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1. INTRODUCTION 

This talk is meant to briefly and qualitatively summarize the current status 

of superstring phenomenology, and to mention what I think are the outstanding 

problems that must be solved before we can hope to get experimental predictions 

from string theory. The topic of this SLAC Summer Institute is “Physics at the 

100 GeV Mass Scale”, the region accessible to current accelerators. On the other 

hand, the characteristic mass scale for superstrings is the Planck mass Mpl 1~ 

101’ GeV/c2. The Planck scale appears because strings provide a description of 

quantum gravity, and gravity is characterized by Newton’s constant, which has 

mass dimension -2: GN = cfi/M&. It will be useful to keep in mind throughout 

this talk the gap of 17 orders of magnitude in energy, because any predictions from 

superstrings will depend on analysis of effects over the entire range. 

Recent work on superstrings has concentrated on answering questions in the 

following three areas: 

(1) Fundamental understanding: Is string theory based on some new physical 

principle, in the same way that Yang-Mills theory, for example, is based on local 

gauge invariance? 

(2) Formalism: Can we extend the calculational tools that have been developed 

for string theory to include non-perturbative effects? 

(3) Phenomenology: Can we hope to make definite predictions of new (and old) 

phenomena at experimentally accessible energies? 

I will focus on the third area in this talk (though I will digress to cover a little 

of the relevant formalism as well). Far below the Planck scale, strings appear to 

be pointlike, and string theory reduces to some e$ective field theory. At energies 

around 100 GeV this field theory should in turn reduce to approximately the stan- 

dard model, if string theory is to describe experimental reality. At these energies, 

any predictions of string theory are therefore indirect, and can be summarized 

as predictions of the 18 or so input parameters of the standard model (or more 
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accurately, explanations of those parameters that have already been measured), 

plus predictions of possible field theory extensions of the standard model and the 

parameters therein. Currently, string predictions also involve the rather arbitrary 

selection of a candidate string vacuum, or ground state, from a large set of de- 

generate vacua. Each such choice leads to a different effective field theory, and 

hence to a different model for physics at 100 GeV. Here I will describe the set 

of string vacua, and the prospects for obtaining “model-independent” predictions 

from-string theory, and also (very briefly) summarize a few recent attempts to 

construct specific quasi-realistic’ models. 

The three general areas of research are all related. In particular, a better fun- 

damental understanding of string theory should lead to advances in the formalism, 

which should in turn lead to more concrete phenomenological predictions than at 

present. 

Superstringsr generated much theoretical excitement in 1984, when it was real- 

ized that they had the potential for unifying all of the known gauge forces together 

with gravity, and for doing so in a practically unique way. Uniqueness is of par- 

ticular importance due to the large discrepancy in energy scales between strings 

and current experiments: Since the signatures of string theory are so indirect, it 

would be nice if they were quite definite. At present, we still have the same limited 

number of string theories as were known in 1984: bosonic strings: superstrings, 

and heterotic stringsP The bosonic and superstring theories can contain either 

closed strings only, or else both closed and open strings; the strings can be either 

orientable (have an arrow along them specifying a direction) or non-orientable (no 

such arrow). The heterotic string theory is a hybrid of the bosonic and superstring 

theories, and as a consequence it contains only closed, orientable strings. Of these 

theories, only the heterotic string has any phenomenological promise, at least at 

our present level of understanding of string theory. A possible exception to this 

statement is the closed+open superstring with gauge group S0(32);5 this string 

$ A very fashionable adjective in string phenomenology. 
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theory has received much less attention than the heterotic string (due partly to 

a lack of any obvious phenomenological promise, and partly to a relative lack of 

open-string formalism), and I too will slight it here. 

2. VACUUM PROLIFERATION, PARTICLE SPECTRUM, AND EFFECTIVE LA- 

GRANGIANS 

So we still have in 1989 only one phenomenologically viable string theory, the ._ _ 
heterotic string (with the possible exception of the SO(32) superstring). How- 

ever, there has been a recent proliferation of string vucuwz states, which appear 

to be degenerate in energy to all orders in (string) perturbation theory. This 

non-uniqueness of the vacuum can play havoc with attempts to extract definite 

predictions from string theory, so I will spend some time describing it. 

The vacuum proliferation has come through the realization that for any two- 

dimensional (2d) conformal field theory6 (CFT) one can construct a vacuum state 

for classical string theory. I will describe the relation between CFT and string 

vacua in more detail later. For now, we just need to know that, in any particular 

string vacuum state, the full spectrum of elementary particle masses and couplings 

are completely specified by the CFT for that vacuum. 

Elementary particles in string theory are identified as the different rotational 

and vibrational eigenmodes of a string as it oscillates around a vacuum state. The 

(mass)2 of the particle is proportional to the frequency of vibration, and in the 

first approximation it is an integer multiple of some basic mass parameter IV2 of 

order M&. A typical spectrum is shown in Figure l(a). Each of the mass levels 

shown in the figure is highly degenerate. The lowest level is of the most interest to 

us because it contains all the massless particles, where “massless” means having 

mass much less than Mpl. In particular, the massless level should contain all the 

particles that have been observed to date: the leptons, quarks and gauge bosons 

of the standard model. There must also be a “hyper-hyperfine” splitting of the 

mass degeneracy in Figure l(a), as shown in Figure l(b), in order to generate the 
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observed particle masses of order Mw. The Higgs mechanism is usually invoked 

to explain this splitting, but a major task of string phenomenology is to explain 

why Mw is so incredibly small relative to Mpl; the latter question is essentially the 

familiar hierarchy problem. The remaining levels in the string spectrum contain 

particles with Planck-scale masses, which won’t be produced in accelerators in the 

near future, and so they are of less direct interest. (If any of the massive particles 

are stable, however, they might have survived as relics of the Big Bang.) (mass)2 (mass)* 
( 1 z )... 

V ( 1 e . . 

W& 

Figure 1. (a) A typical mass spectrum for a particular string vacuum state. (b) 
An enlarged view of the massless sector, showing the “hyper-hyperfine” splitting. 

The couplings between particles in a given vacuum are found by studying how 

strings scatter. A four-string scattering process at tree level is shown in Figure 

2(a), and at one loop (the next order in string perturbation theory) in Figure 3(a). 

For this process to describe the scattering of four massless particles, the four exter- 

nal strings should be prepared in the corresponding rotational/vibrational states. 

Remarkably, there is only one string scattering diagram for a particular process, 

at a given order in perturbation theory. For instance, the tree-level diagram in 

Figure 2(a) can be viewed as representing either s-, t-, or u-channel scattering, by 

stretching it either horizontally, vertically, or out of the page. (This property of 

string scattering amplitudes is called duality, and is the reason why string theories 
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were termed “dual models” early in their history.) The one diagram summarizes 

the contributions of an infinite number of particles - both massless and massive 

- that can appear as intermediate states in the scattering, and in any of the chan- 

nels. The individual particle contributions are represented by ordinary field theory 

Feynman diagrams, shown schematically in Figures 2(b) and 3(b). If the external 

states in a string scattering process are massless particles, and if the energy of the 

collision is much less than Mpl (the usual case experimentally!), then the amplitude 

for the process can be reproduced using an e$ective Lagrungiun L,E which only 

involves the massless fields.7 For example, to reproduce the amplitudes in Figure 2, 

one needs three-particle couplings of the type shown in Figure 4(a). In addition, an 

infinite set of non-renormulizuble terms (terms in L,E with dimension larger than 

four, whose coefficients contain inverse powers of Mpl) results from exchanges of 

massive particles (Figure 4(b)). The latter terms are completely analogous to the 

four-Fermi interaction terms that reproduce the low-energy effects of W-exchange 

in the standard model. Similar considerations apply to loop- as well as tree-level 

string scattering amplitudes, as represented in Figure 3. 

9-89 (a) (b) 6474A.7 

Figure 2. (a) A f our s rin scattering process at tree level. (b) The field the- - t g 
ory Feynman diagrams that represent the contributions of individual particles to the 
amplitude. Thick lines denote massive particles; all other lines denote massless particles. 

(4 lb) 

Figure 3. (a) A four-string scattering process at the one-loop level. (b) The 
Feynman diagrams contributing to it. 
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Figure 4. (a) Th ree ar ic e couplings needed to reproduce the four-string scat- -p t 1 
tering amplitude at tree level. (b) Additional non-renormalizable interactions that are 
needed, due to exchanges of massive particles in the string amplitude. 

--- To recap, if one chooses a particular string vacuum state (a CFT), then the 

string dynamics are fixed, and they can be used to obtain an effective Lagrangian 

L,ff for the massless particles in that vacuum. The effective Lagrangian describes 

physics at energies just below the Planck scale, where strings start to appear point- 

like, in terms of a conventional field theory (albeit including non-renormalizable 

terms). To describe physics at the electroweak scale, one then “just” renormalizes 

L,K down to 100 GeV or so. All the non-renormalizable terms in ,!& can (in prin- 

ciple) be “renormalized” using the loop-corrected string amplitudes, because the 

latter are actually finite in the ultra-violet. The renormalization task is compli; 

cated by the presence of many light fields and many possible intermediate stages of 

symmetry breaking. Finally one compares Lefflroo G~V with the Lagrangian of the 

standard model, ,&.,. . Usually they won’t agree in sufficient detail for Le~lroo G~V 

to be considered realistic; in this case one can go back and pick another vacuum 

state, and go through the whole procedure again.. .! 

Of course, in this constructive approach to string phenomenology, the results 

obtained may be highly model-dependent. Thus one should insist that a model 

give correct “postdictions” of old phenomena (namely, the host of standard model 

parameters that have already been measured) before taking seriously its predic- 

tions of new phenomena. I think it is fair to say that no model constructed to date 

satisfies this criterion. It is important to supplement the constructive approach 

with a model-independent approach, one that tries to determine the general low- 

energy properties common to all string vacua. In this way one may be able to test 

string theory rather than just testing specific string vacua. Unfortunately, there 
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has been relatively little progress to date in the model-independent approach. In- 

terplay between both approaches seems necessary in order to get the most complete 

understanding of what low-energy physics can be expected from strings. 

3. THE STRING VACUUM LANDSCAPE AND VACUUM CLEANING 

It would be nice to have a picture of what the space of string vacua looks 

like, in particular how different vacua are related to each other, in order to help 
._ _ 

understand how one of the vacua might be selected over the others (presumably 

by some non-perturbative string dynamics). Unfortunately our current picture 

of the string vacuum landscape is quite crude, and is only a local picture. That 

is, we understand the neighborhood of any particular vacuum reasonably well, 

through the effective Lagrangian described above, but we really have no idea of 

where the other vacua are in relation to it. The landscape near a vacuum state can 

be -described roughly by plotting the effective potential V,~(cj;) for the massless 

scalar fields (particles) & in that vacuum. (Note that V,E($;) is just a piece of the 

effective Lagrangian Le~(&, a,&, A,, . . .).) As an example, suppose there are only 

two massless scalars (usually there are many more), ~$1 and ~$2, with 

v,,( &, 42) = X1 $5 + X2Mfi2 q$& + higher order terms, 

such that Vex vanishes identically whenever 42 = 0. (See Figure 5.) Then any 

vacuum expectation value of 41 minimizes Vex and provides a string vacuum state, 

so (41) parametrizes a line of vacua. Fields like $1 are called moduli, and occur 
8,9,10 

frequently in string vacua. 

In Figure 6 I have embedded this example along with some others into what is 

supposed to be a more complete picture of the vacuum landscape. There is a great 

variety among the various vacua: they may feature different gauge groups, different 

numbers of moduli and/or massless fields, even different numbers of space-time 

dimensions. (We’ll focus on those with four space-time dimensions!) The question 

marks in the figure reflect our almost total lack of knowledge about regions in the 
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9-89 
6474A6 

Figure 5. Plot of a simple effective potential, I/eR(&, c#J~) = 
(Al + w#d&1)2)4; + . . . . The line of vacua, parametrized by (~$1) and having 
(42) = 0, is shaded. 

3 3 . . l&l ------------I 
3 . 

Figure 6. A rough sketch of the string vacuum landscape. The effective potential 
Vex is plotted on the vertical axes, as a function of the massless fields in a given vacuum. 
The example of Figure 5 is in the dashed box. Again the vacua are shaded in. The 
question marks denote regions far from any vacua, which are not understood at all. 
(Here there be dragons!) 

space that are not very close to any vacua. We don’t even have a set of global 

coordinates with which to describe the space. In the neighborhood of the first 

example we may use the fields qS1 and 42, but another vacuum (if not connected to 
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the first one) will have another set of massless fields, say Ji, which bear no obvious 

relation to the first set 4;. Similarly the effective Lagrangian describing the low- 

energy physics of the first vacuum, ,Cc,,( 4;)) h as no obvious relation to that for the 

other vacuum, Ze,(&). Th e massive fields have been omitted from the picture, 

because including them would make the space infinite-dimensional; nevertheless, 

they will certainly play a role in our future understanding of the relation between 

the disconnected vacua, i.e. in filling in the question marks in the figure. 

At present, there are no dynamical criteria for preferring any one vacuum over 

another. All the vacua (to be more precise, all the vacua with unbroken space-time 

supersymmetry) remain stable vacua to all orders in string perturbation 
11 

theory. 

One generally hopes that non-perturbative effects will lift this vacuum degeneracy, 

but without a formalism for calculating such effects, the best one can do at present 

is to apply phenomenological criteria to do the “vacuum cleaning”. Here is a 

rather minimal set of criteria, which are also relatively easy to implement (or at 

least check) in a given string vacuum: 

l Four-dimensional space-time. 

l N=l space-time supersymmetry at the Planck scale. 

l A gauge group containing SU(3) x SU(2) x U( 1). 

l Massless particles with the gauge quantum numbers of the standard model 

(quarks, leptons, etc.). 

It should be noted that even these criteria are not completely free of theoretical 

prejudice. Four-dimensional space-time is on a pretty safe footing, but unbroken 

space-time supersymmetry at the Planck scale is put in so that it may play a role 

in explaining the naturalness/hierarchy problem of why Mw/Mpl is so small.12 

(Vacua without space-time supersymmetry are also difficult to analyze because, 

unlike the supersymmetric ones, they are generally de-stabilized by radiative cor- 

rections.) Extended (N > 1) supersymmetry is excluded because it forces a non- 

chiral theory, i.e. one with no parity-violating gauge interactions 
13 

; it is assumed 
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that parity is not spontaneously broken at some lower energy scale. The last 

two criteria assume that the observed gauge bosons and fermions are fundamental 

string excitations, rather than (say) composites of such excitations. There are of 

course many more criteria that could be applied, but they are generally much more 

difficult to implement. For example: 

l No fast proton decay. 

_o- The correct set of quark and lepton masses. 

And so on. 

4. CONFORMAL FIELD THEORY AND STRING VACUA 

I would now like to give a brief description of how two-dimensional (2d) con- 

formal field theory (CFT) enters into string theory, and of how one actually im- 

plements the phenomenological criteria just discussed in terms of CFT’s. 

A string is a one-dimensional object, so as it moves through space-time it 

sweeps out a 2d surface, called the world-sheet - analogous to the one-dimensional 

world-line swept out by a point particle. (See Figure 7.) The equations of motion 

Figure 7. (a) Th e world-line swept out by a point particle moving through space- 
time. The position of the particle in space-time is given by Xp(r). (b) The cylindrical 
world-sheet swept out by a closed string. The coordinates of the world-sheet are r and 
a; the position in space-time of a point on the world-sheet is given by Xp(u, r). 

for a point particle can be obtained from an action, Sld = J dT(ds/dT), equal to the 
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proper length of the world-line (parametrized by 7). Similarly, the equations of mo- 

tion of the world-sheet are determined by a 2d field theory, S’2d = J dTdc&d(T, a), 

where r and IY parametrize the world-sheet. In the simplest case S2d is the area of 

the world-sheet, but there are many other possibilities. The Lagrangian ,C2d should 

not be confused with the space-time effective Lagrangian JC,E; also, the fields in 

the 2d field theory are called world-sheet fields in order to distinguish them from 

the space-time fields occurring in I!&. 

When the motion of the string is quantized, the world-sheet fields become 

operators in the 2d quantum field theory and create eigenstates of the string’s os- 

cillations. These states can be identified as particles moving in space-time. Thus 

the full particle spectrum - in particular the massless spectrum - can be de- 

termined by enumerating the world-sheet fields. (Note that the space-time fields, 

acting as operators in the quantized effective field theory ,&.R, also create particle 

states, but only the massless particles, and only in accordance with the spectrum 

found by studying &d.) It turns out that string interactions are also fixed uniquely 

by the choice of &d; this means that &d determines not only the particle mass 

spectrum, but also all couplings between particles! 

The simplest examples of world-sheet fields are those that represent the position 

of the world-sheet in space-time: Xp(a,r), where /-L = 0,1,2,3 labels the four 

space-time coordinates and CY, 7 are the two world-sheet coordinates. (See Figure 

7.) 

In an arbitrary 2d field theory, most of the remaining world-sheet fields do 

not have such a simple geometrical interpretation. However, many string vacua 

can be described as compuctificutions, in which some space-time dimensions are 

taken to have sizes of order the Planck length. In the prototypical example of a 

compactification, one dimension Xi lives on a circle with a radius R of order the 
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Planck length, and the rest Xp parametrize space-time. If the Xp are represented 

Figure 8. Compactification of a single extra coordinate Xi on a circle with radius 
R of order the Planck length. The four coordinates X” of Minkowski space-time are 
represented by the long direction of the “drinking straw”. 

-- - 

by a single line, the result is the “drinking-straw” picture of Figure 8. When 

this compactification is used as a string vacuum, Xi(a, 7) becomes a world-sheet 

field, just like Xp(g, 7); it describes the position of the string in the compactified 

dimension. The moduli that parametrize string vacua also have a geometric in- 

terpretation in the case of a compactification: They represent the lengths of the 

internal dimensions, such as the radius R in the above example. 

Not all 2d field theories give rise to string ZHZCUU. In a vacuum state, strings 

must not be created spontaneously - that is, all tadpole graphs must vanish. This 

non-trivial condition* on the 2d field theory will be satisfied if it is conformaZZy 

14’15 invariant, and has a few other properties to be described shortly. 

I won’t explain exactly why conformal invariance is required, but I should at 

least say what it is. The Lagrangian f& for the 2d field theory depends not only on 

the world-sheet fields Xp, etc., but also on the 2d metricg,p. Conformal invariance 

means that &d is invariant under a local change of scale on the world-sheet which 

preserves angles, 

SC&J> --+ e ~(“,T)gap(a, 7); (1) 

for example the transformation of Figure 9. 

* The condition is somewhat trivial in the point-particle case, because one can adjust the 
particle interactions independently of Sid so that particles are not created spontaneously. 
In the string case, however, the interactions are already fixed once S2d is specified. 
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Figure 9. Example of a conformal transformation: a local change of scale on the 
--- surface that preserves angles. 

In fact, 2d field theories with (1) as a classical symmetry generally develop a 

so-called conformaZ anomaly under the transformation at the quantum level. The 

details of this anomaly are not particularly important here. We just need to know 

that: 

(h) The anomaly is characterized by a single real number c, which is additive 

in the sense that if a.CFT consists of two non-interacting pieces, say ,&d = 

L$ + L$ , then c = c(l) + cc2). 

(b) There is a contribution of c = -26 from the metric gap for the bosonic 

string, which must be cancelled by a contribution of c = +26 from world- 

sheet fields other than the metric (Xp, . . .); for the superstring c = -15 must 

be cancelled by c = +15. 

(c) A single world-sheet field of the type Xp(a, 7) contributes an anomaly c = 1, 

so if space-time is D-dimensional (cl = 0, 1,2,. . . , D - 1) the D fields will 

contribute c = D. 

The “critical dimension” D, = 26 for the bosonic string is obtained by assuming 

that there are no world-sheet fields other than Xp (not counting the metric). 

For the superstring the critical dimension is D, = 10. (It is 10 rather than 15 

because each Xp field has to be accompanied by a world-sheet superpartner $p 

which contributes an additional c = 3). Four-dimensional (super)string vacua are 

constructed using only four fields Xp that represent space-time coordinates (plus 
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v+!P in the super case), but also using extra “internal” fields - like X’ - in such 

a way that the total anomaly from fields other than the metric continues to have 

the correct value, either c = 26 or c = 15. 

The most important world-sheet fields in a CFT, which also have the simplest 

behavior, are those that move in only one direction on the string, either to the left 

or to the right; thus they depend only on uL = r - 0, or only on oR = 7 + 0, and 

are called left-moving fields or right-moving fields, respectively. The 2d Lorentz ._ _ 
properties of any world-sheet field can be summarized by its scaling or conformal 

dimension,6 which generally will get anomalous contributions at the quantum level, 

and which can be split into left- and right-moving parts, denoted h and x (h, E 2 0). 

The left-moving fields all have h > 0, h = 0, while the right-moving fields have 

h = 0, h > 0. 

In any conformal field theory, the energy-momentum tensor T,p provides an 

important pair of left- and- right-moving fields. While T,p is present in any field 

theory, in a CFT it is traceless, Z’,” = 0, which allows it to be split into the left- 

and right-moving components 

WL) with (h,k) = (2,0), 

T;( CL> with (h,h) = (0,2). 

The short-distance behavior of Tap also determines the conformal anomaly c, be- 

cause Tap generates conformal transformations, in addition to its usual role as gen- 

erator of rigid translations of the world-sheet. Any CFT with an energy-momentum 

tensor Tap giving rise to c = 26 provides a vacuum for the bosonic string (at the 

classical level). 

A superstring vacuum has a few more restrictions on it - the 2d CFT must be 

supersymmetric as well. In this case the energy-momentum tensor Tap will have a 

fermionic superpartner (TF)~~, which can also be split into left- and right-moving 
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pieces: 

TF(~L) with (h,h) = ($,O), 

TF(%) with (h,h) = (0, $). 

Any such superconformal field theory with conformal anomaly c = 15 provides a 

classical superstring vacuum. 

The heterotic string is constructed by combining the left-moving world-sheet 

fields of the bosonic string with the right-moving fields of the superstring; hence 

it-requires the presence of T, T and TF but not necessarily TF. The left- and 

right-moving conformal anomalies are now different from each other - c = 26 

and z = 15 respectively. In fact, a very large number of such superconformal field 

theories are now known to exist. This embarrassment of riches is precisely the 

(heterotic) string vacuum degeneracy problem. 

5.- PHENOMENOLOGICAL CONSTRAINTS 

So far I have discussed the constraints on the CFT that come just from con- 

sistency of (super)string propagation. Now I would like to focus on the heterotic 

string, and impose some of the additional “phenomenological” constraints dis- 

cussed above, in the hopes of reducing the vacuum degeneracy problem somewhat. 

Many of these constraints require the presence (or absence) of particular world- 

sheet fields, often the relatively simple purely left-moving (or purely right-moving) 

fields. 

l Four-dimensional space-time is implemented by requiring the two-dimen- 

sional Lagrangian to have the form 

L2d = Lo(X'",$")+ Gnternal(Y'i), (2) 

where 

The fields X” describing the string’s position in space-time (p = 0, 1,2,3), and 

their world-sheet superpartners, $p”, are free (non-interacting) fields due to Eq. (3); 
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$+ is a right-moving field, and Xp can be split into left- and right-moving pieces, 

&,,Xp and &,Xfi. The remaining “internal” fields cp; do not interact with Xp 

and $P. In the case where &d represents a compactification, they are the degrees 

of freedom associated with the (six) compactified dimensions: X’, $‘, . . . . The 

conformal anomalies associated with &(Xp, $p) are c = 4 and c = 6; hence 

L internal must have 

qnternd = 26 - 4 = 22, cnternd = 15 - 6 = 9. 

Additional constraints will now be imposed on ,Cinternd. The easiest constraints 

to implement have to do with the connection between massless particles (specifi- 

cally, gravitinos, gauge bosons, quarks and leptons) and certain world-sheet fields 

having (h,h) = (1,;) under th e energy-momentum tensor for &d. The contribu- 

tions to (h, h) coming from f&ternaJ depend on the space-time Lorentz properties 

of the particles in question; they lead to the following restrictions on Cin+,ernd: 

l Space-time supersymmetry requires several additional right-moving fields; 

in particular, the right-moving component of the energy-momentum tensor 

T has a second superpartner i+F in addition to TF: 

%(ffR, with (h,h) = (0, i). 

This means the internal CFT possesses an extended (N = 2) world-sheet 
16,17 

supersymmetry. 

l Not too much space-time supersymmetry (which would destroy chiral- 

ity) requires the absence of all right-moving fields with (h,h) = (0, i).‘” 

l A gauge group containing SU(3) x SU(2) x U(1) requires left-moving 

fields, one for each gauge boson: 

Ja(c) with (h,h) = (l,O), 

where a labels the generators of the gauge group. (See e.g. Ref. 19.) The 

properties of the J” are ,completely specified by the choice of gauge group, 
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i.e. the structure constants fabc, and of certain positive integers Ic; (one for 

each non-abelian factor in the gauge group) which show up in the short- 

distance behavior of the J”. The Ic; are important in determining which 

representations of the gauge group can appear in the spectrum, and in the 

relation between different gauge couplings (see below). 

l Massless quarks and leptons require world-sheet fields @i(cL, a,) that 

are not purely left- or right-moving (they have (h,K) = (1, 8)). (See e.g. 

---- - Ref. 10.) They have specific charges under the fields Ja(aL), corresponding 

to their gauge quantum numbers, but otherwise they are not terribly well 

specified. 

And then there are the criteria that are much harder to implement, such as 

no fast proton decay and reasonable quark and lepton masses. Both these 

quantities are related to certain CFT correlation functions (@iQjQk), but they are 

also very sensitive to other possible fields, to radiative corrections, and to various 

stages of symmetry breaking below Mpl, so in practice it is difficult to evaluate 

them for a specific model, let alone to implement them as general conditions. 

Now that we have imposed some constraints on the CFT, we would like to see if 

the general properties of the allowed CFT’s can in turn impose restrictions on the 

possible space-time effective Lagrangians. Unfortunately, not much progress has 

been made in this direction, at least for the heterotic string.* A primitive example 

of a restriction on ,&.r is the tree-level relation 20,19 

ssu(3)= 
/ 

ksU(2) 

9SlJ(2) 4sU(3) . 
(4) 

Here 9SU(3)7 SW(B) are the strong and weak gauge coupling constants, and ksu(3), 

ksu(2) are the integers associated with the world-sheet fields J” that were men- 

tioned above. In a given string vacuum, each ki takes on one specific value, but 

* For the closed superstring, on the other hand, one can show that there are no CFT’s satisfy- 
ing the combined constraints discussed above (though CFT’s exist satisfying the individual 
constraints). This rules out all classical vacua of the closed superstring on phenomenological 
grounds.‘s 
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that value can (in principle) be any positive integer. It is instructive to compare 

this prediction with that for the grand unified theory based on SU(5)21 (or any 

gauge group containing SU(5) and with the same embedding of SU(3) x SU(2)): 

(5) 

The string theory prediction (4) is clearly much less definite than the GUT pre- 

dic+n (5). On the other hand, in the effective Lagrangians for many string vacua 

the standard model gauge group is not embedded into a simple Lie group (such as 

SU(5), SO(10) or ES); under these circumstances a generic field theory would give 

no gauge coupling prediction at all! In fact, almost all of the attempts to date to 

build phenomenological string models have involved choosing lcsu(s) = Icsu(2) = 1, 

in which case one recovers the usual GUT prediction. There are, however, no argu- 

ments excluding Ic > 1 on phenomenological or other grounds (provided k is not too 

large); indeed, explicit models featuring k = 2 have recently been 
22 

constructed. 

Both Eqs. (4) and (5) are tree-level relations that will get loop corrections. In 

particular they will change significantly under renormalization from Mpl (A&GUT) 

down to Mw, and the change will depend on the masses of particles carrying 

SU(3) and SU(2) q uantum numbers below Mpl ( MGIJT).~~ This change introduces 

further model dependence into the string prediction, beyond the choice of ks,y(3) 

and ksuc2), but this kind of dependence is common to GUT’s as well. 

The model dependence of even the primitive string prediction (4) raises the 

more general question of the sensitivity of models to both discrete and continuous 

modifications. In Figure 6, discrete modifications jump the vacuum from one 

“known” patch to another, whereas continuous modifications involve changing the 

vacuum expectation values of moduli and slide the vacuum along the troughs in a 

given patch. In general, models are very sensitive to discrete modifications: The 

gauge group and matter content - even the number of generations - can change 

drastically. On the other hand, models are actually rather insensitive to continuous 

modifications. For example, tree-level relations like (4) between gauge couplings do 
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not change 20,17 ; at least some of the matter content (usually including the quarks 

and leptons) remains the same 9,lO ; and some of the Yukawa couplings among the 

matter fields even stay 24 constant. This insensitivity makes it difficult to tune low- 

energy predictions by continuous adjustments of the moduli, which I view as an 

encouraging result. 

6. SPECIFIC CONSTRUCTIONS 

I would now like to make a few remarks about specific constructions of models. 

There are several different kinds of constructions, which overlap somewhat (differ- 

ent constructions can give rise to the same vacua), and which I will make no attempt 

to describe here.25 They go under the names: Calabi-Yau compactifications,8 orb- 

ifolds (symmetric 26,27 and asymmetric28), free fermions, 2g free bosons (or covariant 

lattices):’ and tensor products of N = 2 superconformal field theories. 31’32 There 

are certainly at least thousands of models contained in these categories. Only a 

relative few have been analyzed in much detail. The more promising ones have 

certain features in common beyond the minimal criteria I mentioned previously: 

l Three generations of light fermions. Four generations have been considered; 

one has then to prevent extra colored members of each generation from lurk- 

ing at the 100 GeV scale (otherwise the SU(3), coupling constant will fail 

to be asymptotically free and will blow up before the unification scale33). 

However, the very recent* measurements at SLC34 and LEP35 of the width 

of the 2’ now seem to rule out four generations with light neutrinos. 

l Space-time supersymmetry is broken by non-perturbative effects in a “hidden 

sector”. (It is generally believed that supersymmetry will not be broken per- 

turbatively if it is present at tree-level.) The hidden sector generally consists 

of a strongly-interacting gauge theory with some gauginos X but no other 

charged matter fields, plus some gauge singlet matter fields. The supersym- 
36 

metry breaking is supposed to be triggered by a condensate of the gauginos, 

* slightly postdating this talk, in fact! 
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( xxp3 - 1014 GeV. The particles in the hidden sector interact with observ- 

able particles only through gravitational-strength interactions, and so the 

scale of supersymmetry breaking in the observable sector is reduced by a 

factor of AI;;, to - Mw. The masses of the superpartners of the quarks and 

leptons then fall in the usual range S 1 TeV or so. 

l There are no matter fields transforming under higher-dimensional represen- 

tations of SU(3) (th a is, only singlets and triplets are present) or of SU(2) t 
._ _ 

(only singlets and doublets are present). This is a quite generic feature; it is 

true for any vacuum in which ksuc3) = ksu(2) = 1. 

l There are also usually no light “exotic” (SU(2) singlet) quarks, but for a 

different reason: They can cause fast proton decay if they are lighter than 

- 1015 GeV, unless certain Yukawa couplings happen to vanish. 

l There are often a few additional SU(2) d ou e s and singlets around at TeV bl t 

energies. 

l The gauge group that acts on the observable particles is not necessarily uni- 

fied anywhere below Mpl; typical gauge groups are SU(3)3 (found in a partic- 

ular Calabi-Yau/N = 2 tensor product construction 37’38’3g), SU(3)xSU(2) x 

U(l)n (found in various orbifold constructions27), or (flipped) SU(5) x U(1) 

(found in certain fermionic constructions4’). Usually the gauge group is 

supposed to break spontaneously at a high “intermediate” mass scale MI - 

10’3*2 GeV, 1 eaving at TeV energies only the standard model gauge group 

SU(3) x SU(2) x U(l), plus perhaps one extra U( 1) factor (a 2’ gauge boson). 
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7. PROSPECTS 

I will conclude by commenting on two of the major obstacles to extracting 

predictions from string theory. The first occurs in the analysis of any specific model 

- it is the question of how non-perturbative effects could lead to the breaking of 

space-time supersymmetry. As I mentioned earlier, there are often many fields (the 

moduli) whose potentials in V& are flat, i.e. their vacuum expectation values are 

undetermined to all orders in string perturbation theory. Some of the moduli can 

receive corrections to their potential from non-perturbative effects, in particular 

from interactions with the hidden sector gaugino condensate mentioned above, but 

perhaps also from other non-perturbative effects that have yet to be identified. 

In many cases the gaugino-induced corrections to the potentials cause vacuum 

expectation values for the moduli to run away to infinity! Thus we need to know: 

What is the full corrected potential? Does it have a stable minimum? If a minimum 

exists, is supersymmetry broken there? Finally, exactly how is the supersymmetry 

breaking manifested in the observable sector ? There is a general understanding of 

the last question in supergravity (in terms of so-called “soft-breaking terms”), but 

the details can be sensitive to model-dependent parameters in L,E (such as non- 

renormalizable kinetic-energy terms for observable fields, etc.).12 The details can 

in turn be very important in determining many low-energy quantities, including 

the masses of superpartners but also the observed quark and lepton masses; the 

latter masses are sensitive to the pattern of supersymmetry breaking in models 

where there are additional scales of gauge symmetry breaking between Mw and 
39 

MPl. 

A more fundamental obstacle to obtaining predictions from string theory is the 

issue of how one vacuum state is dynamically preferred over another. This issue 

cannot even be addressed until one has a formalism that can simultaneously de- 

scribe two disconnected vacua, like two of the “islands” depicted in Figure 6. Until 

such a formalism is developed, the two ways one might hope to make phenomeno- 

logical progress are: (1) to “get lucky” in finding “the right” vacuum, which would 
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predict all the standard model parameters correctly; or (2) by trying to determine 

the general properties common to all the vacua, in the hopes of deciding whether 

any of them can lead to realistic physics at the 100 GeV scale. Clearly there is 

still a lot of theoretical work to be done before we know whether superstrings are 

a theory of everything or a theory of nothing. 
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