by various authors. There are discrepancies among the results reported 

in the literature.” Our own calculations are in agreement with those of Yajima 

and Kimura.” In our notation the expression of the anomaly is 

+ (4$ 
- V,IP 3 G(w, A) 

where 

V#AP + 1 A2# _ !! A’” 
4 1 2 ’ (12) 

Fpv - Ej,A,] and ROP,p and R represent the Riemannian curvature tensor and 

curvature scalar, respectively. The anomaly equation consists of two contributions: 
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the first term in the square bracket of Eq. (11) re p resents the “minimal” abelian 

form of the anomaly and is gauge invariant; the second term represents the Rie- 

mannian contribution from the background geometry; finally, the term V,Kp is 

gauge variant and can be written as a gauge variation of local counterterms in the 

original action. In other words, the anomaly equation can be brought to the form 

and one readily finds that 

SC G J d4x&L,(w, A) 

=&i Jd4-xh (A 
(14) 

A,VuVuAP + & A4 - & A2R . _ 
Evidently the original lagrangian (7) d oes not fully define the RC-theory. The - 

complete lagrangian must incorporate the full anomaly equation. This can be 

achieved by introducing the Wess-Zumino lagrangian 

+ Lc(w, A + 80) - Lc(w, A) 

where O(x) is an auxiliary field which under a chiral rotation transform as t9 + 4-p. 

If we now start with the new lagrangian 

LFW = LM(& 1c, , w, A) + Lwz(w, 4 0) (16) 

then the RC-theory is defined, up to gauge fixing terms, as a non-anomalous 

gauge theory where the torsion field is coupled to a conserved current zp5 as a 
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consequence of the equation of motion of the O-field: indeed, the conserved current 

is the sum of two contributions 

(17) 

where 

1 
24(4~)~ 

E~~~~(~~O) F,,+f- a & [Sc(w, A + 80) - S&J, A)] . 
P 

The covariant divergence of J; is given by 

V,J; = V,K“[A + c%] - V,P[A] . 

The field equation for e(x) requires 

v ~LWZL%4 =-- 1 P Gl,O 48( 47r)2 
epuPa 

( 
F,,F,, + 2Rffp/w R,p,, 

> , 

and since 

SLWZ[A, 61 _ SL,[A + %] 
sa,e = SA, 

= Kp[A+dO] 

it follows that 

V,IP[A + 81 = - ’ 
48(4~)~ 

epuPa ( F,uF,, t 2R’YPpuQ+, > 

and therefore 

1 
bJ; = -48(4T)2 epupu F,,F,, + 2RaPpyR,pp, - V,IP[A] 

> 

Hence, the new current yfi5 satisfies, on shell, the Ward identity 

V CL yp5 = anomaly + VP J[ = 0 

(18) 

(19) 

PO> 

(21) 

(22) 

(23) 

(24) 

and the modified RC-theory is gauge invariant at the quantum level. 
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The calculations in the two dimensional case are much simpler. The inclusion 

of the Riemannian connection in Eq. (2) d oes not affect the anomaly equation in 

any significant way.3 We have computed the modified lagrangian of the Schwinger 

model using the general regulator (3) as a Dirac operator in the RC spacetime. 

The Wess-Zumino lagrangian and the associated current are, 

-- - Lwz(A,O) = m2(a - 1) f d,8?0 - OV,A’ . 
> 

and one readily finds that the modified current J -P- P - J + Ji is conserved in view 

of the field equation for ~9 : d20 = -V,Afi. 

A substantial difference between the two dimensional RC-theory and the four 

dimensional one is that in two dimensions it is possible to determine the operator- 

solutions corresponding to the enlarged system {$,+, A, 8). For instance, in two 

dimensions the anomaly equation can be accounted for by a bosonic lagrangian 

which admits canonical quantization6 In four dimensions bosonization of fermion 

fields does not work and one has to deal with a fully fledged quantum theory of the 

torsion field interacting with fermions in a (Riemannian) curvature background. 

It is conceivable that this problem can be consistently formulated in a spacetime 

with non-vanishing torsion but zero curvature and we shall investigate this ques- 

tion elsewhere. However, even in the limiting case of zero Riemannian curvature 

the kinetic term for the torsion field plays a critical role in determining the dy- 

namical properties of the quanta of torsion. This brings us back to the problem of 

choice of LGRAVITY since in the RC-theory the “free” torsion term is an integral 

part of LGRAVITY. Inspired by the new interpretation of the Schwinger model as 
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a Riemann-Cartan theory, in the following we shall list four possible choices of 

LGRAVITY in four dimensions. 

a) One possible choice of LGRAVITY includes the Maxwell lagrangian for the 

aziaI torsion field A,, 

LGRAVITY = +; +, Fp”Fpv 

(27) 
-- - 

(R 3 Riemannian curvature scalar). 

Interestingly enough, in the limit of zero Riemannian curvature, the lagrangian 

system (7), (27) corresponds to the model of dynamical symmetry breaking pro- 

posed long ago by Jackiw and Johnson.12 Here again we see the analogy with the 

Schwinger model at work: under the assumption that a chiral symmetry breaking 

solution exists, Jackiw and- Johnson show that the vacuum polarization tensor ac- 

quires a pole at zero momentum transfer, precisely as in the Schwinger model, so 

that fermion and axial vector meson masses are spontaneously generated. In the 

light of our present discussion, the above mechanism of mass generation can now 

be incorporated in the dynamics of the Riemann-Cartan theory. 

b) A second choice of LGRAVITY involves a simple extension of the Maxwell 

lagrangian in the Schwinger model. Recall that in our code of correspondence the 

vector V, in two dimensions corresponds to the antisymmetric tensor TPvP in four 

dimensions. Hence, 

1 1 
LGRAVITY = 2 FpvpaF~upa - 3 Fpvpu ( ~[,T,,,] > 

1 
- 16d&jr 

R. (28) * . 

In this case, the torsion tensor T vpa plays the role of a gauge potential; the field 

strength Fpvpa does not propagate torsion quanta8 just as Fpv in two dimensions 
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does not propagate “photon” quanta. Rather, Fpupa possesses only one indepen- 

dent component and represents a background field constant over the Riemannian 

manifold. The additional coupling of Fpvpa to gravity via the energy momentum 

tensor induces a cosmological constant into the Einstein equations. 

c) An alternative but equally exotic choice of kinetic terms for the torsion field 

is given by the lagrangian, 

-- - 

LGRAVITY 
1 1 

TpLVP~pvp 
1 

= 5 3 - T$ Tp”p (qpAvpl) 
1 

- 16&~ 
R. (29) 

In this case the field strength coincides with the torsion tensor itself and is derivable 

from an antisymmetric tensor gauge potential A,,. This representation of the 

torsion tensor corresponds to the “notoph” field of Ogievetskii and Polubarinov 
13 

introduced in the RC-theory by l4 Hayashi. Thus, in contrast to case b), the torsion 

field now propagates freely with massless and spinless quanta. Note, in passing, 

that the lagrangian (29) is symmetric under the gauge transformation SA,, = 

+Apl while (28) is invariant under the change ST,,, = dl,A,,l. Thus the covariant 

quantization of the torsion field, in both cases b) and c), requires a sequence 

of gauge fixing terms and corresponding Faddeev-Popov ghosts. l5 Of course, it 

is possible to express Eqs. (28) and (29) directly in terms of the axial torsion 

A,. However, the corresponding expressions would hardly be recognized as kinetic 

terms for the torsion field. 

d) The conventional choice of LGRAVITY in the RC-theory is given by the 

RC-curvature scalar 2, 

where the dots represent vector and tensor torsion terms which are decoupled from 
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spinorial matter. In this case the system (7), (30) describes Dirac fermions in 

the Riemannian manifold of general relativity interacting with a non-propagating 

torsion field having a mass of the order of Planck’s mass. According to this choice 

of LGRAVITY, the torsion field is confined within the spin density distribution and 

cannot propagate in the vacuum. De Sabbata and Gasperini l6 have observed that 

the system (7), (30) y ie Id s a propagating (massless) torsion field if one assumes 

that -AA, is a pure gradient: A cL = d c(+. However, it seems to us that in this case 

the fermions decouple altogether from the torsion field at least at the classical 

level, since the interaction term in the lagrangian (7) can be transformed away 

by a chiral field redefinition of the Dirac fermions. Interestingly enough, fermions 

always decouple from the gauge field in the lagrangian (2) of the Schwinger model 

since the axial vector field in two dimensions is always derivable from a potential. 

Of course, since the functional fermion measure is not invariant under a chiral field 

redefinition, the effect of the quantum anomaly, for instance the mass term in the 

Schwinger model, persists in spite of the classical decoupling between fermions and 

torsion. 

Returning to the general form (30) of LGRAVITY, since the torsion field enters 

quadratically in the lagrangian, as a non-dynamical variable, it can be integrated 

out of the generating functional in favor of a self-coupled fermion field. This step 

has no counterpart in the Schwinger model. The functional gaussian integration 

rule gives 

In particle physics the lagrangian (31) would be interpreted as a low energy ap- 

proximation to the fundamental dynamics of the RC-theory. While “low energy” 
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here means anywhere below the Planck mass, we cannot resist the temptation to 

draw a parallel with the effective lagrangian approach to &CD: at low energy, say 

1 GeV and below, the Nambu-Jona Lasinio 
17 

model, which involves a four fermion 

interaction modeled on the BCS-theory of superconductivity, correctly describes 

the spontaneous chiral symmetry breaking of the QCD vacuum and is generally 

regarded as a good approximation to the QCD lagrangian. By analogy, the la- 

gi%ngian (31) suggests that at an energy scale below the Planck mass, the effective 

degrees of freedom of the RC-theory correspond to bosonic states which are com- 

posed of fermion antifermion pairs. The existence of these “Cooper pairs” raises 

again, as in case a), the intriguing possibility that chiral symmetry and/or Lorentz 

symmetry may be spontaneously broken in the RC-theory. 
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