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The two topics are (1) estimates of perturbation theory coefficients for R (e+e- + 
hadrons), and (2) th e virtual-photon structure function, with emphasis on the analytic 
behavior in its squared mass. 

INTRODUCTION 

Quantum chromodynamics (QCD) h as reached a level of credibility and maturity 
which deserves textbook status. Indeed, textbooks exist’ and others are on the way.2 
Nevertheless, to my mind a textbook treatment of QCD is made much more difficult 
than that of quantum electrodynamics (QED) b ecause of the confinement problem. 
Even perturbative QCD-which is all that will really be discussed here-suffers this 
problem. There is no S-matrix theory of quarks and gluons as there is for QED, as given 
in the LSZ formalism.3 The concept of “on-mass-shell” or “asymptotic” quark and/or 
gluon is highly suspect. And the typical “Feynman diagram” used in perturbative 
QCD contains internal quark and gluon lines and external hadron lines. What does 
that really mean ? How does one derive and justify Feynman-rules for such amplitudes 
in the absence of good control over the confinement question? 

These issues are more matter-of-principle ones than operational ones. In general, 
I find no fault with what is being calculated, only that there is need for a more solid 
logical basis-as opposed to the intuitive, common-sense one-for what is done. The 
question is perhaps similar to, albeit much less profound than, the early days of quan- 
tum theory, where the calculations came fast and the real understanding of what they 
meant came more slowly. 

In the last year, I have been lecturing on QCD at the University of Chicago, 
with these issues in mind. While I cannot claim much progress, the material which 
follows is influenced by the above concerns. It has also been most positively influenced 
by the students who patiently endured my gropings through this difficult subject and 
provided much help. Some are here at this school; to all I give thanks. 
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GUIDELINES FOR SETTING UP PERTURBATIVE QCD 

Perturbative QCD is, at best, applicable only at short space-time intervals be- 
cause-of the “asymptotic freedom” property of the running coupling constant. What 
doesthis mean? Perturbative field theory is, essentially, by definition, based on Feyn- 
man diagrams. Can one construct Feynman-diagram amplitudes whose ingredients 

.- depend only upon short distances ? The answer appears affirmative, provided these c 
diagrams are for Green’s functions whose sources are restricted to small, contiguous 
space time regions. What, in turn, does this mean? I prefer to think of this restric- _. 
tion in terms of actual physical processes in principle localizable to small space-time 
regions. Tiny sources, of scale small compared to the confinement scale AQko, create 
“beams” of quarks and gluons which interact, making reaction products which may be 
observed with tiny detectors, again of scale small compared to the confinement scale.4 
All of this should fit into space-time regions within which perturbation theory is really 

- justifiable. Then (and only then?) can such processes be calculable by perturbative 
techniques alone. A strictly-perturb&he space-time region can be defined as one which 
has the property that any straight line segment lying entirely within the region has 
an invariant length small compared to the confinement scale A&, (whether or not 
the segment is spacelike or timelike). A little reflection should convince one that such 
strictly-perturbative domains are just the space-time regions adjacent to light cones. 
(For a light cone the only line-segments satisfying the criterion are null; so that the 

--regions between hyperboloids x2 = u2 and z2 = -u2 evidently satisfy, for small enough 
a, the criterion for a strictly perturbative domain). While I haven’t tried to prove it, it 
seems to me eminently reasonable that the relevant amplitudes and Green’s functions 
within strictly perturbative domains really can be computed reliably using perturba- 
tion theory. Conversely, when the space-time region extends beyond such domains, 
it seems unavoidable that nonperturbative effects enter. It would be nice to sharpen 
these opinions further, but in these lectures it will only be done by example and not 
in generality. - 

What is the nature of convenient sources of quark and gluon “beams?” At large 
invariant distances the color-fields should be screened. A most economical way to 
guarantee this is that the external sources of initial-state quark and gluon beams be 
local and color singlet. For example, to obtain a beam of bottom quarks, first build 
a beam of Ws (of very high energy) and let them decay into bi?. Virtual photons are 
evidently an alternative. These are what we shall use in our examples, i.e., the “one- 
photon” and “two-photon” processes which form the lifeblood of e+e- collider physics 
experimentation. But, in general, we may assert the following: 

1. Amplitudes for strictly perturbative processes shall be constructed from Green’s 
functions 

G(xl,... &a> = < qT(a(x1). . * O&J)10 > , (1) 

for which all operators Oi(zi) are local and color singlet. 

2. After Fourier transformation, the momentum-space Green’s functions &(pl. . . p,) 
will depend only on short distances, when the p” are all large and spacelike, and 
when the pi *pi (i # j) are suitably restricted. (A sufficient restriction is that all 
pi be “Euclidean” momenta, but this may not be necessary). 
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3. Given the confinement hypothesis, all information should be obtainable by an- 
alytic continuation of the Green’s functions we have introduced. However, this 
does not imply that analytic-continuation of the approximate Green’s functions 
constructed in perturbation theory provides this information. - 
The Green’s functions we shall use in our examples involve only the electromag- 

.- netic current operator: 

i 

We first consider the two-point function for the vacuum polarization operator, and 
then the four-point function for the forward scattering amplitude for two virtual pho- 
tons. These are sufficient for considering the e+e- total annihilation cross section into 
hadrons, and for the structure-functions for deep inelastic scattering of an electron from 
a virtual photon. Very interesting, but beyond the scope of these lectures is the ques- 
tion of how to describe the “final-state” properties of such processes, which, according 
to the lore of perturbative QCD, consist of sets of quark and gluon jets. Formally, 
these may be seen in the absorptive parts of the (appropriately analytically continued) 
Green’s functions we have defined, as calculated in perturbation theory. Less formally 
they should be described in terms of the “physical” processes we have alluded to: tiny 
calorimeters placed “near the light-cone” pick up the quarks and gluons before they 
hadronize and measure the energy-momentum deposited into finite elements of solid 
‘angle AyA(p. How to link the formal description using the absorptive parts of the 
Green’s functions to this “physical” picture is an interesting problem, well beyond the 
scope of these lectures. Some day I want to understand it better. 

-But this is more than enough of such general platitudes. The remainder of these 
lectures will be devoted to the e+e- total cross section and the virtual-photon’s struc- 
ture functions for deep-inelastic scattering. These examples will hopefully elucidate 
somewhat what I am driving at. Throughout this discussion, I assume the reader has 

- some familiarity with a “standard” presentation of perturbative.QCD as found in many 
places; the most immediate place is the fine set of lectures given by James Stirling in 
these proceedings. 

ELECTRON-POSITRON ANNIHILATION INTO HADRONS 

The total cross section for e+e- -+ hadrons normalized to the lowest-order cross 
section for e+e- --t p+p-, is given by 
lowest-order calculations is a constant 
participating quarks 

R pert = C ef [l + . . .I , 
i 

the famous5 function R(s), which in the naive 
equal to the sum of squares of charges of the 

(3) 

and where the three dots denote perturbative-QCD radiative corrections, to be dis- 
cussed later. Formally, R is related to the Fourier transform of a Green’s function built 
from two electromagnetic currents 

(qpqv - gpyq2)R(s) a J d4xeiq.’ < olj,i(x)jv(0)10 > , (4) 
with s = q2 timelike. 
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In general, is R(s) a perturbatively calculable quantity for large s, according to 
our criteria? If so it should only depend upon the current correlation function at short 
space-time intervals. In the center-of-mass frame we deal with time intervals only. To 
test whether R is only sensitive to short time intervals, we may cut off the current 
corrZIation function at large times: 

< ~l&&MW > + < Olj~(x)jv(0)10 > exp{-t2/2T2} , (5) 

_. and see the effect on R(s). An easy calculation shows (for ~1 = v # 0) that 

sR(s) + J dE exp{-r2E2/2} s’R(s’) E ,x(s) , (6) 

with fi = fi - E. - 
_ In other words, R(s) must be averaged5 over an energy interval A& >> 7-l in 

order to be a strictly perturbative quantity. In particular, quarkonium resonances and 
sharp features of heavy-flavor thresholds must be smeared out over an energy scale large 
compared to AQCD N 200 MeV. This is evidently just the uncertainty principle at work. 
It is amusing that, given a top quark mass in excess of the W mass, physics does the 
local averaging. The width of the top-quark decay t t Wb is large, in excess of 1 GeV. 
Thus there is no time available for toponium formation or even the formation of T - tq 

mesons. Such processes of hadronization take place on a time scale long compared to 
the confinement time AiLD. Thus the threshold structure is already made smooth 
by the short t-quark lifetime. However, as pointed out by Fadin and Khose,’ there 
are significant QCD radiative corrections near threshold which are numerically large, 
and which can be reliably estimated using a perturbative-QCD calculation, because 
everything happens within a strictly perturbative space-time domain. 

- 
A quantity related to R(s) is the hadronic vacuum-polarization, evaluated at 

spacelike momenta. This is a sum of Feynman diagrams; one has: 

(%.hq~ -gcrvq2) H(Q2) cx J d4xeiq.’ < OIT(j,(x)jv(0))10 > . (7) 
For large spacelike q2 = -Q2, the function II(Q2) is necessarily smooth so that the 
averaging procedure is not needed (We will see this explicitly in what follows.) To 
lowest order in a perturbative calculation, II vanishes at Q2 = 0 (after charge 
renormalization has been carried out) and grows logarithmically at large Q”: 

Q2 
II(Q2)mCef&- . 

i rnf 

A somewhat more convenient quantity for what will follow is the logarithmic derivative 
of II(Q2), which we denote by D(Q2): 

D(Q2) = Q2 dH d&2 = Cef [l+...] . 
i 

(9) 

At the near-trivial parton level of calculation, D and R are, in fact, identical. 
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It should be clear that knowledge of R, i.e., of < O]jP(x)jV(0)]O > implies 
knowledge of 11( Q2), h ence of D. This is formally expressed in momentum space in 
the fact that II (or 0) is an analytic function of Q2 in the cut complex Q2 plane, 
andthat R is obtained from II(Q2) by analytic continuation. In particular, R is the 
discontinuity of II(Q2) across the branch cut. The formula is: 

VQ2) = Q2 
O” ds R(s) J o ++Q2) ’ 

(10) 

Note that the threshold of the s-integral is at 4mz. Were R to be estimated perturba- 
tively, the threshold would be somewhere else (- 4mi) and fi smearing is definitely 
called for. 

We are now prepared to discuss the nature of the perturbative-QCD correction 
to-??(s) [or O(Q2)]. W e a g ain assume some familiarity with the workings of the theory 
and summarize what happens (in the MS or MS renormalization scheme) 

1. In order to manage the divergences which appear, one cuts off the Feynman 
integrals by evaluating them in a space-time dimension D slightly less than four: 

. 

2. By dimensional analysis, the (bare) coupling constant 00 multiplying the Feyn- 
man integrals acquires a nonvanishing dimensionality proportional to E. 

3.. A new dimensionless coupling cro(p2) is defined by introducing an arbitrary scale- 
factor p2: 

a0 E cYo(p2)p4-D . (12) 

4. The theory is renormalized, removing the singular dependence on space-time 
dimension, i.e., on E, of the Feynman-integrals. 

5. The renormalized quantity ?‘? then depends upon three variables: 

fi : the energy variable; 

as(p2) : the renormalized (dimensionless) coupling constant; and 

p2 : the arbitrary mass scale. 

6. However, since R represents physics and the value of ~1 is an arbitrary choice, R 
cannot depend upon ~1. This means: 

Defining, somewhat unconventionally, 
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Figure 1: Behavior of the running coupling constant with scale factor p. 

we see that in cy, - 45-i p2 space (Fig. l), there are lines along which i? does not 
change. The local slope of such lines can be read off Eq. (13): 

- - = -&) . 
QS dp2 

(15) 

These curves cts = .- cy9(p2), along which x remains constant, define the running 
. 

coupling constant. 

- 

7. Only one of the curves will be consistent with experiment: for a given choice of 
p2, crys(p2) has to be chosen to agree with the data. 

8.. Dimensional analysis demands that z be a function only of (Ye and of s/p2. 
Putting this constraint together with the argument that R be independent of p2 
leads to the conclusion that R is a function of only a single variable, which must 
be as(s). 

9. Because perturbative QCD allows a formal power series expansion in os(p2), this 
implies the existence of a formal power series expansion in as(s). 

We have left out details; the student is urged to consult Stirling’s lectures and 
standard sources to fill them out. But the main point is that this line of argument is 
based on the renormalizability of the theory and is quite general. It therefore applies 
equally well to the vacuum polarization II(Q2) or, better, D(Q2). We therefore have 
for the quantity experimentalists measure 

R(s) = 74 [1+z rm (?y] ’ 

and for the quantity theorists calculate 

QQ2) = cef 
i 

(16) 

(17) 

These two quantities are related by a dispersion relation following directly from Eq. (10). 

WQ2) = Q2 
O” dsR(s) 

/ 

O” dzR(xQ2) O” dzz(sQ2) 

o (s+Q~)~ = o (l+~)~ = o / J (1+q2 - 
(18) 
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It turns out that interesting information emerges just from the fact that both D and z 
admit power-series expansions in as. We see from Eq. (18) that D is just a local average 
of R, so that if 72 is slowly varying, D and x are essentially the same. But if we expand 
x asa power series in cr,(zQ2), then it is possible to use the equation for the running 
coupling constant to express crS(zQ2) (perturbatively) in terms of o,(Q2) and thereby 
construct the power series for D(Q2). Evidently, D and R are not identicaZEy the same, 
so that the series are not the same. Indeed, in what follows we shall find evidence that 
the series expansion of D-E is almost certainly asymptotic, not absolutely convergent. 
The same statement probably applies for D and R separately, as well. 

In order to make the connection one must know how the coupling constant runs. 
With our definition, the p-function admits a power-series expansion in cr, which begins 
in first order. Keeping only that contribution leads to the well-known expression: 

1 1 b Q2 
as(Q2) = 4~~) - + ye- = 

L-l - Q2 
, 

P n- A&D 
(19) 

with b = (33-2nf)/12 = 2.08f0.17 for the effective number of flavors 4fl. Expressing 
cr,( zQ2) in terms of (Y~( Q2) will therefore lead to a power-series expansion in (r,(zQ2) 
with the nth coefficient being (at most) an &h-order polynomial in !nz. (This is 
still true when the higher-order corrections to the p-function are included.) Thus 
the generic term in the convolution integral is of the form (note the symmetry under 
x-5 -1 

1: 

O” dz(.!ns)n -J 0 n odd , 
(20) n even . 

0 
(l$# = 2[(n)[l - 2l-“In! 

(It is gratifying to see a C-function appearing here, signalling perhaps some connection 
to conformal symmetry. It would be a terrible thing not to be at least slightly au. 
coumnt. Long ago, Feynman observed7 that there were then only two options open to 
theorists: to either form a group or to disperse. There seems to be even less choice 
nowadays: one must conform.) 

With knowledge of how to do the integrals, it is only algebra to figure out the 
series for D-x. Evidently, the order Q~/X term vanishes. Because the integral over 
one power of &-ix vanishes, the (o,/T)~ term also vanishes. Only in third order do the 
two series begin to differ, and one easily finds 

D-x = (y) (;)3+... x 14(;)3 , 

where we use the known result that the first radiative correction to ?? is 

rl=l . (22) 

The perturbative series for R has been calculated through order (a,/~)~, and the 
results for the higher order coefficients are 

r2 = 1.53 f0.12 , 

r3 = 66.10 f 1.24 , 
(23) 



where, again, we let nf = 4 f 1 for this purpose. The large value of the (o’~/T)~ term, 
calculated recently’ by Gorishny, Kataev, and Larin (hereafter GKL), has surprised 
many people. However, from the point of view of Eq. (21) for the difference 0-x 
(w&h, by the way, is explicitly presented in the GKL paper; they, after all, calculate 
D and quote z), this should not be surprising. There seems no particular reason why 

_- D should converge better than ?? (or vice versa), so that the estimate for the difference 
c should reflect the behavior of the individual quantities. 

_. But this is not the end of the story. The coefficient of the (cY~/w)~ term for 
the difference of D-x was very simple to calculate and used only lowest-order QCD 
calculations. Not only have higher order corrections to x been computed, but also 

._ higher-order corrections to the p-function; in our notation, we write 

- -; 3 = p(cr,) = b(T) [l+n; b, (;)n] 7 (24) 

with 

b= 
33 - 2nf 

= 
12 

2.08 f 0.17 

bl = 1.51 f 0.27 (25) 
.- . b2 = 2.97 f 1.50 . 

This allows computation of the next two orders of D-E’, out through the (cY~/~)~ 
cont.rjbution! One finds, after slightly more arduous algebra, 

4 - r4 = 7r2b2 (r2 + &bl) = 43(1.5+ 1.3) = 119 f 17 

- 
77r4 

4 - r5 = 7r2b2 (2r3 + gr2bl + rlbz + $bt) + 15 rlb4 

S 43(132 + 5 + 3 + 1) + 855 

(26) 

= 6920 f 620 . 

The largeness of these terms mostly reflects the largeness of b (note that for QED, 
the corresponding quantity is about seven times smaller). However, one also sees the 
beginnings of an asymptotic series emerging in the factors of n! in numerators from 
the integrals of Eq. (20). To go to still higher orders is, in general, tedious, and re- 
quires unknown input. However, one observes that the contributions from higher order 
corrections to the P-function proportional to bl and b were not especially significant 
numerically. This invites considering the approximation of neglecting all but the lead- 
ing term for the ,&function. It turns out that in this limit one can easily estimate the 
nth-order coefficient in the expansion of D-x. To do this most efficiently, it is conve- 
nient to introduce the Bore1 transform of the perturbation series. One assumes that 
the functions D, R, etc., which we generically call F(crb), are obtainable as Laplace 
transforms in cr; ’ of another function P(z) (the Bore1 transform): 

00 
F’(G) = J dze- z’(ya P(z) . 

0 

(27) 



Why this representation ? If E(r) admits a power series expansion in z (more or less), 

- E(r) = Fob(z) + 2 fn P--l , (28) - 
n=l 

.- then one immediately finds: 

Fbs) = 5 j&Y; = J’o+F(n--l)!f,o: . 
n=l n=l 

(29) 

In other words, the power series for P is related to that of F and converges much 
better: 

fn 
- jn = (n-l)! ’ (30) 

For this reason, this Bore1 transform has been used by theorists9 to investiga.te the 
convergence of the perturbation series. It is believed that F(z) has a finite radius of 
convergence, with branch-point singularities on the real z-axis known in the tra.de as 
“renormalons.” If this is truly the case, then the radius of convergence of the usual 

.-- perturbation series for F(cY~) is zero with the nth term in the series eventually growing 
.- . roughly as n! 

The utility of the Bore1 transform, in our case, comes from the fact that the 
convolution relating D and 3, Eq. (18), factorizes. Introducing the Bore1 transform 
for R and using Eq. (19) for the running coupling constant yields: -- 

-- 

Jy%) = 
d (1+ g2 ./ 

dzH(z) exp(-z/[~s(xO!*)JJ , 

= 7 dz exp{-*/[a,(Q2)]} ii(z) J” dx ““::,‘-+~,‘:“‘“’ . 

\“‘/ 

0 0 

The x-integral is a beta-function, and the remainder is in the Borel-transform format. 
Therefore, the result is simply: 

One sees singularities appearing on the real z axis; these occur at the positions of the 
renormalons to which we alluded. 

From this recursion relation, one may easily construct the power series expansion 
for b, hence of D, from that of 3i. The easiest way to write this is: 

k 

2((K) (1 - ‘J1-‘) Fn-k , (n L 3) . 
k=2,4... 

(33) 

Note there are no large coefficients in this expansion-nor small ones. However, 
upon returning from the Bore1 expansion coefficients to the original ones, we pick up 
a factor (n - l)!: which is large. 



I have made some estimates of the nth coefficient, assuming: 

c 
.- 

- 
- 

rn ;S I& -rnI . (34) 

This leads to the values of Sn = d, - r, quoted in Table I. One sees a remarkable 
growth in the coefficients. In Table II, the actual values for the nth term of the series 

. expansion for 6, and/or r, are tabulated for a variety of choices of cr,/n. The entries 
above the line are secure, while the entries below depend on the guesswork we have 
introduced, namely, the approximate validity of the leading order expression, Eq. (19), 
for the running coupling constant, as well as the estimate for r, in Eq. (34). 

TABLE I Estimated coefficients for 6, = d, - r,. 

63 = 15 

64 = 120 

65 = 6900 
sfj = 23,000 

67 = 2,400,OOO 

6, = 12,000,000 

6, = 1,600,000,000 

TABLE II Nth order contributions to D - 7Z and R. 

1 1.00 

rdQ> 0.30 

r2($J2 0.13 

r3($j3 63($13 1.8 0.4 

a4(g14 1.0 

65($15 17 

? &($y 17 

? 67( $1’ 500 

? b3(~>a 800 

? s9wg 30,000 

+ = 0.3 + = 0.1 q = 0.05 + = 0.03 

(PEP/PETRA) (SLC/LEP) 

1.000 1.000 1.000 

0.100 0.050 0.030 

0.015 0.004 0.001 

0.069 0.015 0.008 0.002 0.002 4 x 10-4 

0.012 0.0008 1 x 10-4 

0.069 0.002 1.7 x 10-4 

0.023 4 x 10-4 1.7 x 10-5 

0.24 2 x 10-3 5 x 1o-5 

0.12 5 x 10-4 8 x 1O-6 

1.6 3 x 10-3 3 x 10-5 

+ = 0.01 

(GUT) 

1.00 

10-2 

1.5 x 10-4 

6.9 x 1O-5 1.5 x 1O-5 

1.2 x 10-6 

6.9 x 1O-7 

2 x 10-a 

2 x 10-s 

1.2 x 10-g 

1.6 x 1O-g 

I think the main lesson to be learned from this is something recognized for a 
long time by the experts: the perturbation series is asymptotic. The exercise we 
have done helps to give some feeling as to when the trouble appears. According to 
Table II, one should truncate the series at order n w 1.5~~;‘. For most “practical” 
energies (PEP/PETRA and above), this is still well beyond the calculations. However, 
there is perhaps a message for those who work on perturbative QCD at the interface 
with nonperturbative effects, i.e., at small mass scales, e.g., where oS(p2) N 1. It 
is simply that one should probably stop at leading order and settle for roughly 30 



to 50 percent agreement with experiment: attempts to “improve” the situation by 
calculating higher orders most likely only create confusion and worsen the situation. I 
think that perturbative-QCD theorists should find this welcome. It is some justification 
for l&Gness. 

The reader may find it surprising that the apparently innocent relationship of 
D to an average of ??, as expressed in Eq. (18), should lead to such evidence for the 
asymptotic nature of the perturbation series. What happened? It is true that, for any 
oS reasonably small, D and R are nearly equal. But because of the ubiquity of QCD 
logarithms, to obtain the difference to high accuracy, one needs to sample R over a 
dynamic range in log 2 which grows linearly with the perturbat.ion order n. Thus when 
n X en s/A&,, one must sample the infrared region, where R is poorly defined by the 
perturbation series. But this condition is the same as the estimate n - 1.5~~;’ quoted 
earlier. 

As for the interpretation of renormalon poles, one may see from the defining equa- 
tion for the Bore1 transform that a pole at z = n is related to a power-law contribution 
to R (to leading order in the series expansion of the P-function): 

F(aS) = c 7 dze~~!w~~as’ t c (Residues) .exp{-n7r/[ba,(Q2)]} 
n a n 

(35) 

-n Residues) . ( Q2/A&o)-” . 

Thus- one finds linkage between power-law contributions to R, as computed using 
operator-product expansion techniques, and the location and structure of the renor- 
malon singularities. 

THE STRUCTURE FUNCTION OF A VIRTUAL PHOTON 

Our second example of a strictly perturbative process is deep inelastic scattering 
of an electron from a virtual (spacelike) photon. The classic deep-inelastic process 
of electron-proton scattering does not qualify because the proton is evidently too big 
to fit into a strictly perturbative space-time domain near the light-cone. The virtual 
spacelike photon with squared mass p2 = -P2 is small, with transverse extension of 
order P-l. It is produced from an electron or positron in the familiar two-photon 
process studied at e+e- colliders. 

While the electromagnetic structure of the spacelike photon is amenable to a 
perturbative analysis, it would, of course, be nice to consider the real photon, not to 
mention the timelike photon as well; especially the extrapolation to the vector-boson 
p, w, 4 states. Indeed, the case of the real photon is a very interesting subject with 
a rich history. There was at one time considerable optimism that this process was an 
excellent test-bed for perturbative &CD, and might provide an accurate measurement 
of CY$. But there arose complications, to be described in more detail in what follows. 
By now, the optimism has waned considerably. lo Nevertheless, the process is most 
interesting theoretically. 

For a spacelike virtual photon with four-momentum p, there are several structure 
functions to consider. We shall restrict our attention to transverse photons only, and 
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Figure 2: Lowest-order graph for “photon fusion” into quark-antiquark pairs. 

- 
only the helicity-independent contribution as well. The kinematic formulae can be 
found in many places” and will not be reproduced here. 

- Letting Q2 = -q2 be the (spacelike) squared mass of the probing photon, it 
should be clear that when both Q2 and P2 = -p2 are large, the starting-point is the 
simple “photon-photon fusion’ of quark pairs (Fig. 2), which gives what naively would 
be the leading contribution to the cross section. This was calculated long ago,r2 even 
before the advent of QCD. For Q2 >> P2 >> A&D, the relevant structure function 
(analogous to F2 for nucleons) is easily computed to be: .- . . 

F2(4 = x [x2 + (1 - x)~] en Q2/P2 . (36) 

For P2 >> Q2 >> II&~, the structure function vanishes rapidly, because the 
probing photon sees a small dipole of size P -I, but only has resolving power Q-‘. 
Hence, there is a power-law scaling violation proportional to Q2/P2 (up to logarithmic 

- factors). 

The factors in Eq. (36) are reasonably easy to understand: 

1. The amplitude is proportional to the square of the quark charge; hence the cross 
section to the fourth power. 

. . 

2. The small x behavior follows the Regge-pole rule: exchange of spin J in the 
amplitude leads to an s2J-2 or x2-2J behavior in the cross section. In this case, 
J = l/2, the exchanged quark being treated as “elementary.” 

3. The factor [x2 + (1 - x)~] is the probability of finding a quark of momentum 
xp, in the photon of momentum pP (as po + 00); it is just an Altarelli-Parisi 
“splitting function.” (We assume the reader to be familiar with the basics of the 
Altarelli-Parisi formalism). l3 

4. The logarithm appears from a “collinear” singularity in the angular distribution 
of the quark pair relative to the photon direction, and is of the same nature that 
generates the leading logarithms in QCD. 

It is of special interest that scaling in x is violated logarithmically (for Q2 --+ 00; 
P2 fixed), and that at large x the structure function is big: it approaches a constant 
as x -+ 1. This is in sharp contrast to what is expected from vector-meson dominance, 
where the hadronic part of the photon is assumed to be a mixture of p, w, 4.. . . The 
structure functions of such mesons are believed to vanish as x + 1 in a manner similar 



- 

to that of the pion or kaon, where the behavior is (1 - x)~, with n between 1 and 2. 
Therefore, observation of the photon structure function at large x (“large” meaning 
x > 0.4) is a good method of revealing its “pointlike” components. 

L-The theoretical situation became considerably more interesting when Witten14 
considered the QCD radiative corrections to this parton-model calculation. He showed 
that at sufficiently large Q2 even a real photon should exhibit the pointlike behavior, 
and that its structure function should violate scaling by one power of log Q2 just as in 
Eq. (36). However, the shape of the function of the scaling variable x multiplying the 
log Q2 term is changed in a calculable way by the higher-order QCD corrections. Thus 
it appeared that a measurement of this predicted shape would be a good test of QCD. 

The complications began when next-to-leading order corrections to Witten’s 
leading-order calculation were considered. I5 At small x, these had a very large effect- 
so large that the computed structure function went negative, a clearly inadmissible 
result. Subsequent work which traced down the origin of this phenomenon showed 
that one needed to include terms nonleading in (en Q2) and link them carefully to the 
leading term in order to resolve this problem. The importance of the nonleading con- 
tributions, which have a Q2 dependence typical of hadron structure functions instead 
of the (&-rQ2)l scaling-violation present in leading order, makes the phenomenology 
more complicated, and thus far has dampened the original optimism that this process 
was a good quantitative testing ground for perturtubative QCD. 

It is our intention to review this somewhat confusing situation. We shall start with 
consideration of the structure function when p2 = -P2 is large and spacelike16 so that 
by our criterion the process is strictly perturbative. (Historically, Witten considered 
realphotons only, and while there is nothing technically wrong with his analysis, this 
choice has been a source of some of the confusion.) Once this case is worked out, we 
consider what happens when P2 becomes null or timelike. The main tool to be used 
here is analytic continuation in P 2. The variable P2 will here play a role quite similar 
to the momentum variable Q2 used in the discussion of R and vacuum polarization. 
We will be able to see in a controlled way how the hadronic, nonperturbative aspects 
of the problem enter when P2 is allowed to become small. 

Within the QCD ideology, there are two major lines of attack on the structure- 
function problem. One uses the operator-product expansion plus renormalization 
group considerations to calculate the scaling violations of moments of the structure 
functions.17 The other uses the Altarelli-Parisi evolution-equations for the structure- 
functions themselves. The former method is more rigorous, but also more abstract. 
The latter method allows some physical insight at the parton-model level into what is 
going on, but is harder to justify theoretically, especially when nonleading contribu- 
tions are to be included. Indeed, the best justification for the Altarelli-Parisi approach 
is that it gives the same answers as the operator-product-expansion methodology. 

In this discussion we shall use both methods, but begin with the Altarelli-Parisi 
approach. Their equation is schematically written as: 

Q2 
dF2 (5, Q2) 

dQ2 
= pqq 63 F2 + PqG 63 G , 

Q2 dG 

dQ2 
= PG~@'F~+PGG@'G , 

(37) 
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with the convolution being given by a ratio-kernel: 

1 

--P@F E x 
J 

+X/Y, Q2> F(ZA Q2) , (W - 
X 

c 
-- 

and with the “splitting-functions” P(z, Q2) simple, known quantities. 

The physics is that: (i) the importance of the QCD radia.tive corrections increases 
-. with Q2 because of the increase in available phase-space; and (ii) the important con- 

tributions to leading logarithmic accuracy come from approximately collinear config- 
urations of the initial-state and final-state quarks and/or gluons. Item (i) implies the 

.- integro-differential nature of the equation: the change with en Q2 in the parton distri- 
bution is given by the convolution. Item (ii) assures the survival of the parton-model 

- interpretation despite the increase in transverse momentum of relevant constituents. 
The essential dynamics remains collinear, as required by parton-model ideology. 

The standard Altarelli-Parisi equations, as written, are homogeneous. But for 
the photon structure-function there is an inhomogeneous driving team because the 
“bare” process in Fig. 2 has the linear dependence on log Q2 as given by Eq. (36). 
For simplicity in what follows, we write down the modified Altarelli-Parisi equation 
omitting the gluon contributions; i.e., we consider a “nonsinglet” structure function. 

_ -- (Noth g in essential is lost in this simplification, and in what follows we shall indicate 
the necessary modifications at the appropriate places). The equation then becomes: 

-Q2 3 = P@F2+f(x) , (39) 

with 

The solution of integral equations with ratio kernels is found with the aid of 
the Mellin transform. One defines moments of the structure-function and splitting 
function: 

1 

E(n,Q2) = J dxxn-2 F2(x,Q2) , 

0 

1 

P(n,Q2) = J dzz’+-l P(z,Q2) . 

0 

Applying this to the integral equation unravels the convolution: 

Q2 
dF (n, Q2> 

= p(n, Q2)p(n, Q2) + f(n) . 
dQ2 

(41) 

(42) 

The general solution of this simple differential equation is a sum of a homogeneous 
solution and a particular solution. The homogeneous solution is the (hopefully) familiar 



one used in hadron structure-function analysis: 

(43) 

c The “anomalous dimension” P(n, a2) is, to leading order, proportional to the run- 
ning coupling constant o,(a2); hence, proportional to (&a2/A$Co)-1. When this 

-. dependence is introduced into Eq. (42), a short calculat,ion leads to the behavior: 

h, Q2) a, ( Q2) [ 1 d(n) 
F(n,Qi) = ~s(Qfi) . (44) 

- The exponent d(n) is obtained from the appropriate moment of the splitting function 
and Eq. (19) for og. It is positive for large n (large z) and negative for small n. This 
behavior leads to the familiar pattern of scaling violations for the structure function 
F2. 

(If one were to consider the coupled equations, Eq. (39) would include the gluon 
structure functions, and one would find after taking moments a 2 x 2 matrix problem 

.~- to solve. The answer involves a sum of two pieces behaving as [o~(&~)]~*(“) with d*(n) 
.- the eigenvalues of a 2 x 2 “anomalous dimension” matrix. This modification will not 

-. alter in a significant way the discussion to follow.) 

Inspection of Eq. (42) h s ows that a particular solution is, as already advertised, 
proportional to log Q2, i.e., to cy;l. 

@(n, Q2) = [constant] . [crs(Q2)]d(n) + 
f Wn Q2 /A& 

l+d(n) ’ 
(45) 

- This follows because of the behavior of the o, multiplying the splitting function p: 

p(n,Q2) E -44 

en Q2/h$,, 
(46) 

The presence of the inhomogeneous term requires a special procedure for obtain- 
ing the normalization constant for the homogeneous term. It is found by observing 
that for virtual P2 near Q2 there is no QCD evolution at all, and that the lowest order 
“bare quark” term should represent, to this accuracy, the whole contribution. Also, 
we have been suppressing the P2 dependence of 8. Putting that in and applying the 
boundary condition produces the desired result: 

F(n, Q2, P2) = 
--f”(n)@ p2/A&) a,(&') d(n) 

1+ d(n) i 1 f”(n) (en Q2 /A&D > 
%(P2) 

+ 
1+ d(n) 

f”(n)@ Q2&d 
= 

1+ d(n) 

(47) 

Thus the boundary condition for simple behavior when Q2 - P2 has provided 
linkage between the homogeneous (“hadronic”) term, with its typical scaling-violation 



- 
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? 

Figure 3: Photon-photon forward scattering amplitude. 

behavior, and the inhomogeneous (“pointlike”) term with single-log “Witten” behavior 
c4Q2>-‘. 

Evidently, as d(n) g oes negative for small n, it is essential to have both terms 
present; keeping only the “leading” term would lead to an unphysical singularity. This 
is essentially what happened in the early days of confusion. An additional problem 
is evident if one wishes to let P2 go to small or timelike values. If [l + d(n)] > 0, 
it appears that the limit is stable, and only the leading “Witten” term survives. If 
[l + d(n)] < 0, th e conventional”hadronic” term looms up in importance. And in both 
cases, one must ask whether nonpert&ative effects can infiltrate the results. To cope 
with these issues it is convenient to use analytic continuation in P2, the probed photon 
squared mass, for fixed Q2. 

To understand that this is possible, it is convenient to review briefly the formal 
operator-product approach to deep-inelastic processes. We shall provide only a sketch, 
omitting almost all technical detail. One starts with the forward scattering amplitude 
T(q,p) of current q from current p; diagrammatically shown in Fig. 3. It is a sum of 
Feynman diagrams, the Fourier transform of a four-point function: 

- wl7P) = J d4xd4yd% eiq.(z-y) e-ip.z 
< Ol~(~(~>~(~>~(~>~(O>>lo > , (48) 

where all spin indices, etc., have been omitted. For fixed q2 = -Q2 and p2 = -P2 
spacelike, 7’ is an analytic function of the energy variable v = q . p, except for branch 
cuts on the real axis beginning at (p f q)2 = 4mi or 4m2,, depending upon whether one 
considers the perturbative approximant T or the exact amplitude T (for which there 
are also poles at (p f q)2 = mz). In the u plane, the cuts therefore occur at: 

P2 + Q2 
u = uo x f 

2 - (49) 

In terms of the scaling variable, 

-1 &7-P 
w=x =- 

Q2 ’ 

2’ (or T) satisfies a dispersion relation in the cut w-plane with threshold 

(50) 

P2 
wo =1+-21 . 

Q2 
(51) 



One has (for a “nonsinglet” structure function): 

cm 

--T(w,Q2, P2) = J [ du’ 
W(w’, Q2, P2) + w(w’, Q2, P2) 

w’ -w w’ f w - wo 
(52) 

.- The discontinuities of T across the branch cuts (i.e., the absorptive part), which we 
c call W or w, are, up to suppressed kinematic factors, the cross sections for the photon- 

photon collision. These are essentially just the structure functions F2. 

The operator-product expansion expresses the product of currents j(x)j(y) in 
Eq. (48) by a sum of local operators O,(x) multiplied by c-number coefficients &(x-y), 
depending only on the coordinate differences, which are to be regarded as “small”. In 
this application, it turns out to be enough to have the invariant distance (x -Y)~ small, 
i.e., near the light-cone. 

Upon doing the y-integration in Eq. (48), one sees that all the dependence on 
q in the nth term of the expansion goes into the coefficient function. The remaining 
contribution depends only on p. This, however does not imply a complete factorization. 
Spin indices, brutally suppressed here, must be restored. Typically, the operator “0,” 
has n tensor indices (give or take one or two) which are contracted into similar tensor 
indices possessed by the coefficient function C,. This gives a structure for the nth term 
in the operator product expansion as follows: 
. 

nth term = A,(Q2) Bn(P2) P,(q +p) , (53) 

where the Pn is a polynomial in (q . p) of order n (give or take one or two). What 
this implies is that a series expansion of T in q . p (for fixed Q2 and P2) essentially 
allows identification of its nth term with the nth contribution to the operator-product 
expansion. Because of nonvanishing photon spin, gauge-invariance, etc., things are not 
quite so simple as sketched above. But the complications are essentially of a technical 

- nature. 

Because at large spacelike Q2 and P2 the amplitude T is analytic in a large 
neighborhood around q. p = 0, the series-expansion is convergent. The coefficients are 
given in terms of the moments of the structure functions W and w already encountered 
in the Altarelli-Parisi approach. This can be seen from the dispersion-relation, Eq. (52). 
In the scaling limit, one finds (for P2 < Q2): 

T = c Tn (2q. plQ2)” , 
n 

(54) 

with 

T, = w; J ;Ll [W - (-)” w] = j dxxn-l [IV - (-)” w] . ( (55) 
W 

0 

Here, the usual deep-inelastic scaling variable is given by: 

x G (w’)-l . (56) 

Our main reason for going through all this is to emphasize that the moments of 
the structure functions W and w are related to a Green’s function (sum of Feynman 
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diagrams), with that Green’s function being a finite number of derivatives with respect 
to q . p of T about q * p = 0. Furthermore, T(Q2, P2, 0) (and the derivatives thereof) 
has good analytic properties in P2 at fixed spacelike Q2 (or vice versa). This is most 
easiljr-seen by examining, for any Feynman diagram, the expression obtained after 
“combining denominators” using Feynman’s famous formula and doing the momentum- 

.- space integrations. l8 The resultant expression has the generic form. 
c 

J da1 . - - dcu,N(al - -. an) 
_. I= 

[5&)Q2 + C2(4P2 + M2(41" ' 
(57) 

._ where (1, (2, and M2 can be shown to be positive semidefinite irrespective of choice 
of o’s or of Feynman-diagram. Thus one concludes that the moments of the structure 
functions are, for fixed spacelike q2, analytic in the cut p2 plane, with a branch cut 

- with normal thresholds at positive p 2. Thus one has, at long last, the desired result.lg 

1 

P(n, Q2, P2) E J dxx n-2 F2(x, Q2, P2) = 
co da2p(n, Q2, a2) J * (P2 + 2) 

(58) 
0 0 

The dispersion integral should be convergent, since for large P2(P2 >> Q2), p tends 
.to zero, according to the discussion following Eq. (36). 

What can one say about the weight function p(g2)? [We suppress for a while the 
Q2 and n dependences]. At the level of the uncorrected yr + q?j “fusion” diagram, 
one has a log Q2/P2 behavior which is reproduced by: 

constant u2 < Q2 , 
P x 

0 u2 > Q2 . 
(59) 

The QCD modifications to p need to be inferred from Eq. (47), which expresses the 
desired answer. What to do is perfectly clear2’; one simply writes: d(n) 

P M u2 < Q2 , 

u2 > Q2 . 

(60) 

The absorptive part in P2 of the moment of the structure function posses the scaling- 
violation pattern typical of ordinary “hadronic” structure functions. In this sense, 
it seems inappropriate to describe the dispersion integral over it as the difference of 
a “pointlike” part (contribution from the upper limit) and “hadronic” part (contri- 
bution from the lower limit). Just as for the case of vacuum-polarization and/or R 

( e+e- + hudrons), the separation into short-distance and long-distance pieces (aside 
from contributions of heavy-flavor thresholds) has to do with the large a2 and small 
a2 contributions of the absorptive part. 

The importance of the low-a2 part of p(n, u2, Q2) evidently depends on n (or, if 
one likes, the “conjugate” variable x). For large n (large x), the perturbative-QCD 
correction suppresses the small-a2 contribution. However, for small n (small a:), the 
opposite occurs and the low-02, infrared region is enhanced. In this region in particular, 
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Figure 4: Sketch of the weight-function p,(~~, Q2) for n - 4 and (a) Q2 - 20 GeV, 

.~- and (b) Q2 - 20,000 GeV. 
.- 

-. there will be nonperturbative contributions from Regge-poles. Since Regge-poles are 
associated with the presence of bound qq states, they are indeed nonperturbative. And 
the perturbative calculations simply should not be trusted quantitatively at all when 
exterlded into this region. What they say is just that for small n and small z, there is 
a big infrared contribution, while at large n and large 5, the infrared contributions are 
probably suppressed. 

Where does this leave the matter experimentally? For A&o < P2 < Q2, the 
- calculations are quite solid, but the sensitivity to the QCD corrections is poor until very 

large Q2 (much larger than is now available) is attained. The real-photon structure- 
function at large z, according to our argument, can, in principle, be well estimated by 
the perturbative-QCD expression when Q2 is sufficiently large. Note that the moments 
of the structure function are just (for P2 = 0): 

M(n,Q2) = 
J 

5 An, a2, Q2> ; _. (61) 

i.e., just the area under the curve when p is plotted versus log u2. This is done in Fig. 4 
for Q2 = 20 GeV2 and Q2 = 20,000 GeV2. The region below, say, o2 = M2 N 2 GeV2 
is no doubt nonperturbative. There are double-poles at p, w, 4 masses in the moments, 
leading to (approximate) S’( cr2 - m2) singularities in p. So the perturbative estimate of 
the area below o2 = M2 should not be trusted to a factor of two, if even that much. This 
leaves the “reliable” perturbative effect the shaded area as shown. For Q2 = 20 GeV2, 
the effect is very small; for Q2 = 20,000 GeV2, there seems to be some hope. It appears 
that if the real-photon structure function could be measured from, say, Q2 - 100 GeV2 
to Q2 X lo4 GeV2, there might be some chance of getting a quantitative measure of 
the QCD correction. But, at present, what has been accomplished experimentally is 
observation of the presence of the large-z “pointlike” contribution from the yy --f qq 
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process. This comes both from the shape of F2 at large 2 and from its logarithmic Q2 
dependence. 

- 
- 

CONCLUDING REMARKS 
.- 

c These discussions of R and of photon structure functions have been based on a 
conservative view of perturbative &CD. As expressed in the introduction, I feel that 
there is a need for developing this point of view further. I am encouraged by the fact 
that the first two examples attacked this way yielded something which at least I have 

’ found not uninteresting. In both cases, the use of Green’s functions built from local 
color singlet operators, and especially their analyticity properties, was a central feature. 
While there are more things to do in generalizations along this line, I think there are 

- also interesting questions of how to deal with the interpretation of the perturbative 
intermediate states which build the absorptive parts of the Green’s functions, and how 
to relate them to the extant QCD jet calculus used in phenomenology. I hope to work 
on this in the future. 
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